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Abstract. We study Chevalley-Eilenberg cohomology of physically relevant Lie superalgebras
related to supersymmetric theories, providing explicit expressions for their cocycles in terms of
their Maurer-Cartan forms. We include integral forms in the picture by defining the notions
of constant densities and integral forms related to a Lie superalgebra. We develop a suitable
generalization of Chevalley-Eilenberg cohomology extended to integral forms and we prove that it
is isomorphic via a Poincaré duality-type pairing to the ordinary Chevalley-Eilenberg cohomology
of the Lie superalgebra. Next, we study equivariant Chevalley-Eilenberg cohomology for coset
superspaces, which play a crucial role in supergravity and superstring models. Again, we treat
explicitly several examples, providing cocycles’ expressions and revealing a characteristic infinite-
dimensional cohomology.
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1. Introduction

The mathematical development of cohomology of Lie algebras [23, 43] has been
prompted and characterized by a twofold reason in relation to the theory of Lie
groups.
On one hand, in a diverging direction with respect to Lie groups, Lie algebra
cohomology unties the representation theory of Lie algebras from the corresponding
representation theory of Lie groups, by allowing a completely algebraic proof of the
Weyl theorem [59], which was originally of analytic nature. On the other hand,
in a converging direction with respect to Lie groups, in many important instances
Lie algebra cohomology makes computations of the de Rham cohomology of the
corresponding Lie groups easier. Nowadays, applications of Lie algebra cohomology
range from representation theory in pure mathematics to modern physics – let us
just recall that Kac-Moody and Virasoro algebras, which play a central role in string
theory, are central extensions of the polynomial loop-algebra and the Witt algebra
respectively, and, as such, they are related to Lie algebra’s 2-cohomology group.
While it is quite natural to generalize a cohomology theory from Lie algebra to Lie
superalgebra [44, 47] (recent reviews and computations can be found in [2, 3, 4, 5])
both from a derived-functorial point of view and, more concretely, via cochain
complexes, it can be seen that the two directions sketched above are doomed to
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breakdown as one moves to the super setting. Indeed, in the representation-theoretic
direction, there is no Weyl theorem for Lie superalgebras: this led to the opinion
that the cohomology theory is rather empty and meaningless.

Further, in the topological direction, when working with Lie supergroups and their
related Lie superalgebras, Cartan theorem resists a naive “super” generalization,
as it only encodes topological information. On the other hand, a different point
of view is possible, namely one can look at the failure of the Weyl theorem in the
supersymmetric setting as an opportunity, rather than a pathological feature of the
theory, for it suggests that the cohomology groups of Lie superalgebras might have a
much richer structure than the one that can be guessed by analogy with the ordinary
theory. Remarkably, physics is paving this way: cocycles arising from cohomology
of Lie superalgebras – in particular, Poincaré superalgebras – are getting related to
higher Wess-Zumino-Witten (WZW ) terms in supersymmetric Lagrangians (the so-
called brane scan and its recent higher-version, the brane bouquet, which promotes
Lie superalgebras to L∞ -superalgebras and consider their cohomology), see [6] and
the more recent publications [7, 10, 31, 32, 51]. It is fair to observe, though, that
even the cohomology of a finite-dimensional Lie superalgebra does not in general
vanish for degrees greater than the dimension of the algebra – as it happens in the
ordinary case instead –: this might make the actual computation of the cohomology
of Lie superalgebras into a very difficult task. Accordingly, results can be found in
the literature for specific choices of superalgebras – in particular in low-degree [56]
–, but only very few encompassing results are available [34], even just for the Betti
numbers of Lie superalgebras. Even less is known regarding the cohomology and the
structure of cocycles of coset or homogeneous superspaces, which play a fundamental
role in many superstring and supergravity models. If on one hand it is likely that a
detailed knowledge of the (equivariant) cohomologies of these spaces would help to
understand the geometric nature and invariant structure of convoluted supergravity
Lagrangians [41] [42], it is also fair to notice that – once again – computations are
difficult even in the most basic examples.

On a different note, getting back to the relations between algebras and groups, it is
a well-known fact that the de Rham cohomology of a Lie group can be formulated
in terms of its underlying Lie algebra, thus making feasible computations, which
otherwise would be very difficult. In trying to generalize this to Lie supergroups,
one would run into an issue, which is deeply ingrained in the theory of forms and
the related integration theory in supergeometry. Indeed, in order to formulate a
coherent notion of geometric integration on supermanifolds [48], besides differential
forms, one also needs to take into account integral forms, a notion which is crucial,
though not widely known and understood – for example, a supergeometric analogue
of Stokes’ theorem [49] [60] is proved using integral forms. On the other hand,
it needs to be remarked that Lie superalgebra cohomology is nothing but a “Z2 -
graded generalization” of the ordinary Lie algebra cohomology, and, as such, it is
not capable to account for objects other than differential forms on supermanifolds,
such as in particular, integral forms, which simply do not enter the picture [57].
It is natural to ask if it is possible to provide a formulation of Lie superalgebra
cohomology capturing properties of integral forms as well, and, in turn, what are
the relations between the ordinary Lie superalgebra cohomology and this newly
defined cohomology.
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An extensive treatment and exhaustive discussion of Lie superalgebras cohomology
have been given in [34]: many specific examples are studied, and it is shown that
the R-valued cohomology of some Lie superalgebras does not coincide with the
cohomology of the reduced bosonic Lie algebras. An interesting example of this
peculiar phenomenology is given by the family of orthosymplectic Lie superalgebras
osp(n|m) , whose Lie superalgebra cohomology reads

Hp
CE (osp(n|m)) ∼=

{
Hp

CE (so(n)) n ≥ 2m

Hp
CE (sp(m)) n < 2m.

(1.1)

The above result is rather surprising. It can be interpreted by saying that, depending
on the dimensions, only a fraction of the algebraic invariants, which are built
from the invariant tensors of the bosonic subalgebra – the so-called Casimir’s –,
contributes to the cohomology of the Lie superalgebra. However, by the very
definition of Lie algebra cohomology, one would expect that all of the invariants
have to appear and are to be kept into account.
In this regard, we will see that all of the invariants coming from both so(n) and
sp(m) appear in the module of constant densities (or Haar Berezinian) of the
Lie superalgebra. This does not define a new cocycle of the original Chevalley-
Eilenberg cohomology of the Lie superalgebra, because the Berezinian module does
not belong to the Chevalley-Eilenberg complex in the first place. On the other
hand, the Berezinian module is the pivotal construction that allows the introduction
of a different complex, the (algebraic analogue of the) complex of integral forms,
together with a related notion of cohomology. Given this, it is relevant to consider
the relation between the cohomology of this complex and the original Chevalley-
Eilenberg cohomology. Finally, it is worth mentioning that, besides differential and
integral forms, it is possible to introduce another kind of form, namely pseudoforms:
these can be again arranged into complexes and a related cohomology can be
introduced – a relevant example of these cohomologies of pseudoforms has been
studied in the recent [27].
In the present work, after a brief review of the Chevalley-Eilenberg cohomology
of Lie algebras and superalgebras – and a basic introduction to integral forms –
which aims at making the paper as self-consistent as possible –, we extend the
notion of integral forms to the Lie superalgebraic context and we define a related
cohomology theory. On the way, we introduce the pivotal construction of the module
of constant densities or Haar Berezinian, by adapting to left invariant forms and field
the relevant Koszul complex construction and its cohomology. We then establish an
isomorphism between the Chevalley-Eilenberg cohomology of integral forms and
the ordinary Chevalley-Eilenberg cohomology of the Lie superalgebra in question
and we comment on the result, pointing out differences and similarities concerning
the known quasi-isomorphism of differential and integral forms on supermanifolds.
We provide explicit computations of these cohomologies in several cases of physical
interest, by looking at the Lie superalgebra of symmetries of relevant superspaces
– concrete expressions for the cocycles are given in the Appendix. However, it is
fair to remark that, even if Lie supergroups and their associated Lie superalgebras
appear in several physical applications and allow to establish important results, coset
supermanifolds offer to the most interesting and rich scenarios, providing several
ways to take into account different amounts of symmetries. For this reason, the
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last part of the paper is dedicated to the computations of equivariant Chevalley-
Eilenberg cohomology for coset superspaces: several examples are discussed and the
typical phenomenology is pointed out.

2. Chevalley-Eilenberg cohomology: main definitions

2.1. Lie algebras, Lie superalgebras and left invariant forms
We start recalling the basic definitions, first in the usual setting, then in the super
one. Let g be an ordinary finite dimensional Lie algebra defined over the field k
(we will only deal with k = R or C), and let V be a g-module or a representation
space for g. We define the (Chevalley-Eilenberg) p-cochains of g with values in V
to be alternating k -linear maps from g to V [23],

Cp
CE(g, V ) := Homk (∧pg, V ) , (2.1)

where, in taking the exterior power g is looked at as a vector space. The above
(2.1) can be lifted into a cochain complex by introducing the (Chevalley-Eilenberg)
differential dpg : C

p
CE(g, V ) → Cp+1

CE (g, V ), defined as

dpgf(x1 ∧ ... ∧ xp+1) :=
∑

1≤i<j≤p+1

(−1)i+jf([xi, xj] ∧ x1 ∧ ... ∧ x̂i ∧ ... ∧ x̂j ∧ ... ∧ xp+1)

+

p+1∑
i=1

(−1)i+1xi · f(x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp+1), (2.2)

for f ∈ Homk(∧pg, V ) and where the hatted entries are omitted. It is not too hard
to prove that dp+1 ◦ dp = 0 , so that one can define the Chevalley-Eilenberg complex
of g taking values values in V as the pair (C•

CE(g, V ), d•) .
In this paper we will only deal with the case the cochains take values in the trivial
g-module, that is V = k and we will denote the k -valued cochains of g simply as

Cp
CE(g) :=

p∧
g∗. (2.3)

Notice that in this case, the second summand of the differential (2.2) vanishes
identically, since x · f = 0 for any x ∈ g and f ∈

∧• g∗ .
Given these definitions, cohomology is defined in the usual fashion. We call Chevalley-
Eilenberg cocycles the elements of the vector space

Zp
CE(g, V ) := {f ∈ Cp

CE(g, V ) : dpf = 0}, (2.4)

and Chevalley-Eilenberg coboundaries the elements in the vector space

Bp
CE(g, V ) := {f ∈ Cp

CE(g, V ) : ∃g ∈ Cp−1
CE (g, V ) : f = dp−1g}, (2.5)

and we define the Chevalley-Eilenberg p-cohomology group of g valued in V as the
quotient vector space

Hp
CE(g, V ) := Zp

CE(g, V )
/
Bp

CE(g, V ) . (2.6)
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Denoting now g a Lie superalgebra with g = g0⊕g1 its even and odd components in
the Z2 -grading, one can easily generalize the above construction just by taking care
of the signs related to the Z2 -grading (parity) of g . In particular, the definition of
cochains and cohomology groups is unchanged and the previous differential in (2.2)
modifies according to [47] to

dpf(x1 ∧ . . . ∧ xp+1)

:=
∑

1≤i<j≤p+1

(−1)i+j+δi,j+δi−1,jf([xi, xj] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . x̂j ∧ . . . ∧ xp+1)

+

p+1∑
i=1

(−1)i+1+δr−1,rxi · f(x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp+1), (2.7)

where δi,j := |xi|(|f |+
∑i

k=0 |xk|) for any f ∈
∧p g∗⊗V , xi ∈ g , in order to take into

account the parity, i.e. the Z2 -grading of the elements. Also, notice that whenever
the odd dimension of the Lie superalgebra is greater than zero, i.e. if g1 6= {0} , the
Chevalley-Eilenberg cochain complex is not bounded from above as in the ordinary
case.
In the physics literature, and in particular, in supergravity, Chevalley-Eilenberg
cohomology is introduced via Cartan geometry, better than via the above purely
algebraic framework. Focusing on the trivial coefficient case, one starts with an
ordinary Lie group G , with ℓg : G → G the left translation by g ∈ G so that
ℓg(h) = g · h ∈ G for any h ∈ G . Then, the vector space of left invariant p-forms
G is defined as

Ωp
L(G) := {ω ∈ Ωp(G) : ℓ∗gω = ω}. (2.8)

It is easy to see that any left-invariant p-form is determined by its value at the origin
e ∈ G , leading to the vector spaces isomorphism Ωp

L(G)
∼=

∧p g∗ = Cp
CE(g) . Further,

it is not hard to see that if ω(ℓ) is a left-invariant p-form, then (dω(ℓ))e = dgω, where
d is the de Rham differential, dg is the Chevalley-Eilenberg differential introduced
above and ω ∈ Cp

CE(g) is such that ω = ω
(ℓ)
e . This shows that the Lie algebra

cohomology can be described in terms of the de Rham cohomology of left invariant
differential forms on the Lie group whose the Lie algebra is associated to, i.e.

Hp
CE(g, V ) ∼= Hp(Ωp

L(G), d), (2.9)

thus making contact between two seemingly different cohomologies and making it
possible to compute Lie algebra cohomology via forms, see for example [45].
In this context let us consider a k -basis of left-invariant forms ωi ∈ Ω1

L(G) together
with its dual basis of left-invariant vector field Xi ∈ (Ω1

L(G))
∗ , with ωi

g(Xj,g) = δij
for any g ∈ G . Then, the ωi ∈ Ω1

L(G) satisfy the Maurer-Cartan structure equation

dωi = −1

2
Ci

jk ω
j ∧ ωk, (2.10)

where the Ci
jk are the structure constants relative to the basis ωi . Here the sums

over repeated indices are understood. These equations are equivalent to the Lie
bracket relations for the basis X i of the algebra of left-invariant vector fields,
[Xj, Xk] = Ci

jkXi .
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Also it can be easily checked that d ◦ d = 0 is equivalent to Jacobi identity, as

d(dωk) = −1

2
Ck

ij dω
i ∧ ωj +

1

2
Ck

ij ω
i ∧ dωj =

1

2
Ck

i[jC
i
lm] ω

l ∧ ωm ∧ ωj = 0, (2.11)

where ωi ∈ ΩL(G) and where Ck
i[jC

i
lm] = 0 is indeed the Jacobi identity.

In the present paper we will deal only with matrix Lie (super)groups, i.e. Lie
(super)groups which admit an embedding into some GL-(super)group. In this
case, the elements of the basis of Ω1

L(G) can be taken of forms V = dgg−1 , where
g := (gij) is matrix-valued. We call them Maurer-Cartan forms, as they satisfy
Maurer-Cartan equations (2.10) by construction. In turns, we will take the p-
cochains to be generated by the Maurer-Cartan forms {V i} , i.e. the vielbeins in the
physics literature, so that

Cp
CE(g) = Ωp

L(G) =
{
ci1...ipV i1 ∧ . . . ∧ V ip

}
for ci1...ip ∈ k. (2.12)

Notice that the above discussion is readily generalizable to the Z2 -graded setting
of a Lie supergroup G , but a remark about the parity is in order. Indeed, in
supergeometry one takes Ω1(G) := ΠT ∗(G) , where Π is the parity changing functor.
In this convention, the de Rham differential d is an odd derivation. This leads to
consider even and odd vielbeins {ψα|V i} generating the Z2 -graded vector space
Ω1

L(G) , where the even ψα ’s arise from odd coordinates and the odd V i ’s arise from
even coordinates. What it is crucial to observe is that, accordingly, the space Ω1

L(G)
should be related to the parity changed dual of the Lie superalgebra Πg∗ , that is at
the level of the cochains one has

C•(Πg) := S•Πg∗ ∼= Ω•
L(G), (2.13)

where S• is the supersymmetric product functor [49]. Likewise, at the level of the
algebra, commutators [·, ·] become supercommutators [·, ·} . In particular, on the
parity reversed algebra Πg , if πX and πY ∈ Πg one poses [πX, πY } := [X,Y } for
X and Y in g.

2.2. Integral forms and Chevalley-Eilenberg cohomology:
Defining Chevalley-Eilenberg cohomology of integral forms

As briefly reviewed in the previous section, Chevalley-Eilenberg cohomology can be
introduced as the cohomology of the vector space of the left-invariant differential
forms of the associated Lie group. On supermanifolds, though, differential forms
need to be supplemented by another kind of forms in order to obtain a coherent
notion of integration. These are the so-called integral forms, which are briefly
reviewed in the Appendix in the hope of making this paper as self-contained as
possible. See also classical and recent literature on the topic [12, 14, 15, 18, 19, 20,
21, 22, 25, 26, 28, 29, 37, 49, 54].
It can therefore be expected that it is possible to introduce a notion of cohomology
of left invariant integral – better than differential – forms on supermanifolds and
Lie supergroups in particular: this will encode different information about the Lie
supergroup and the associated Lie superalgebra.
Left invariant integral forms on a Lie supergroup G can be introduced via the
following two different approaches – see also the Appendix.
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2.3. Integral forms as generalized functions
In order to introduce integral forms as generalized functions on G , one starts from
a basis of Maurer-Cartan forms {ψα|V i} with even ψ ’s and odd V ’s and consider
only integral forms as in (A.2) written in terms of them:

ωg(ψ|V ) =
n∑

i=1

m∑
j=1

∑
ai∈{0,1}
rj≥0

ω[a1...amr1...rm](V
1)a1 ... (V n)amδ(r1)(ψ1) ... δ(rm)(ψm), (2.14)

where all indices are antisymmetric and ω[a1...amr1...rm] ∈ k . We will call these integral
forms on g for short. The indices ri in δ(ri)(ψi) denote the ri -th derivatives of
the Dirac delta distributions. Notice that, if YA=i|α := {Pi|Qα} is the basis1 of
generators of the Lie superalgebra g which is dual (up to a parity shift) to the basis
of the Maurer-Cartan forms above so that ψα(πQβ) = δαβ and V i(πPj) = δij , then
the most general integral form on g of degree n− ℓ , see (A.5), will be written as

ωn−ℓ
g = ωi1...iℓιY i1 . . . ιY iℓω

top
g , (2.15)

for Y ik spanning both even and odd dimensions of g and the indices of the tensor
ωi1...iℓ symmetrized or anti-symmetrized according to the parity of the related con-
traction (the sum over repeated indices is understood). Notice that contractions act
as derivatives on the deltas. In the above expression, one fixes the integral top form
up to a multiplicative constant to be

ωtop
g = V 1 . . .V nδ(ψ1) . . . δ(ψm) =

∏
I

C(I)
i1...ip

V i1 . . .V ipδ(ψ1) . . . δ(ψm) , (2.16)

that is ωtop
g is again expressed only in terms of the Maurer-Cartan forms, which

makes it formally left-invariant. In the second expression above we have written
the first expression in terms of all the invariant tensors C(I)

i1...ip
of the corresponding

bosonic subalgebras, with I running over the different invariant tensors.
In this context, the form (2.16) of the Berezinian explicitly constructed via left-
invariant forms has a useful interpretation: the presence of the delta’s formally
set to zero the fermionic contributions that one would get applying the Chevalley-
Eilenberg differential to the vielbeins, thus reducing the Maurer-Cartan equations
to those of the bosonic subalgebra. It follows that, if on one hand invariants of a
part of the bosonic subalgebra are encoded in Chevalley-Eilenberg cohomology –
as in Fuks’ theorem –, on the other hand, the remaining invariants of the bosonic
subalgebra are encoded inside integral forms, since the Berezinian is built in terms
of all invariants of the bosonic subalgebra under examination.
Finally, observe that the Maurer-Cartan differential can be generalized to act on
integral forms on g in the following way

Ωn−ℓ
int (g) 3 ωn−ℓ

g 7−→ d(ωn−ℓ
g ),

where d(ωn−ℓ
g ) :=

1

2
CA

BC(πY ∗)B(πY ∗)CιY A

(
ωi1...iℓιY i1 . . . ιY iℓω

top
g

)
, (2.17)

where CA
BC are the structure constants of the Lie superalgebra g with A,B and C

are cumulative even and odd indices.
1 We conventionally denote vectors with lower indices and forms with upper indices.
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Notice that the right-hand side of (2.17) defines indeed an integral form of degree
n − ℓ + 1 , i.e. d(ωn−l

g ) ∈ Ωn−l+1
int (g) and, once again, that the differential is indeed

nilpotent thanks to Jacobi identity for the Lie superalgebra g. It then does make
sense to define the integral Chevalley-Eilenberg cohomology as

Hn−ℓ
CE,int(g) :=

{ωg ∈ Ωn−ℓ
int (g) : dωg = 0}

{ωg ∈ Ωn−l
int (g) : ∃ηg ∈ Ωn−ℓ−1

int (g) : dηg = ωg}
. (2.18)

2.4. Integral forms as Berezinian-valued polyfields
Whereas the above description of integral forms has the merit of being intuitive
and suitable for computations, it breaks down in any category that does not admit
the notion of generalized functions or Dirac delta distributions. A second definition
suitable to any geometric category is given by introducing integral forms as sections
of the tensor product of sheaves

Σp(M ) := Ber(M )⊗OM
(Ωn−p(M ))∗, (2.19)

where M is a generic supermanifold. Notice that an integral form is a much
more complicated object than a differential form – whose definition appears more
natural, being an obvious generalization of the ordinary notion. Nonetheless, integral
forms are in some sense more useful objects than differential forms, as they control
integration theory on supermanifolds. The same is true for Lie supergroups, where
is to be expected that (suitably defined) left-invariant integral forms might also play
a role in the corresponding representation theory, in particular when it comes to
introducing a notion of unitary representations – something which has so far been
neglected.
In the following we will see how (2.19) specializes in the case of a Lie supergroup.
Finally, we will see how left-invariant differential forms and left-invariant integral
forms can be seen as arising from a unique construction, that only makes only use
of natural objects defined on the Lie superalgebra of the supergroup, such as its
universal enveloping algebra.

2.5. Haar Berezinian and left invariant integral forms
The first problem to be addressed in order to introduce a notion of left-invariant
integral forms is how to intrinsically define a left invariant Berezinian, or module
of constant densities. In the ordinary case of a Lie group G , the Haar determinant
– which integrated yields the “volume” of the Lie group – is constructed as the
top exterior power of the left-invariant 1-forms, i.e. det(G) = R · ω1 ∧ . . . ∧ ωn for
SpanR{ω1, . . . , ωn} = Ω1

L(G) . There is no generalization of this construction since
there are no top-exterior forms on a superspace if the odd dimension is greater or
equal to 1: in particular, the Berezinian cannot be realized this way. Nonetheless,
the determinant module of an ordinary vector space can be intrinsically constructed
also via cohomology of the dual of the Koszul complex of the vector space [55]: this
construction, instead, admits a non-trivial generalization to supergeometry.
Namely, for a real or complex Lie supergroup G of dimension n|m let us consider
the following dg k -algebra (where k is a characteristic-zero field) given by the tensor
product

K•
G :=

( ∞⊕
i=0

SiΩ1
L(G)

)
⊗k S

•TL(G) (2.20)
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where ΩL(G) and TL(G) are left invariant forms and fields respectively. Notice that
S•TL(G) is a k -algebra generated by the elements in degree 1

TL(G) = spank{X1 . . . , Xn, |ξ1, . . . , ξm} ∼= g, (2.21)

with Xi = π(V i)∗ and ξj = π(ψj)∗, for {ψj|V i} generating Ω1
L(G).

The homological operator acting on K•
G is given by the multiplication by the element

δ :=
n∑

i=1

V i ⊗Xi +
m∑

α=1

ψα ⊗ ξα. (2.22)

in the dg k -algebra K• . Notice that since δ is odd, the multiplication by δ is
nilpotent. Also, the Z-grading is inherited by that of the polyfields S•TL(G) .

Definition 2.1. (Super Koszul Complex of G ) Let G be a Lie supergroup. We
call the pair (K, δ) the Koszul complex of G .

We define D := V 1 . . .V n ⊗ ξ1 . . . ξm. (2.23)
It is immediate to see that one has the following inclusion of ideals (δ,D) ⊆ ker δ .
Notice that, by abuse of notation, δ ∈ (δ,D) is seen as an element generating the
ideal and then as a homological operator when we consider its kernel.

Theorem 2.2. The cohomology Hδ(K•
G) of the super Koszul complex (K•

G , δ) is
concentrated in degree m and isomorphic to Πn+mk . In particular, the cohomology
class is generated by the element D.

Proof. Just rearrange the definitions to write

K•
G = k[Xi, ψ

α|V i, ξα]. (2.24)

Then, if N = n+m one put

(u1, . . . , uN) := (X1, . . . , ψ
m), (ϵ1, . . . , ϵN) := (V 1, . . . , ξm). (2.25)

Then δ =
∑N

i=1 uiϵi and D =
∏N

i ϵi . Upon defining B := k[u1, . . . , un] one has
k[Xi, ψ

α|V i, ξα] = B[Xi, ψ
α] . By anticommutativity, it follows that

B[Xi, ψ
α] =

•∧
B

(X i, ψα). (2.26)

This is a standard Koszul complex with Koszul differential given by δ=
∑

i uiϵi . Its
cohomology is concentrated in degree N and generated over k by the element D .

A direct computation leads to the following corollary.

Corollary 2.3. Let f ∈ Autk(Ω
1
L(G)), then the induced automorphism on the

module generated by D is given by the Berezinian of the automorphism f.

The previous result in turn justifies the following definition.
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Definition 2.4. (Haar Berezinian / Module of Constant Densities of G ) Let G

be a real or complex Lie supergroup. We define the Haar Berezinian or module of
constant densities of G to be the cohomology module Hδ(K•

G) and we denote it with
BerH (G) .

Note in particular that one has

BerH (G) ∼= k · [D] ∼= k · [V 1 . . .V n ⊗ ξ1 . . . ξm], (2.27)

where the {V i} are left invariant odd forms generating Πg0 and the ξj are left
invariant odd vector fields generating g1 .
Using the above notion of Haar Berezinian for a Lie supergroup G of dimension n|m ,
left invariant integral forms can be introduced into this Lie-theoretic framework as

Cp
CE,int(g) := BerH (g)⊗ Sn−pΠg, (2.28)

see (2.19) to compare the definition with the ordinary sheaf-theoretic definition
on a supermanifold M . Notice that we have used the isomorphism between left
invariant vector fields on the Lie supergroup G and elements of its Lie super-
algebra g . A notion of differential acting on left invariant integral forms as
δp : Cp

CE,int(g) → Cp+1
CE,int(g) can be introduced as follows. First, one extends the

notion of supercommutator – or Lie derivative – to the whole supersymmetric prod-
uct SnΠg recursively. For X ∈ g , having already defined LX : ShΠg → ShΠg for
h < p we uniquely define the action of LX on SpΠg via the relation

LX (〈ω, τ〉) = 〈LX (ω), τ〉+ (−1)|ω||X |〈ω,LX (τ)〉 (2.29)

for any ω ∈ Si>0Πg∗ and τ ∈ SpΠg , and where 〈·, ·〉 is the duality pairing between
Πg∗ and Πg , extended to higher tensor powers, see [12]. Using this, we introduce
the map

δp : Cp
CE,int(g)

// Cp+1
CE,int

D ⊗ τ � // δp(D ⊗ τ) = D ⊗
∑

A ιπX∗
A
LXA

(τ)

(2.30)

where the index A runs over both even and odd coordinates, D is a Haar Berezinian
tensor density in BerH (g) and {XA} are left-invariant vector fields generating g , so
that {πX ∗

A} are generators for Πg∗ . Here ιπX∗
A

is the contraction with the form πX ∗
A :

in this respect the above can be re-written as δp(D ⊗ τ) = D ⊗
∑

A〈πX ∗
A,LXA

(τ)〉.
Nilpotency can be checked formally as

1

2
{δ, δ} =

∑
A,B

(ιπX∗
A
LXA

ιπX∗
B
LXB

+ ιπX∗
B
LXB

ιπX∗
A
LXA

)

=
∑
A,B

(
(−1)|XA||XB |+|XA| + (−1)|XA||XB |+|XA|+1

)
ιπX∗

A
ιπX∗

B
LXA

LXB
= 0. (2.31)

The above discussion proves that the pair (C•
CE,int(g), δ

•) defines a dg-supermodule,
and therefore justifies the following definitions.
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Definition 2.5. Let g be a Lie superalgebra. We call the pair (C•
CE,int(g), δ

•)
integral Chevalley-Eilenberg complex of the Lie superalgebra g and the modules
Cp

CE,int(g) the integral Chevalley-Eilenberg p-cochains. Accordingly, we define its
cohomology as

Hp
CE,int(g) :=

ker
(
δp : Cp

CE,int (g) → Cp+1
CE,int (g)

)
im

(
δp−1 : Cp−1

CE,int (g) → Cp
CE,int (g)

) . (2.32)

It is to be noted that the above differential (2.30) only acts on S•Πg : one can
therefore alternatively define the cohomology (2.32) starting from the (co)chains
Ĉp(g) := SpΠg on which δ acts and look at the Haar Berezinian as a twist by degree
n . This gives per se an indication of the cohomology content of this complex: this
observation will be expanded in the next sections.
As a remark on notation, let us stress that we will henceforth call differential
Chevalley-Eilenberg p-cochains the elements in the vector superspace Cp

CE,dif (g) :=
SpΠg∗ and integral Chevalley-Eilenberg p-cochains the elements in the vector su-
perspace Cp

CE,int(g) := BerH (g)⊗ Sn−pΠg, as above.
Finally, in order to convince the reader that the two (a priori different) formalisms
introduced above – integral Chevalley-Eilenberg cochains via generalized functions
and Berezinian-valued polyfields –, are indeed equivalent, we explicitly consider the
following computations. We start with a (n− 1)-integral form

ω(n−1) = D ⊗
m+n∑
A=1

TA (πYA) ≡ TAιYA
ωtop . (2.33)

By applying the operator δ(1) ≡ d to ω(n−1) we obtain

δ(1)ω(n−1) = D ⊗
∑
B

∑
A

ι(πY ∗
B)T

ALYB
(πYA)

= D ⊗
∑
B

∑
A,C

ι(πY ∗
B)T

AfC
BA (πYC) = D ⊗

∑
B

∑
A,C

TAfC
BAδBC , (2.34)

where we have used ι(πY ∗
A) (πYB) = δAB . The previous expression is zero if we assume

the property of the structure constants
∑

B f
B
BA = 0 , i.e. if we assume the Lie

superalgebra to be unimodular (see, for example, [46] where this terminology is
introduced). Throughout the paper, we assume that any Lie superalgebra we are
dealing with satisfies this property. On the other hand, we have

dω(n−1) =
1

2
fA
BC (πY ∗)B (πY ∗)C ιYA

TDιYD
ωtop = fA

BCδ
B

A δ C
D TDωtop = 0 , (2.35)

in virtue of the unimodularity of g .
Notice that the previous example is two-folded: first, it provides an example of
calculation in both of the formalisms together with a check of their equivalence (see
also App. A in this regard). Second, it shows that the Haar Berezinian D ≡ ωtop ,
which is obviously closed with respect to δ(•) ≡ d , is not exact (for unimodular Lie
superalgebras), thus showing that it is always a cohomology class. We summarize
this in the following lemma.

Lemma 2.6. (The Haar Berezinian is a Non-Trivial Cohomology Class) Let g
be a unimodular Lie superalgebra and let the integral Chevalley-Eilenberg cohomology
H•

CE,int(g) be defined as in (2.18) or (2.32). Then the Haar Berezinian is a non-zero
cohomology class and in particular Hn

CE,int(g)
∼= k · [D].
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2.6. Isomorphism between differential and integral form cohomologies
Moving on from the previous section, we will now show an explicit isomorphism
between differential and integral Chevalley-Eilenberg cohomology. We focus on the
case of classical basic Lie superalgebras (see [33]), i.e., the classical Lie superalgebras
with a non-degenerate invariant bilinear form – that is those admitting a supermetric
gAB , generalization of the ordinary Killing-Cartan form. To do so, we will use the
formalism where the Haar Berezinian is treated as a differential form as in (2.16)
and the nilpotent operator is actually the de Rham differential in its Cartan form
realization. The proof for integral forms written as in (2.28) with respect to the
differential (2.30) follows from the “dictionary” between the two formalisms, see
App. A.
Let us start by considering a closed differential form ω(1) , such that dω(1) = 0 . We
define its Berezinian complement ⋆ω(1) as

⋆ : Ω1
CE,dif (g)

// Ωn−1
CE,int(g)

ω(1) � // ⋆ω(1) := ιY ω
top
g ,

(2.36)

where πY is the vector field dual to ω(1) . Using the (super)metric gAB , one can
write ω(1) = CAπY ∗A , Y = gABCA

||C||2 YB , where Y A (YB) = δAB and ||C||2 = CAg
ABCB ,

and analogously for higher forms. Then we have d ⋆ ω(1) = dιY ω
top
g = 0 , as we have

shown in (2.35). For a p-superform the generalization follows by extending (2.36) as

⋆ : Ωp
CE,dif (g)

// Ωn−p
CE,int(g)

ω(p) � // ⋆ω(p) = (⋆ω)(n−p) := ιY1 . . . ιYpω
top
g ,

(2.37)

where ω(p)(Y1, . . . ,Yp) = 1 . Given ω(p) ∈ Hp
CE,dif (g) , we have

d
(
ωA1...Ap (πY ∗)A1 ∧ . . . ∧ (πY ∗)Ap

)
= pωA1...Apf

A1
RS (πY ∗)R ∧ (πY ∗)S ∧ (πY ∗)A2 ∧ . . . ∧ (πY ∗)Ap = 0

⇐⇒ ωA1...Apf
A1
RS = 0 . (2.38)

Recall that capital Latin indices represent both bosonic and fermionic indices, thus
expressions like (2.38) do not have definite (graded) skew-symmetrisation of indices.
We now show that this condition implies d ⋆ ω(p) = 0 . First of all, we observe that
the integral form ⋆ω(p) reads

⋆ω(p) = TA1...ApιY A1 . . . ιY Apωtop
g , such that TA1...ApωA1...Ap = 1 . (2.39)

It is easy to see that

d ⋆ ω(p) = 0 ⇐⇒ TA1A2...ApfR
A1A2

= 0 . (2.40)

Recalling that every basic classical Lie superalgebra admits a non-degenerate bilinear
form, see e.g. [33], we can use it in order to write the coefficients T of the integral
form in terms of the coefficients ω of the superform as

TA1A2...Ap =
1

||ω||2
gA1B1 . . . gApBpωB1...Bp , (2.41)

where ||ω||2 = ωA1...Apg
A1B1 . . . gApBpωB1...Bp .
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By substituting (2.41) in (2.40), we obtain

1

||ω||2
gA1B1 . . . gApBpωB1...Bpf

R
A1A2

=
1

||ω||2
gA3B3 . . . gApBpωB1...Bpf

RB1B2

= ± 1

||ω||2
gA3B3 . . . gApBpgRLgB2MωB1...Bpf

B1
LM = 0 , (2.42)

as a consequence of (2.38) and of the non-degeneracy of the (super)metric (the ±
sign comes from the exchange of indices in the structure constants and it depends on
their bosonic/fermionic nature). Hence it follows that dω(p) = 0 implies d⋆ω(p) = 0 .
From the previous argument we can now infer the isomorphism between the coho-
mologies of differential and integral forms. In particular, let ω(p) ∈ Hp

CE,dif (g) ,

then ω(p) ∧ ⋆ω(p) = ωtop
g ∈ BerH (g) . (2.43)

By contradiction, let us now assume (⋆ω)(n−p) = dΛ(n−p−1) , we get

ωtop
g = d

(
ω(p) ∧ Λ(n−p−1)

)
, (2.44)

contradicting that ωtop
g is a cohomology representative as shown at the end of the

previous section. This shows that the operator ⋆ descends to an isomorphism in
cohomology. The result is summarized in the following.

Theorem 2.7. Let g be a classical basic Lie superalgebra. Then the mapping ⋆
defined in (2.37) descends to an isomorphism in cohomology, i.e.

⋆ : H i
CE,dif (g)

∼=−→ Hn−i
CE,int(g) , (2.45)

where n is the even dimension of g and i > 0. For i = 0 the isomorphism
H0

CE,dif (g)
∼= Hn

CE,int(g) reads k 7→ k · [D] .

Remark 2.8. The above result can be seen as a sort of Poincaré duality in the
context of Lie superalgebras. To make sense out of this statement one should in the
first place recall that in the context of supermanifolds, the complexes of differential
and integral forms are quasi-isomorphism. This means that there is a “direct”
isomorphism of vector (super)spaces

H i
dR (M ) ∼= H i

Sp(M ), (2.46)

where we have denoted with H i
dR (M ) the de Rham cohomology of differential forms

on M – isomorphic to the de Rham cohomology of the reduced space of M – and
with H i

Sp(M ) the Spencer cohomology of integral forms on M – which is the analogue
of the de Rham cohomology adapted to the notion of integral forms, see [12, 52] for
modern accounts, based on homological methods. In the physics literature (see,
e.g., [60]), this quasi-isomorphism is realized via the Picture Changing Operator, a
formal multiplicative operator, defined via the embedding of the reduced manifold
Mred into the supermanifold M , that allows to map differential forms to integral
forms. Of course, the two realizations are analogous, and the representatives match
perfectly in two formalisms.
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The previous quasi-isomorphism of complexes suggests that homologically (or, more
precisely, in a derived setting) differential and integral forms can be used inter-
changeably. On the other hand, in the ordinary setting, the situation is very differ-
ent, and differential and integral forms account for very different needs concerning
integration theory: namely, while differential forms can only be integrated on ordi-
nary submanifolds of codimension ℓ|m in a given n|m-dimensional supermanifold
M , integral forms can be integrated on codimension ℓ|0 sub-supermanifold of M ,
for ℓ ≤ n . The peculiar integration theory on supermanifolds is mirrored in the
statement of Poincaré duality that proves the existence of a perfect pairing between
(cohomology class of) differential and integral forms and it reads

H i
dR (M ) ∼= Hn−i

Sp,c (M ), (2.47)

where now Hn−i
Sp,c (M ) is the Spencer cohomology of compactly supported integral

forms. The above situation can be pictorially represented in the following diagram.

H i
dR (M )

q .iso.

��

. . . H i+j
dR (M )

q .iso.

��

H i
dR (M )

P .D.

))RR
RRR

RRR
RRR

RRR
R

. . . H i+j
dR (M )

P .D.llll
lll

uullll
llll

H i
Sp(M ) . . . H i+j

Sp (M ) Hn−i−j
Sp,c(M ) . . . Hn−i

Sp,c (M )

(2.48)

Here, on the left, we have represented the direct quasi-isomorphism of complexes as
in (2.46) and on the right the Poincaré duality for supermanifold as in (2.47).
In the case of Lie superalgebras and the related of Chevalley-Eilenberg cohomology,
we have a different pattern. Indeed the direct isomorphism (2.46) is in general
lost (see also comments in the Appendices B and B in this regard). On the other
hand, Theorem 2.7 shows that there exists an isomorphism of Poincaré duality-type.
Namely, if n is the even dimension of the basic classic Lie superalgebra g , one has

H i
CE,dif (g)

⋆

))SSS
SSSS

SSSS
SSSS
. . . H i+j

CE,dif (g)

⋆kkkk
kkk

uukkkk
kkk

Hn−i−j
CE,int (g) . . . Hn−i

CE,int(g)

(2.49)

where the perfect pairing is realized via the operator ⋆ defined above. Equivalently,
this can be interpreted as a homology-cohomology duality for Lie superalgebras, as
the notion of compact support and integration lose their significance in this algebraic
context.
In [27], two of the authors studied Chevalley-Eilenberg cohomology for the complexes
of pseudoforms, showing that it is not isomorphic to the ones of differential forms
or integral forms, neither directly nor via shifts. This cohomology might be richer,
giving more classes that keep into account the existence of other invariants (or sub-
invariants) related to the Lie superalgebra.

3. Poincaré polynomials and series
Before we move to compute examples of Chevalley-Eilenberg cohomology, we review
the definition of Poincaré series and Poincaré polynomials. In a purely bosonic
setting these provide useful tools for the computation of the dimension of the
cohomology groups – consider for example the so-called Molien-Weyl formula [35].
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However, the extension of such techniques to the super-setting is non-trivial and
not available in the literature. As a consequence, in the present work, we will limit
ourselves to use the Poincaré polynomial/series mostly as a bookkeeping device.
Only in some cases, we will build the Poincaré polynomial/series according to some
simple rules, that will be explained in the following section. We will also use them
directly in the computation of the dimension of cohomology groups for equivariant
cohomology.
For X a graded k -vector space with direct decomposition into p-degree homogeneous
subspaces given by X =

⊕
p∈ZXp , we call the formal series

P (t) =
∑
p

(dimkXp)(−t)p (3.1)

the Poincaré series of X . Notice that we have implicitly assumed that X is of
finite type, i.e. its homogeneous subspaces Xp are finite dimensional for every p.
The unconventional sign (−t)p takes into account the parity of Xp , which is given
by pmod 2 . If also dimkX is finite, then PX(t) becomes a polynomial PX [t] , called
Poincaré polynomial of X .
In the algebraic setting of this paper, we have that X =

⊕∞
p=0H

p
CE,dif (g) and

bp(g) = dimkH
p
CE(g), so that the Poincaré series of the Lie (super)algebra g is

denoted as
Pg(t) =

∑
p

bp(g)(−t)p =
∏
i

(1− tci)αi , (3.2)

where the ci are the corresponding exponents in the factorized form of the polyno-
mial (see [35] or [40]) and the αi take care of the multiplicity of the different factor
with power ci . The exponent αi could be also negative, indicating a power series
expansion in t .
Notice that we used the notation of series P (t) on purpose: indeed, as we shall
see, H•

CE(g) is in general not finite dimensional for a generic Lie superalgebra g .
In this context, we can retrieve some useful results using the Poincaré series. For
example, Künneth theorem, which computes the cohomology of products of spaces,
can simply be written as

PX×Y (t) = PX(t) · PY (t). (3.3)

Finally, following [40], if g is a Lie algebra with Poincaré polynomial Pg(t) =∏
l(1 − tc

g
l ) and h is a Lie subalgebra of g , of the same rank (Cartan pairs, see

[40]) with Poincaré polynomial Ph(t) =
∏

m(1− tc
h
m) , then the Poincaré polynomial

of the coset space will be given by

Pg/h(t) =

∏
l(1− tc

g
l+1)∏

m(1− tc
h
m+1)

. (3.4)

Although we are not aware of a general proof of this fact for Lie superalgebras, we
will see that this applies to the examples in consideration. A remark is in order,
though. Indeed, whereas for ordinary coset spaces arising from finite-dimensional
Lie algebras h ⊂ g , equation (3.4) always yields a polynomial, once again in the
context of Lie superalgebras we can get a series, as we will explicitly see in Section 5.
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4. Chevalley-Eilenberg cohomology: Computations

4.1. “Flat” supertranslation algebras
We now briefly present examples of cohomology of “flat” supertranslation algebras,
i.e. Lie superalgebras of translations of superspaces of the kind Rn|m , which we will
denote susy(Rn|m) .
Dimension 1
Written in terms of the “flat coordinates” of the superspace, the vielbeins generating
Chevalley-Eilenberg cochains read

V := dx− θ1dθ2 − θ2dθ1, ψα = dθα, (4.1)

for α = 1, 2 . The Maurer-Cartan equations are (up to a rescaling)

dV = −2ψ1ψ2, dψα = 0. (4.2)

The cohomology is thus given by

Hp
CE,diff (susy(R1|2)) ∼= ΠH1−p

CE,int(susy(R1|2)) ∼=
{

R p = 0

R2 p > 0,
(4.3)

where the integral forms are parity reversed because of the Berezinian being odd and
in particular H1

CE,int(susy(R1|2)) ∼= R · Dsusy(R1|2) , for Dsusy(R1|2) the Haar Berezinian.
The explicit expressions for the cocycles representatives of these classes are deferred
to the appendix B. Notice that this easy example shows a remarkable difference
between the Chevalley-Eilenberg cohomology of an ordinary Lie algebra and that of a
Lie superalgebra, namely the fact that even the cohomology of finite-dimensional Lie
superalgebras can be infinite, whereas clearly, every finite-dimensional Lie algebra
has a finite-dimensional Chevalley-Eilenberg cohomology.
Dimension 2
This is a physically relevant example, as it corresponds to the superstranslation
algebra of the superspace R1,1|2 , which is called D = 2 , N = 1 superspace. Just
like above, in terms of the flat coordinates of the superspace, the vielbeins generating
the Chevalley-Eilenberg cochains reads

V i = dxi − θαΓi
αβdθ

β, ψα = dθα (4.4)

for i = 0, 1 and α = 1, 2 , where the gamma matrices are

Γ1
αβ =

(
1 0
0 −1

)
, Γ2

αβ =

(
0 1
1 0

)
. (4.5)

The Maurer-Cartan equations read

dV i = ψαΓi
αβψ

β, dψα = 0, (4.6)

again for for i = 0, 1 and α = 1, 2 . The cohomology is then computed to be

Hp
CE,diff (susy(R1,1|2)) ∼= H2−p

CE,int(susy(R1,1|2)) ∼=


R p = 0, 2
R2 p = 1
0 p > 2.

(4.7)

As above, explicit expressions for representatives of these cocycles can be found in
the appendix B.
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Dimension 3
This case corresponds to the supertranslation algebra of the superspace R1,2|2 , called
D = 3 , N = 1 superspace. The vielbeins generating the Chevalley-Eilenberg
cochains read

V a := dxa − θαγaαβdθ
β, ψα := dθα. (4.8)

for a = 0, . . . , 2 and α = 1, 2 , where we are using real and symmetric gamma
matrices γaαβ , which are defined via charge conjugation, given by the Pauli matrix
C := −iσ2 = ϵαβ

γ0αβ := (CΓ0)αβ = −1, γ1αβ := (CΓ1)αβ = σ3, γ2αβ := (CΓ2)αβ = −σ1 , (4.9)

where

Γ0 := iσ2 =

(
0 1
−1 0

)
, Γ1 := iσ1 =

(
0 1
1 0

)
, Γ2 := σ3 =

(
1 0
0 −1

)
, (4.10)

generate the related Clifford algebra. The Maurer-Cartan equations in turn are
given by

dV a = ψαγaαβψ
β, dψα = 0. (4.11)

Out of these, the cohomology is computed to be

Hp
CE,diff (susy(R1,2|2)) ∼= ΠH3−p

CE,int(susy(R1,2|2)) ∼=



R p = 0 ,

R2 p = 1 ,

ΠR2 p = 2 ,

ΠR p = 3 ,

0 p > 3,

(4.12)

where the integral forms are parity reversed because of the Berezinian being odd.
Explicit representatives for these cocycles are given in the appendix B; there, we
comment on the connection with the superspace siso(1, 2|N = 1)/so(1, 2) and the
physical relevance of the cohomology groups we found. In particular, we comment on
the Lorentz-invariant (0|2)-integral form and its interpretation as Picture Changing
Operator.

Dimension 4
This case corresponds to the superspace R1,3|4 based upon the 4-dimensional Min-
kowski space R1,3 , which is the usual superspace for flat rigid supersymmetry N = 1
models, and therefore the first step toward supergravity models. Some of the results
of the present section have been also discussed, e.g., in [9].
The generators of the 1-cochains of the Lie superalgebra satisfy the Maurer-Cartan
equations analogous to (4.11)

dV a = ψαγaαβψ
β, dψα = 0 , (4.13)

but clearly, now the gamma’s are 4-dimensional Dirac matrices, instead of 2-
dimensional. To make contact with the Minkowskian model, it is convenient to
use the irreducible chiral components, the (left) Weyl spinors χα ∈ (1/2, 0) and
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(right) anti-Weyl spinors λ̄α̇ ∈ (0, 1/2) for α, α̇ = 1, 2 of the above reducible Dirac
representation ψ ∈ (1/2, 0)⊕ (0, 1/2) , so that ψ = (χα, λ̄α̇) . In this representation,
the above Maurer-Cartan equations modify to

dV αα̇ = χαλ̄α̇, dχα = 0, dλ̄α̇ = 0. (4.14)

Notice that the odd 1-forms V a is represented as a bi-spinor V αα̇ = σ̄αα̇
a V a , via the

matrices σ̄ of the (0, 1/2) irreducible component.
This representation makes the task of computing cohomology class representatives
easier; for example, we immediately see that any p-form containing only left (re-
spectively right) Weyl spinors is closed and non-exact:

ω(p|0) (χ) = χα1 . . . χαp ∈ Hp
CE,dif (susy(R1,3|4)) , ∀p ∈ N . (4.15)

This shows that the dimension of all of the cohomology group is different from zero,
hence the cohomology is infinite-dimensional. In the appendix, we collect explicit
representatives for the first cohomology groups.
A compact expression that gives an easy way to calculate the dimension of each
cohomology group is given by the Poincaré series. By looking at (4.14), we see that
we can consistently assign weight 1/2 to χα , ¯1/2 to λ̄α̇ and consequently 1/2+ ¯1/2
to the bispinors V αα̇ . The V ’s are odd, so we can take at most four of them, while
the χ ’s and the λ̄ ’s are even, so we can take any number of them, thus obtaining
the following expression of the Poincaré series:

P
dif

susy(R1,3|4)
(
√
t,
√
t̄) =

(
1−

√
t
√
t̄
)4

(
1−

√
t
)2 (

1−
√
t̄
)2

= 1 + 2(
√
t+

√
t̄) + 3(t+ t̄) + 4(t

√
t+ t

√
t)− 2(t̄

√
t+ t

√
t̄) + . . . . (4.16)

Each monomial describes a generator of the cohomology and the signs keep track of
the parity. For example, the first cohomology groups are given by

Hp
CE,dif (susy(R1,3|4)) = H4−p

CE,int(susy(R1,3|4)) =



R , if p = 0 ,

R4 , if p = 1 ,

R6 ⊕ ΠR4 , if p = 2 ,

R8 ⊕ ΠR9 , if p = 3 ,

R12 ⊕ ΠR12 , if p = 4 ,

. . .

. (4.17)

4.2. “Curved” Lie superalgebras
We now study the cohomology of different Lie superalgebras, which we refer to as
“curved” with respect to the flat cases introduced in the previous sections. These
provide local models of some physically interesting rigid backgrounds to ambient
supergravity or gauge theories.
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Dimension 2: u(1|1)
In the easiest case u(1|1) , one has a 2|2-dimensional Lie superalgebra, whose general
element can be given in the following form

X =

(
ia θ + iψ

−ψ − iθ ib

)
, (4.18)

for a, b ∈ R and θ, ψ ∈ ΠR, so that the even and odd generators can be chosen to
be the (super)matrices

X1 =

(
i

0

)
, X2 =

(
0

i

)
, Ψ1 =

(
1

−i

)
, Ψ2 =

(
i

−1

)
, (4.19)

together with the commutation relations

[Xi, Xj] = 0, [X1,Ψ1] = Ψ2, [X1,Ψ2] = −Ψ1, [X2,Ψ1] = −Ψ2, [X2,Ψ2] = Ψ1

{Ψ1,Ψ1} = −2X1 − 2X2, {Ψ2,Ψ2} = −2X1 − 2X2, {Ψ1,Ψ2} = 0. (4.20)

Introducing the dual (up to parity) basis of Maurer-Cartan forms of Πu(1|1)∗ ,
defined so that Πu(1|1)∗ = SpanR{V i|ψα} for i = 1, 2 and α = 1, 2 , with V i(πXj) =
δij and ψα(πΨβ) = δαβ , one sees from (4.20) that the Maurer-Cartan equations read

dV 1 = dV 2 = −
2∑

α=1

(ψα)2, dψ1 = ψ2 (V
1 − V 2)

2
, dψ2 = ψ1 (−V 1 + V 2)

2
. (4.21)

Changing the basis to U := V 1−V 2

2
and W := V 1+V 2

2
, the Maurer-Cartan equations

simplify to

dU = 0, dW = −
2∑

α=1

(ψα)2, dψ1 = Uψ2, dψ2 = −Uψ1. (4.22)

Using the above Maurer-Cartan equations (4.22), it is not hard to compute the
related Chevalley-Eilenberg cohomology:

H0
CE,dif (u(1|1)) ∼= R · 1, H1

CE,dif (u(1|1)) ∼= R · {U}, Hp>1
CE,dif (u(1|1)) = 0. (4.23)

The previous (4.23) encodes the result, proved for any gl(m|n)-type Lie superalgebra
in [34], that only a fraction of the bosonic subalgebra u(1)× u(1) contributes to the
cohomology. The Poincaré polynomial reads

P
dif

u(1|1)[t] = P
dif

u(1)[t] = 1− t. (4.24)

In the case of integral Chevalley-Eilenberg cohomology, using the isomorphism
described in the previous chapter one finds

H2
CE,int(u(1|1)) ∼= R · Du(1|1), H1

CE,int(u(1|1)) ∼= R · {ιπU∗Du(1|1)},

Hp<1
CE,int(u(1|1)) = 0. (4.25)

where we have defined again Du(1|1) = UWδ(ψ1)δ(ψ2) .
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This explicit realization of the Berezinian allows one to see that the first cohomology
class H1

CE,int(u(1|1)) is represented by Wδ(ψ1)δ(ψ2) , thus suggesting that the second
abelian factor of the bosonic subalgebra u(1)×u(1) , represented by W , is accounted
in the cohomology of the integral forms better than the differential forms – which
account instead only for U . Indeed, it is enough to notice that the presence of the
delta’s formally set to zero the ψ ’s, so that the Maurer-Cartan equation becomes
simply dW = 0 , making W into a cohomology class. Finally, the corresponding
expression for the Poincaré polynomial reads

P int
u(1|1)[t] = −t+ t2 = −t(1− t) (4.26)

The factor −t in the second expression denotes the additional cohomology class
related to the second invariant of the Lie superalgebra.

4.3. A remark on the Cartan Theorem on compact Lie groups
A crucial result in Lie algebra cohomology is a theorem due to Cartan, which states
that under the topological assumptions of compactness and connectedness, the de
Rham cohomology of a Lie group G is isomorphic to the cohomology of its Lie
algebra (valued in the real numbers), i.e. Hp

dR(G)
∼= Hp

CE(g) ; clearly, the result is
remarkable not only from a conceptual point of view but also from a computational
point of view, for it allows to get topological information on large interesting classes
of Lie groups via linear algebra. The above result on u(1|1) shows that the result
does not hold in the supersetting, whereas one naively substitutes the ordinary
compact Lie group G with a compact Lie supergroup G and the Lie algebra g with
its Lie superalgebra.
Let us look indeed at the Lie supergroup U(1|1) related to u(1|1) . Especially in this
context, it is convenient to introduce the unitary supergroup U(1|1) as the super
Harish-Chandra pair (U(1)× U(1), u(1|1)) , since the categories of Lie supergroups
and super Harish-Chandra pairs are indeed equivalent [13]. As it is well-known
[12], the de Rham cohomology of a supermanifold only depends on its underlying
topological space, and as such it is completely determined by the first entry, i.e. the
ordinary Lie group, of the super Harish-Chandra pair. In our case, we obtain the
cohomology of a 2-torus S1 × S1 ∼= U(1)× U(1) :

Hp
dR(U(1|1)) ∼=


R p = 0
ΠR2 p = 1
R p = 2.

(4.27)

This shows that the de Rham cohomology of compact Lie supergroups, such as
U(1|1) which is topologically a 2-torus, is not isomorphic to the Chevalley-Eilenberg
cohomology of its Lie superalgebra.
Notice by the way, that the isomorphism is restored once one reduces to deal with
the even – or topological – part of a Lie superalgebra. In other words, if, as a vector
space, a Lie superalgebra is such that g = g0 ⊕ g1 , and its related (e.g. via Harish-
Chandra pair) Lie supergroup G is topologically compact as a (super)manifold, then
one finds that for any p

Hp
dR(G) ∼= Hp

CE,dif (g0). (4.28)
This is readily seen in the above case for the Lie superalgebra u(1|1) , where modding
out the odd part of the underlying vector space, one is left with Maurer-Cartan
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equations of the form dU = 0 and dW = 0 , which indeed lead to the same
cohomology of the 2-torus.
Once again, it has to be stressed that whilst fermions play really no role when
computing de Rham cohomology of a supermanifold – as nilpotents do not modify
topology –, in the case of Chevalley-Eilenberg cohomology of a Lie superalgebra,
which is ultimately determined by the structure of commutators or, equivalently,
by the Maurer-Cartan equations, fermions play a crucial role and they do indeed
determine the cohomology structure, which might be very different – either richer or
poorer – from the cohomology of the topological even part of the superalgebra. In
other words, it is to be stressed once again that the cohomology of a Lie superalgebra,
in general, is different from the de Rham cohomology of supergroups.

Dimension 3: osp(1|2) and its İnönü-Wigner contraction to susy(R1,2|2)

In this section we consider osp(1|2) = B(0, 1) and compute its cohomology. Sec-
ondly, we relate the computation with the “flat” case of the Lie superalgebra
susy(R1,2|2) considered in Sec. 4.1.
A convenient choice of basis for osp(1|2) is provided as follows:

P0 =
1

2

 0 0 0
0 0 1
0 −1 0

, P1 =
1

2

 0 0 0
0 1 0
0 0 −1

, P2 =
1

2

 0 0 0
0 0 1
0 1 0

, (4.29)

Q1 =

 0 1 1
1 0 0
−1 0 0

 , Q2 =

 0 1 −1
−1 0 0
−1 0 0

 . (4.30)

Making use of the previously introduced (real and symmetric) gamma matrices γiαβ
the commutation relations can be written in the following very convenient way

[Pa,Pb] = −ϵabcPc, {Qα,Qβ} = −2γaαβPa, [Qα,Pa] = −γ a
α βQβ (4.31)

where ϵabc is the Levi-Civita symbol and where we observe that the first commuta-
tion relation follows by the isomorphism sp(2,R) ∼= so(2, 1,R) ∼= su(1, 1,R) . The
Maurer-Cartan forms, which are dual to the above generators of the Lie superalgebra
osp(1|2) up to parity, are given by C1

CE,dif (osp(1|2)) = Πosp(1|2)∗ = SpanR{ψα|V a}
for a = 0, 1, 2 and α = 1, 2 with V a(πPb) = δab and ψα(πQβ) = δαβ . The above
commutation relations lead to the following set of Maurer Cartan equations (up to
a sign redefinition):

dV a = ϵ a
bc V bV c + ψαγaαβψ

β, dψα = V aγa,αβψ
β. (4.32)

The cohomology reads

H0
CE,dif (osp(1|2)) ∼= R · 1,

H1
CE,dif (osp(1|2)) ∼= 0,

H2
CE,dif (osp(1|2)) ∼= 0

H3
CE,dif (osp(1|2)) ∼= R ·

{
1

2
V a(ψγaψ)−

1

6
ϵabcV

aV bV c
}

(4.33)

and Hp>3
CE,dif (osp(1|2)) ∼= 0 .
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This result matches a theorem of Fuks which states that the cohomology of osp(1|2)
is isomorphic to that of its bosonic subalgebra sp(2,R) , thus leading to the Poincaré
polynomial

P
dif

osp(1|2)[t] = Psp(2,R) = 1− t3. (4.34)

Notice, though, that with respect to the bosonic Lie algebra sp(2,R) the representa-
tive of the 3-cohomology of the Lie superalgebra osp(1|2) is shifted in the fermionic
directions as can be seen directly by the above expression.
Quite similarly, the integral Chevalley-Eilenberg cohomology reads

H3
CE,int(osp(1|2)) ∼= R · ϵabcV aV bV cϵαβδ(ψ

α)δ(ψβ),

H2
CE,int(osp(1|2)) ∼= 0, (4.35)

H1
CE,int(osp(1|2)) ∼= 0,

H0
CE,int(osp(1|2)) ∼= R ·

{
1

2
V aV b(ιπQαγ[ab],αβιπQβ

)ϵαβδ(ψ
α)δ(ψβ)− 1

6
ϵαβδ(ψ

α)δ(ψβ)
}
.

Again we can represent these classes using the Poincaré polynomial (in the case of
“curved” superalgebras the only consistent weight assignment is given by the form
number),

P int
osp(1|2)[t] = −t3(1− t−3) = (1− t3). (4.36)

The factor −t3 takes into account the form number carried by the Berezinian,
and the term t−3 accounts for the contractions on the Berezinian, as described in
Section 2.
It is worth to observe the relation between the “curved” and “flat” 3-dimensional
case. Indeed, simply redefining the generators of the superalgebra osp(1|2) by a
constant parameter λ as follows,

Qλ
α :=

1√
λ
Qα, Pλ

a :=
1

λ
Pa, (4.37)

one finds that the new Maurer-Cartan equations for V a
λ and ψα

λ read

dV a
λ = λϵ a

bc V b
λV c

λ + ψα
λγ

a
αβψ

β
λ , dψα

λ = λV aγa,αβ. (4.38)

The limit λ→ 0 is called İnönü-Wigner contraction and it is immediate to see that
it gives back the Maurer-Cartan equations for the superalgebra susy(R1,2|2) : in this
sense susy(R1,2|2) can be seen as the “flat” limit of the orthosymplectic superalgebra
osp(1|2) .

Dimension 4: osp(2|2)
We now consider a “curved” 4 dimensional case, studying the cohomology of the
Lie superalgebra osp(2|2) = C(2) . Before we start, though, it is useful to stress
that the related Lie supergroup OSp(2|2) cannot be given an interpretation from a
Minkowskian point of view, since it breaks the SO(1, 3)-invariance to the bosonic
subgroup SO(2)× Sp(2) . However, the example provides a useful comparison with
the remarkable “flat superspace” case above.
The Maurer-Cartan forms are given by V 0 , V a = γaαβV αβ , for a = 1, 2, 3 , ψα

I , for
I = 1, 2 , having kept separated a “time” direction with V 0 .
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They satisfy the Maurer-Cartan equations

dV αβ = (V ∧ V )αβ + ψα
I η

IJψβ
J ,

dV 0 = −ϵαβψα
I ϵ

IJψβ
J ,

dψα
I = (V ∧ ψ)αI + ϵJI V 0ψα

J . (4.39)

Notice that in the suitable “flat” limit, one retrieves the flat model discussed in
the previous section. The cohomology is computed to be given by the following
representatives:

H0
CE,dif (osp(2|2)) = R · 1 ,

H3
CE,dif (osp(2|2)) = R ·

{
ψα
I η

IJψβ
JVαβ + ψα

I ϵ
IJψβ

J ϵαβV 0 + V ∧ V ∧ V
}
, (4.40)

with related Poincaré polynomial given by

P
dif

osp(2|2)[t] = (1− t3). (4.41)

This matches the result by Fuks, claiming that the cohomology of osp(2|2) is non-
zero in degree 0 and 3 and isomorphic to that of its bosonic subalgebra sp(2,R) .
For the integral form cohomology, one finds

H1
CE,int(osp(2|2) = R ·

{
ιIαηIJ ι

J
βV 0(V ∧ V )αβδ4(ψ)

+ ιIαϵIJ ι
J
βϵ

αβ(V ∧ V ∧ V )δ4(ψ) + V 0δ4(ψ)
}

H4
CE,int(osp(2|2) = R ·

{
V 0V ∧ V ∧ V δ4(ψ)

}
, (4.42)

together with the related Poincaré polynomial as in (4.36)

P int
osp(2|2)[t] = t4(1− t−3) = −t

(
1− t3

)
. (4.43)

The “−t” factor in (4.43) can be interpreted as a manifestation of the so(2) subal-
gebra invariant which is not taken into account among superforms.

5. Coset superspaces and equivariant Chevalley-Eilenberg cohomology
In this section we briefly introduce equivariant Chevalley-Eilenberg cohomology, a
crucial tool to study the cohomology of coset or homogeneous superspaces G/H
where G is a Lie supergroup and H is a Lie sub-supergroup of G .
Very few examples of Lie supergroup, or group supermanifolds, are indeed solutions
of supergravity/string equations of motion, for example AdS3 in the case of non-
critical strings and a few others. Nonetheless, the space of geometric backgrounds
modelled on coset spaces is much richer, the most remarkable example being the
case of supersymmetric backgrounds built on coset supermanifolds. In this context,
the most important instance is that of a coset supermanifold realized by modding
out a certain bosonic subgroup: the infamous examples of AdS5×S5 and AdS4×CP3

belong this category [36, 50]. Furthermore, a less explored instance is that obtained
by modding out a true Lie sub-supergroup. In any of these cases, it is interesting to
compute their (equivariant) cohomology, as it can uncover insights into the physics
related to the model.
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Given a Lie supergroup G and a Lie sub-supergroup H of G we define the related
Lie superalgebras by g and h . Then, attached to the coset superspace G/H we
have the quotient g/h , whose elements are equivalence classes gmod h . As a vector
superspace, there always exists a direct linear decomposition of g such that

g = h⊕ C, (5.1)

but the choice of C is ambiguous and different compatibility conditions between
this direct linear decomposition and the Lie algebra structures can be imposed.
More in details, the coset superspace G/H is said to be reductive if there exists an
ad(h)-invariant choice of C , i.e.

ad(h) · C = [h,C] ⊂ C. (5.2)

Further, imposing that [C,C] ⊂ h we get that the coset G/H is a symmetric
superspace, but in general the commutators close as

[C,C] ⊂ g. (5.3)

As in the ordinary setting, a left-translation in the coset superspace induces a map
(ℓ[g−1])∗ : T[g]G/H → T[e]G/H ∼= g/h which can be seen as g/h-valued 1-forms,
the so-called Maurer-Cartan forms. As above, we will always deal with matrix Lie
superalgebras. The Maurer-Cartan forms are usually written starting from the coset
superspace elements as ωg

MC = [g−1dg]. Notice that, choosing another representative
gh for h ∈ H instead of g , we get

ωgh
MC = [ad(h)(g−1dg)] = ad(h) · ωg

MC , (5.4)

since [h−1dh] = 0 in the quotient g/h . Passing from the above coordinate-invariant
formalism to a particular choice of coordinates, in line with the general philosophy
of the paper of finding explicit expressions, we choose a certain direct linear decom-
position of g as above and, in turn, a basis {hi} for i = 1, . . . , dim h of generators
for h and a basis {kJ} for J = 1, . . . , dimC of generators for C . Notice that the
parametrization of the elements of the coset superspace [g] ∈ G/H is far from being
unique. The Maurer-Cartan form related to this decomposition and choice of basis
can be computed to get

ωMC = V JkJ + ωihi, (5.5)

where the V J ’s are the supervielbein forms and the ωi ’s are interpreted as the
connection forms associated with the action of the sub-superalgebra h . The vielbein
and connection forms satisfy the following Maurer-Cartan equations that can be read
off the commutation relations of g

dV I = f I
JKV J ∧ V K + f I

iJ ω
i ∧ V J ,

dωi = f i
jkω

j ∧ ωk + f i
IJV I ∧ V K . (5.6)

The second one can be re-written as

R i := dωi − f i
jkω

j ∧ ωk = f i
IJV I ∧ V K . (5.7)

Here the structure constants are written with respect to the above decomposition
of the Lie superalgebra g = h ⊕ C and R i is referred to as the “curvature” of the
gauge connection ωi related to the subalgebra h .
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The form of the first Maurer-Cartan equation in (5.6) in turn makes convenient to
introduce a covariant differential defined as

DV I := dV I − f I
iJ ω

i ∧ V J . (5.8)

Notice that this differential is not nilpotent, indeed one has

D2V I = −R if I
iJV J (5.9)

using Jacobi identity. This can be re-written as D2V I = −LR V
I , where we have

denoted LR the action of the Lie derivative on the vielbeins V I along the (vertical,
form-valued) vector R ihi .
The above expression makes clear that in order to have a well-defined differential
cochain complex for coset superspaces, we need to impose further conditions on the
Maurer-Cartan forms. Namely, we need the Maurer-Cartan forms, call them Ω ’s,
to be basic, this means that we require

LHΩ = 0, ιHΩ = 0, (5.10)

for any vector H coming from the subalgebra h . Roughly speaking, one can visualize
these requirements thinking about a principal H-bundle π : P → G/H . In this
respect a basic form Ω is a form defined on the principal bundle Ω = π∗(V ) such
that it has no vertical components (it is horizontal) and no vertical variation (it
stays horizontal), i.e. basic forms are in the intersection ker(ιH) ∩ ker(LH) . Calling
Cp

Basic(g/h) the (vector) superspace of the basic p-forms, we accordingly define the
equivariant (Chevalley-Eilenberg) cohomology to be the cohomology of the basic
forms with respect to the differential D introduced above.

Hp
EQ (g/h) :=

{Ω ∈ Cp
Basic(g/h) : DΩ = 0}

{Ω ∈ Cp
Basic(g/h) : ∃η ∈ Cp−1

Basic (g/h) Ω = Dη}
. (5.11)

In absence of encompassing “structure theorems”, different methods are possible to
compute the cohomology of coset superspaces. Our strategy will be to supplement
brute force computations with the indications coming from the Poincaré polynomial
of coset superspaces. This will tell, for example, when a cohomology space is
expected to be infinite-dimensional, as we shall see.
Following [40], if g is a Lie superalgebra with Poincaré series given by

Pg(t) =
∑
i

bgi t
i =

rank(g)∏
i=1

(
1− tc

g
i

)
,

for appropriate cgi and h is a Lie sub-superalgebra of g , of the same rank (Cartan
pairs, see [40]) having Poincaré series given by

Ph(t) =
∑
j

bhi t
j =

rank(h)∏
i=1

(
1− tc

h
i

)
,

then the Poincaré series for the coset will be given by the following formula

Pg/h(t) =

∏
l(1− tc

g
l+1)∏

m(1− tc
h
m+1)

. (5.12)

This product formula is very helpful since it provides information regarding the
dimensions of the cohomology groups.
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5.1. Lower dimensional cosets of osp(1|2) and u(1|1)
Let us now consider the Lie superalgebra osp(1|2) introduced above. In agreement
with [34], we have seen that H•

CE(osp(1|2)) ∼= H•
CE(sp(2,R)) and in particular, its

Poincaré polynomial reads Posp(1|2)(t) = 1−t3 with the 3-cohomology class generated
by ω(3) = ψγaψV a + 1

3
ϵabcV

aV bV c , where the vielbeins ψ ’s and V ’s have been
introduced above together with the gamma matrices γiαβ .
Looking at the Lie supergroup OSp(1|2)2 related to the Lie superalgebra osp(1|2) it
is natural to consider two coset manifolds. The first is the coset OSp(1|2)/SO(1, 1) ,
which is known as the anti de Sitter superspace AdS2|2 . The second one is a purely
fermionic superspace, actually a “fat point”, given by the coset OSp(1|2)/Sp(2,R) ,
which is a 0|2-dimensional superspace. Here we consider their algebraic counter-
parts.
Let us start from osp(1|2)/so(1, 1) : the related Poincaré polynomial reads

Posp(1|2)/so(1,1)[t] =
1− t4

1− t2
= 1 + t2, (5.13)

upon using the so-called Weyl trick, in order to identify the Chevalley-Eilenberg co-
homology of so(1, 1) with that of so(2) ∼= u(1). This suggests that besides the con-
stants, there is a single cohomology class at degree two. Explicitly, introducing the
Maurer-Cartan vielbeins {V 0,V ‡,V =|ψ±} , one gets the following Maurer-Cartan
equations:

DV 0 = R = iV ‡ ∧ V = + ψ+ ∧ ψ−, DV ‡ = iψ+ ∧ ψ+, DV = = −iψ− ∧ ψ−,

Dψ+ = V ‡ ∧ ψ−, Dψ− = V = ∧ ψ+. (5.14)

The infinitesimal action of the subgroup is given by

LT V
‡ = 2iV ‡ , LT V

= = −2iV = , LT ψ
± = ±iψ±. (5.15)

Note that the 2-form

R = iV ‡ ∧ V = + ψ+ ∧ ψ− (5.16)

is (real) basic and closed. It is not exact because R = DV 0 , but V 0 is not a basic
form. Therefore, the equivariant superform cohomology is described by {1,R } :

Hp
EQ (osp(1|2)/so(2)) =

{
R p = 0, 2
0 else. (5.17)

In the case of the fermionic coset osp(1|2)/sp(2) the Poincaré polynomial reads

Posp(1|2)/sp(2)(t) =
1− t4

1− t4
= 1. (5.18)

We expect therefore only the constants to be in the cohomology, which is indeed the
case since now R is not basic as now the forms V ‡ and V = are not vielbeins, but
connections instead, coming from the subalgebra sp(2) :

Hp
EQ (osp(1|2)/sp(2,R)) =

{
R p = 0
0 else. (5.19)

2 Recall that, in analogy to the group SO(3) which can be seen as the isometry of a three-
sphere, the reduced subgroup of OSp(1|2) is SO(1, 2) , which can be seen as the isometry of the
anti-de Sitter space AdS3 .
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We now consider the case of u(1|1) , whose Chevalley-Eilenberg cohomology has been
discussed above. Namely, we consider the coset u(1|1)/u(1) of dimension 1|2 and
u(1|1)/u(1)⊕ u(1) of dimension 0|2 .
Let us start from the first coset superspace. A subtle point is that we have to choose
how to embed the abelian factor u(1) inside u(1|1) : indeed the automorphism of
u(1|1)0 = u(1) ⊕ u(1) that exchanges the factors does not lift to u(1|1) (see, e.g.,
[33]). With reference to the previous section, we can embed u(1) in such a way that
its Maurer-Cartan form (the connection, in view of the equivariant cohomology)
is associated either to U or to W . In the case it is associated with U , then the
cohomology trivializes as can be readily observed from the Maurer-Cartan equations:
the only non-zero equivariant cohomology group is the zeroth-cohomology group:

Hp
EQ (u(1|1)/uU(1)) =

{
R p = 0
0 else, (5.20)

having called u(1|1)/uU(1) the related coset.
Things change drastically if u(1) is embedded in a way such that its Maurer-Cartan
forms correspond to W . In this case, U is the generator of a cohomology class,
indeed it is closed and basic. Moreover, also the bilinears (ψ1ψ2)p for any p are in
the equivariant cohomology: indeed they can be seen to be exact with respect to the
non-basic term W . The cohomology is therefore infinite-dimensional and generated
by the elements {1, U} ⊗ {(ψ1ψ2)p} for any p ≥ 0. We thus have

Hp
EQ (u(1|1)/uW (1)) =

{
R p even
ΠR p odd, (5.21)

having called u(1|1)/uW (1) the coset.
Finally, considering the coset u(1|1)/u(1)⊕ u(1) , we have that in this case both U
and W correspond to Maurer-Cartan forms for the subalgebra. From the Maurer-
Cartan equations, it follows that the cohomology is generated by the representatives
given by the fermionic bilinears {(ψ1ψ2)p}, for any p ≥ 0 so that the equivariant
cohomology is non-zero in any even degree.

Hp
EQ (u(1|1)/u(1)⊕ u(1)) =

{
R p even
0 p odd, (5.22)

Using the formula (5.12), the corresponding Poincaré series read

Pu(1|1)/u(1)⊕u(1)(t) =
1− t2

(1− t2)
2 =

1

1− t2
= 1 + t2 + t4 + . . . . (5.23)

which match the computations above (5.22).

5.2. Higher Dimensional Cosets of osp(2|2), osp(3|2) and osp(4|2)
We now consider higher-dimensional cosets of osp(n|2) for n=2, 3, 4 . We start with
some general considerations, and then we specialize to specific cases together with
their cosets. On a general ground, the Maurer-Cartan equations for osp(n|2) read

dV(αβ) = ψI
αψ

J
βηIJ + (V ∧ V )(αβ) ,

dT [IJ ] = −ψI
αψ

J
βΩ

αβ + (T ∧ T )[IJ ] ,

dψI
α = VαβΩ

βγψI
γ + T [IJ ]ηJKψ

K
α , (5.24)
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where the Maurer-Cartan forms are given by {ψI
α|V (αβ), T [IJ ]} for α, β = 1, 2 and

I, J,K, . . . = 1, . . . , n . We have (V ∧ V )(αβ) = V(αγ)Ω
γδV(δβ) and (T ∧ T )[IJ ] =

T [IK]ηKLT [LJ ] , where Ωαβ is the 2-symplectic invariant tensor (from sp(2)) and
ηIJ is the Euclidean rotation-invariant metric (from so(n)).
It is not difficult to verify that for any n the 3-form

ω(3)=ψI
αψ

J
βηIJV (αβ)+ψI

αψ
J
βΩ

αβTIJ+(V ∧ V ∧ V )αβΩ
αβ+(T ∧ T ∧ T )IJη

IJ (5.25)

is invariant and therefore it gives a representative of the 3-cohomology group
H3

CE(osp(n|2)) , which is shared by all of the osp(n|2) . Through direct compu-
tation, we find that there is a unique cohomology class up to n = 3 (besides the
constants in the 0-cohomology), indeed, as in [34], we have that

Posp(2|2)[t] = Posp(3|2)[t] = Posp(1|2)[t] = Psp(2,R)[t] = 1− t3. (5.26)

Things start changing in the case of osp(4|2) , where one has that

Posp(4|2)[t] = Pso(4)[t] = (1− t3)2, (5.27)

where we recall that D2
∼= A1 ⊗ A1 for the complexified algebras and the Poincaré

polynomial for A1 is indeed 1 − t3 . We therefore expect a further 3-form in the
cohomology H3

CE(osp(4|2)). This is indeed the case and the extra cohomology
representative is given by

ω̃(3) = ϵIJKLψ
I
αψ

J
βΩ

αβT KL + ϵIJK[MηN ]LT IJT KLT MN . (5.28)

Cohomology classes for higher dimensional osp(n|2) for n > 4 can be constructed
similarly.

5.2.1. osp(2|2)
Let us now get back to the specific case of the Lie superalgebra osp(2|2) . This is a
Lie superalgebra of dimension 4|4 , whose reduced algebra is given by osp(2|2)0 =
so(2)⊕sp(2) . We consider its cosets osp(2|2)/so(1, 1) and osp(2|2)/so(2)⊕so(1, 1) ,
respectively of dimension 3|4 and 2|4 . While the Poincaré series for the first coset
can not be guessed by (5.12) (because the two superalgebras have different ranks),
it can be immediately written for the second coset:

Posp(2|2)/(so(2)⊕so(1,1))(t) =
(1− t4)

(1− t2)2
=

1 + t2

1− t2
. (5.29)

Let us calculate explicitly the cohomology of the two cosets: by looking at the
Maurer-Cartan equations one finds

dV (αβ) = (V ∧ V )(αβ) + ψα
i ∧ ψβ

j η
ij,

dW = ψα
i ∧ ψβ

j ϵ
ijϵαβ,

dψα
i = V (αγ)ϵγβ ∧ ψβ

i − W ϵij ∧ ψαi . (5.30)

for α = 1, 2 and i = 1, 2 , where ηij is the Minkowski metric.
In the case of the first coset osp(2|2)/so(1, 1) , we consider two ways to embed
so(1, 1) in osp(2|2) : in the first case we embed it in the sp(2) part, in the second
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one we embed it in the so(2) part (after a suitable signature redefinition via unitary
trick). In the first case, one finds the cohomology class

R = (γ0)αβ((V ∧ V )(αβ) + ψα
i ∧ ψβ

j η
ij) , (5.31)

where γ0 is the 0-th Dirac gamma matrix: it is easy to check that this is indeed
a basic closed and not exact form. To do this it is convenient to decompose the
vielbeins as V (αβ) = γa(αβ)V

a, a ∈ {0,±} (as in the previous section for osp(1|2)),
then we quotient with respect to V 0 . It follows that equation (5.31) represents a
form which is closed by construction, being exact with respect to a non-basic object,
basic since it does not depend on V 0 and non-exact. In the second case, we have
that the so-algebra is embedded in the so-subalgebra of osp . In this case we are
taking the quotient with respect to W : we immediately see from the Maurer-Cartan
equations (5.30) that the bilinear

(ψ · ψ) = ψα
i ∧ ψβ

j ϵ
ijϵαβ = DW , (5.32)

together with its powers, is a basic, closed, non-exact form.
On the other hand, we can study the second coset osp(2|2)/ (so(1, 1)⊕ so(2)) . In
this case, either R or the bilinear (and all its powers) (ψ · ψ) are part of the
equivariant cohomology, making the cohomology infinite dimensional, generated by
{1,R } ⊗ {(ψ · ψ)p} for any p . The cohomologies that we have studied explicitly
then read

Hp
EQ (osp(2|2)/so(1, 1))V 0 =

{
R p = 0, 2
0 else, (5.33)

Hp
EQ (osp(2|2)/so(1, 1))W =

{
R p even
0 else, (5.34)

Hp
EQ (osp(2|2)/ (so(1, 1)⊕ so(2))) =


R p = 0,
R2 p = 2, 4, . . .
0 else.

(5.35)

5.2.2. osp(3|2)
Let us look at the case of the cosets of osp(3|2) . Cosets by so(2) or so(1, 1) work
in pretty much the same way as the above case of osp(2|2) . On the other hand,
it is interesting to deal with the case osp(3|2)/so(2) ⊕ so(1, 1) . First, observe that
algebra and subalgebra have the same rank, so by (5.12) the Poincaré series reads

Posp(3|2)/so(2)⊕so(1,1)(t) =
1 + t2

1− t2
, (5.36)

which is the same as in the case of the coset osp(2|2)/so(2)⊕ so(1, 1) . In particular,
two equivariant cohomology classes can be singled out. We have

DV0 = ψI
αψ

J
βηIJγ

αβ
0 + V+ ∧ V−,

DT 0 = −ψI
αψ

J
βΩ

αβsIJ + T+ ∧ T−, (5.37)

where sIJ = −sJI , which select a “direction” so(3) denoted as T0 – in pretty much
the same way as the γ0 allows to select a “direction” in the Lie algebra sp(2,R) .
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Notice that the above elements are not (equivariantly) exact as V 0 and T0 are not
basic since they are the generators of the subgroup. These two forms correspond
to the 2t2 term of (5.36), obtained by expanding the denominator. Notice that in
order to take into account the two independent cohomology classes above, it would
be more convenient to have a term of the kind (1 + t2)2 in the numerator. If we
multiply and divide the above series by 1 + t2 we get indeed

Posp(3|2)/so(2)⊕so(1,1)(t) =
(1 + t2)2

1− t4
. (5.38)

This suggests that the infinite cohomology can be obtained in terms of the two forms
(5.37) and of a 4-form, which can be found to be

X (4) = ψI
αγ

αβ
a ψJ

βη
abϵRIJη

RSϵSKLψ
K
α′γ

α′β′

b ψL
β′ , (5.39)

This is basic, closed and not exact. The cohomology therefore reads

Hp
EQ (osp(3|2)/so(2)⊕ so(1, 1)) =


R p = 0
R2 p even
0 p odd.

(5.40)

5.2.3. osp(4|2)
Finally, let us take a brief look at an interesting coset of the superalgebra osp(4|2) ,
namely osp(4|2)/u(2) . In this case, the problem can be studied by considering the
spinor representation of so(1, 3) ∼ so(4) ∼= su(2) × su(2) . In this formulation we
have

T [IJ ] →

{
T (AB) = (σ[IJ ])

(AB)T [IJ ]

T̃ (ȦḂ) = (σ[IJ ])
(ȦḂ)T [IJ ]

, A,B = 1, 2, (5.41)

ψI
α → ψαAȦ = (σI)AȦψ

I
α , (5.42)

where (σI)AB and (σI)ȦḂ are the two copies of the Pauli matrices of su(2)× su(2) ,
(σ[IJ ])

(AB) =
[
(σI)

AȦ, (σJ)
B
Ȧ

]
and (σ[IJ ])

(ȦḂ) =
[
(σI)

AȦ, (σJ)
Ḃ
A

]
. The Maurer-

Cartan equations (5.24) then become

dV(αβ) = (ψ · ψ)(αβ) + (V ∧ V )(αβ) ,

dT (AB) = − (ψ · ψ)(AB) + (T ∧ T )(AB) , (5.43)

dT̃ (ȦḂ) = − (ψ · ψ)(ȦḂ) + (T̃ ∧ T̃ )(ȦḂ) ,

dψαAȦ = VαβΩ
γψγAȦ + σIAȦ

(
(σ[IJ ])(CD)T

(CD) + (σ[IJ ])(ĊḊ)T
(ĊḊ)

)
ηJKσ

KAȦψαAȦ .

Let us consider the coset osp(4|2)/su(2) : we can quotient out one of the two
su(2) , for example the one generated by T̃ . We immediately see that the bilinears
(ψ · ψ)(ȦḂ) = −∇T̃ (ȦḂ) become exact, with respect to non-basic objects, hence
they are cohomology representatives of the coset algebra. The same holds for
any power and product of these bilinears. Moreover, we have another cohomology
representative which is given by (5.25) but with only the set of non-modded out
T ’s:

ω(3) = (ψ · ψ)(αβ) V (αβ) + (ψ · ψ)(AB)
T(AB) + (V ∧ V ∧ V )αβΩ

αβ

+ (T ∧ T ∧ T )ABη
AB . (5.44)
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It follows that the cohomology is generated by
{
1, ω(3)

}
⊗
{[

(ψ · ψ)(ȦḂ) ]n} , for all
n ∈ N . The computation of the dimensions of the cohomology spaces is not difficult,
but tedious since it heavily relies on the Fierz identities. Notice that the “finite part”
of the cohomology (to be precise, its bosonic restriction) is exactly what is left from
the bosonic quotient so(4)/su(2) ∼= su(2) . We will comment further on this in the
next paragraph, relying on this observation.
We could now proceed further by modding out another u(1) , in order to study the
coset space osp(4|2)/u(2) . Given the previous results, the calculation is straightfor-
ward: we can either embed the u(1) into the remaining su(2) , which is generated
by the T (AB) s or into sp(2) , which is generated by the V (αβ) ’s. However, the two
embeddings are equivalent since sp(2) ∼= su(2) at the level of complex algebras. If
we perform the quotient in the sp(2)-part, hence we immediately see that (5.44) is
no longer basic, so it does not contribute to the cohomology. However, a 2-form
as the one in (5.31) appears, contributing to the cohomology. It follows that the
cohomology of the coset osp(4|2)/u(2) is generated by {1,R (2)}⊗

{[
(ψ · ψ)(ȦḂ) ]n} ,

for all n ∈ N .
A comment is now mandatory: as we already noticed at the end of the previous
paragraph, the “finite part” of the cohomology (again, its bosonic restriction) corre-
sponds to what is left from the bosonic quotient so(4)/u(2) ∼= su(2)/u(1) . We can
interpret this result – and the previous one – as follows. Fuks’ theorem states that
Hp

CE,dif (osp(4|2)) = Hp
CE,dif (so(4)) : when modding out the subalgebra, the bosonic

restriction of the finite part is actually given by the coset of the (purely bosonic)
subalgebra which is selected by Fuks’ theorem. Notice that this holds as long as
we are embedding the subalgebra in the part which actually contributes to the full
cohomology of the algebra. Indeed, we have seen in the u(1|1)/u(1) example that if
we embed the divisor subalgebra in the subalgebra which does not contribute to the
cohomology, we obtain a different finite part. Hence, under the above assumption,
it can be conjectured that if we consider a subalgebra h of osp(n|m) , we will find
that [

Hp
CE

(
osp(n|m)

h

)]
FP

∼=

H
p
CE

(
so(n)
h

)
, if n ≥ 2m,

Hp
CE

(
sp(m)

h

)
, if n < 2m,

(5.45)

where the subscript “FP” denotes the finite part of the cohomology. Evidence sup-
porting this claim is provided by the Poincaré polynomials, which can be computed
by combining Fuks’ results with results from [40] for the case of equal rank pairs, as
follows

Posp(n|m)/h(t) =
P ′
osp(n|m)(t)

P ′
h(t)

, (5.46)

where the prime denotes the augmented power by one for all powers in the Poincaré
series – see [40]. It would be interesting to verify if this holds for cosets of the other
basic Lie superalgebras as well as to improve general results comprising also quotient
spaces, as in [40].

5.3. Cosets of osp(1|4): D = 4, N = 1 anti de Sitter superspace
It is well-known that the ordinary anti de Sitter spacetimes AdSD in D -dimensions
can be obtained starting from the Lie groups SO(2, D − 1) and SO(1, D − 1) as



598 Cremonini, Grassi, Noja

the coset manifold SO(2, D − 1)/SO(1, D − 1) , for example, the AdS4 is obtained
by taking the quotient of the Lie group SO(2, 3) by the Lorentz group SO(1, 3)
(see [17] for a discussion in relation to supergravity, with Chevalley-Eilenberg co-
homology in sight). This construction can be generalized to a coset superspace to
obtain the superspace extension of the anti-de Sitter spacetimes. In this section,
we will compute the equivariant cohomology of one such construction, namely the
D = 4 , N = 1 anti-de Sitter superspace AdS4|4 realized as the quotient super-
manifold OSp(1|4)/SO(1, 3) . At the level of the Lie superalgebras one starts from
osp(1|4), which is of dimension 10|4 and whose reduced Lie algebra is sp(4,R) .
Using that sp(4,R) ∼= so(2, 3) one can recover the quotient that yields the anti
de Sitter 4-space AdS4 at the level of the groups. Notice that the quotient man-
ifold OSp(1|4)/SO(1, 3) has dimension 4|4 , therefore it is N = 1 (minimal) su-
persymmetric extension for the AdS4 and we call it AdS4|4 . We will denote the
corresponding coset of Lie superalgebras ads4|4 := osp(1|4)/so(1, 3) .
Let us start analyzing the Chevalley-Eilenberg cohomology of osp(1|4) . At the level
of the Poincaré polynomial, we have

Posp(1|4)[t] = Psp(4,R)[t] = 1− t3 − t7 + t10. (5.47)

Introducing a set of gamma matrices γaαβ for a = 0, . . . , 9 and α, β = 1, . . . , 4 we
represent the Maurer-Cartan odd forms by bi-spinors as follows

V a = γaαβV αβ , a = 1, . . . , 10, α, β = 1, . . . , 4. (5.48)

Notice that this is consistent as long as the indices α, β are symmetrized, i.e.
V αβ = V (αβ) , as to yield 10 components. Further, we use the (standard) symplectic
matrix Ωαβ and its inverse Ωαβ to lower and raise indices. This representation is
particularly convenient, as the Maurer-Cartan equations read

dVαβ = ψαψβ + (VΩV )αβ , dψα = (VΩψ)α , (5.49)

having introduced also the (even) vielbeins ψα . Here we have made use of the
notation (VΩV )αβ = VαγΩ

γδVδβ and (VΩψ)α = VαβΩ
βγψγ. Let us look for the

3-form explicitly: the most general odd 3-form reads

ω(3|0) = c1
(

V α1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α1

)
+ c2V αβψαψβ, (5.50)

where c1 and c2 are constants coefficient. We shorten the previous expression by
ω(3) := c1V (3) + c2Vψ(2). By compatibility with the cohomology of the reduced
algebra sp(4,R) we conclude that c1 6= 0 , and in particular, we put c1 = 1 . Imposing
the closure condition dω(3) = 0 we fix the second coefficient:

0 = dω(3) = 3
[(
ψα1ψβ1 + (VΩV )α1β1

)
Ωβ1α2V

α2β2Ωβ2α3V α3β3Ωβ3α1

]
+ c2

[
ψαψβψαψβ − 2V αβVαγΩ

γδψδψβ

]
. (5.51)

Let us look at the terms in this expression: the second term, namely the one pro-
portional to V 4 is zero by trace identity, indeed we can write V 3V = −VV 3 , but
on the other hand, by cyclicity, we have V 3V = VV 3 . The third term, namely the
one proportional to ψ4 , is zero since ψαψα = ψαΩαβψ

β = 0 , being the ψ ’s even and
Ω antisymmetric. This allows us to fix c2 = 3/2 to get that the first cancels the last
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term and obtain a closed form. Further, in order to show that ω(3) is not exact, we
have to consider the most general even 2-form and show that its Chevalley-Eilenberg
differential cannot generate ω(3) . However a crucial observation simplifies the job:
we cannot construct a (non-zero) 2-form which is a singlet, i.e. having all of the
indices contracted (the only case would be V αβVαβ + ψαψα which is equal to zero,
as shown above). Hence we have (after multiplying by an overall factor)

H3
CE (osp (1|4)) =

{
1

3

(
V α1β1Ωβ1α2V

α2β2Ωβ2α3V
α3β3Ωβ3α1

)
+

1

2
V αβψαψβ

}
. (5.52)

With completely analogous arguments we construct the most general odd 7-form as

ω(7) = c1
(

V α1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α4V
α4β4

Ωβ4α5V α5β5Ωβ5α6V α6β6Ωβ6α7V
α7β7Ωβ7α1

)
+ c2

(
V α1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α4V α4β4Ωβ4α5V α5β5

)
ψα1ψα5

+ c3
(

V sα1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α1

)
(V α1µΩµνV να2)ψα1ψα2

+ c4
(

V α1βΩβγV γα2
)

V α3α4ψα1ψα2ψα3ψα4 . (5.53)
We note that we do not have a term of the form Vψ6 since it would be trivially 0,
as can be checked. We can write ω(7) in a more compact way as

ω(7)=c1V 7+c2
(

V 5
)αβ

ψαψβ+c3V 3
(

V 2
)αβ

ψαψβ+c4
(

V 2
)αβ

V γδψαψβψγψδ , (5.54)
where the contractions are omitted. Again by compatibility with the reduced algebra
cohomology, we need to have c1 6= 0 . The remaining coefficients c2, c3, c4 can be
easily fixed by imposing dω(7) = 0 : again, as above, the resulting form will not be
exact since it is not possible to have a non-trivial singlet represented by an even
6-form.
Finally the top representative in the cohomology, the form ω(10) is simply given
given by the multiplication

ω(10) = ω(3) ∧ ω(7), (5.55)
exploiting the ring structure of the cohomology. Notice that ω(10) is non-zero since,
for example, the term of the form V 3∧V 7 is non-vanishing, and since either ω(3) or
ω(7) are closed and non-exact it follows that ω(10) is closed and non-exact as well.
In order to study the equivariant cohomology of the coset superspace ads4|4 =
osp(1|4)/so(1, 3) we have to “split” the Maurer-Cartan forms V αβ coming from
the sp(4,R) ⊂ osp(1|4) into the coset Maurer-Cartan forms (vielbeins) and those
coming from so(1, 3) (connections). Again, making use of the gamma matrices, i.e.
of the spin structure, we can decompose the vielbeins as

V(αβ) = γa(αβ)Va + γ
[ab]
(αβ)V[ab], (5.56)

for a = 1, . . . , 4 and α = 1, . . . , 4 , where the V a are the four vierbein of the coset
space that lifts to AdS4 and V[ab] are the six vielbeins of so(1, 3) . The Poincaré
polynomial can be computed using the result by [40] – notice that both the algebras
involved have the same rank, actually 2 – and it reads

Pads4|4 [t] =

(
1− t4

) (
1− t8

)
(1− t4)

2 = 1 + t4. (5.57)

We, therefore, expect a single equivariant cohomology class at degree 4, besides
the constants. In particular, we expect this to be related to the “volume form”
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ω
(4)
ads4 coming from the AdS4 space. Using the above decomposition (5.56) and the

previously obtained Maurer-Cartan equations (5.49) one gets the following Maurer-
Cartan equations

DVa = ψγaψ ,

Dψα = Vaγ
aψ ,

Rab ≡ dV[ab] + (V ∧ V )[ab] = ψγ[ab]ψ, (5.58)

where the covariant derivative D is with respect to the connection V[ab] of the sub-
group so(1, 3) . Working as above, we have that the most general even 4-singlet reads

ω(4|0) = c1ϵabcdV aV bV cV d + c2V aV b (ψγabψ) . (5.59)

Notice that there cannot be terms of the form ψ4 =
(
ψγabψ

)
(ψγabψ) , since they

vanish because of the Fierz identities. As above, we have that c1 6= 0 by compat-
ibility with the cohomology of the reduced algebra ω

(4)
ads4 = ϵabcdV

aV bV cV d . Hence
we can fix c1 = 1 without loss of generality. The coefficient c2 is fixed by imposing
that Dω(4) = 0 :

0 = Dω(4) = 4ϵabcd (ψγ
aψ)V bV cV d

+ 2c2
[
ψγaψV b (ψγabψ) + V aV b ((V cγcψ) γabψ)

]
. (5.60)

The second term in the sum vanishes because of Fierz identities, while the last term,
after using γ matrices properties, cancels the first one upon fixing c2 = −2 . Finally,
we can conclude that ω(4) is not exact, since, once again, it is not possible to write
an odd 3-singlet that generates the term V 4 . Hence we have

H4
EQ

(
ads4|4

)
= R ·

{
ϵabcdV aV bV cV d − 2V aV b (ψγabψ)

}
. (5.61)

All in all, we have: Hp
EQ

(
ads4|4

)
=

{
R p = 0, 4
0 else. (5.62)

We conclude with the integral form Chevalley-Eilenberg cohomology. As discussed
in the previous section, by the isomorphism, we have two cohomology classes at
picture four, the maximal picture degree. They have the explicit expressions

H(0|4) (ads4|4) = R ·
{
2V aV bιπQγabιπQδ

4(ψ) + δ4(ψ)
}
,

H(4|4) (ads4|4) = R ·
{
ϵabcdV aV bV cV dδ4(ψ)

}
. (5.63)

6. Conclusions and outlook
The present work spawns from the observation that since Lie superalgebra coho-
mology is nothing but a straightforward generalization of ordinary Lie algebra co-
homology, it is not capable to account for objects different than differential forms
on the corresponding Lie supergroup. On the other hand, it is well-known that in
order to make a meaningful connection with integration theory, when working on
supermanifolds, differential forms have to be supplemented by integral forms, whose
geometry is not at all captured by Chevalley-Eilenberg cohomology.
To this end, after reviewing Chevalley-Eilenberg cohomology for ordinary Lie alge-
bras and Lie superalgebras and their relations to forms on the corresponding Lie
groups or Lie supergroups, we extend the notion of Chevalley-Eilenberg cochains to
include also integral forms and we define a corresponding cohomology.
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We thus show a duality between the ordinary Chevalley-Eilenberg cohomology for a
certain Lie superalgebra – which looks at forms on the corresponding Lie supergroup
– and this newly defined (Chevalley-Eilenberg) cohomology accounting for integral
forms instead. We observe that most notably – and differently from de Rham
cohomology –, this cohomology always features the true analogue of a top form,
a Berezinian form appearing in the integral form complex.
Nonetheless, besides general results, a great deal of focus in this paper is on explicit
direct computations: in particular, we provide explicit expressions for cocycles of
Lie superalgebras of physical interest, namely supertranslations of flat superspaces
and classical Lie superalgebras, up to dimension 4, in terms of their Maurer-Cartan
forms.
The second part of the paper is devoted to equivariant Chevalley-Eilenberg cohomol-
ogy, which is related to the (super)symmetries of coset supermanifolds, which pro-
vides very important backgrounds for supergravity and superstring theories. Again,
several examples up to dimension 4 are studied and explicit expressions for their co-
cycles are provided, culminating with the case of super anti-de Sitter space AdS4|4 .
Here, a mixture of techniques has been exploited, spanning from Poincaré polyno-
mials computations for equal rank pairs to brute force computations.
We remark that our analysis has uncovered new cocycles spawning from fermionic
generators – both in ordinary and equivariant Chevalley-Eilenberg cohomology – and
several characteristic examples of infinite-dimensional cohomology. In hoping that
the present results might come useful to understand the geometry of supergravity
and string backgrounds and the mathematics behind it – see for example the recent
[30, 8] –, we stress though, that this research scenario looking at relating Chevalley-
Eilenberg cohomology and the extended geometry of forms on supermanifolds is far
from being exhausted. Indeed, in the present paper, the so-called pseudoforms [27]
have not been addressed, even if nonetheless they play an important role both in the
integration theory on superspaces and in its applications: it is legit to ask if they
can be fitted in the picture we have presented and which role they play.
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A. A Primer of Integral Forms on Supermanifolds

Given a supermanifold M , say of dimension n|m , differential forms in Ω•(M ) are
not enough to define a coherent notion of integration on M . This leads to the
introduction of integral forms, which are geometrically as important as differential
forms, see [49] and the recent papers [12, 14, 15, 18, 19, 20, 21, 22, 25, 26, 28, 29, 37,
54]. Loosely speaking, whereas differential forms lead to a consistent geometric
integration on ordinary bosonic submanifolds (i.e. sub-manifolds of codimension
p|m) in M , integral forms play the same role on sub-supermanifolds of codimension
p|0 in M , and in particular, they control integration on M itself. Notice that, even
if it is often left understood or not stated, integral forms are ubiquitous in theoretical
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high energy physics: for example, the Lagrangian density of a supersymmetric theory
in superspace is indeed a top integral form. There are (at least) two ways to introduce
integral forms, which we now briefly recall.
The first approach is to define integral forms as generalized functions on TotΠT (M )
[60], that is elements ω(x1, . . . , xn, dθ1, . . . , dθm|θ1, . . . , θm, dx1, . . . dxn) ∈ ΠT (M ) ,
where xi|θα are local coordinate for M , which only allows a distributional depen-
dence supported in dθ1 = . . . = dθm = 0 . Algebraically, integral forms can be
(roughly) described as Ω•(M )-modules generated over the set (of Dirac delta dis-
tributions and their derivatives) {δ(r1)(dθ1)∧ . . .∧ δ(rm)(dθm)} , for ri ≥ 0 , together
with the defining relations

dθαδ(k)(dθα) = −kδ(k−1)(dθα) for k ≥ 0 (A.1)

for any α = 1, . . . ,m and any k ≥ 0 , which are deduced analytically by integration
by parts. Notice that the case k = 0 tells that the expressions dθαδ(0)(dθα) vanishes,
so that the presence of the deltas can be seen as localization in the locus dθα = 0
in TotΠT (M ) . Locally, an integral form ωint is written as a (generalized) tensor

ωint(x, dθ|θ, dx) = (A.2)

=
n∑

i=1

m∑
j=1

∑
ai∈{0,1}
rj≥0

ω[a1...amr1...rm](x|θ)(dx1)a1 . . . (dxn)amδ(r1)(dθ1) . . . δ(rm)(dθm),

where all indices are antisymmetric (recalling that two deltas anticommute), and
where we note that there cannot be dθ ’s thanks to the above relations (A.1). We
will say that an integral form has picture m , to mean that we are considering
expressions that admit only a distributional dependence on all of the m coordinates
dθ1, . . . , dθm on TotΠT (M ) . Further, with reference to the previous expression A.2,
we assign a degree to an integral form according to the definition

deg(ωint) :=
n∑

i=1

aj −
m∑
j=1

rj, (A.3)

so that we will say that an integral form has picture m and degree p ≤ n . In
particular, a top integral form is an integral form of degree n ,

ωtop
int = ω(x|θ)dx1 . . . dxnδ(dθ1) . . . δ(dθm), (A.4)

and it can be checked that this expression has the transformation properties of a
section of the Berezinian line bundle Ber(M ) := Ber(ΠT ∗(M )) of the supermanifold
M . Notice that all of the integral forms as in (A.2) can be generated from the above
(A.4) by repeatedly acting with contractions along (coordinate) vector fields, i.e.

ωn−ℓ
int = ιX1 . . . ιXℓ

ωtop
int , (A.5)

where we recall that in particular, for the coordinate vector fields ∂xi |∂θα one has
that |ι∂xi | = 1 and |ι∂θα | = 0 . The modules of integral forms are then structured
into a complex letting d operate as the usual de Rham differential on Ω•(M ) and
declaring that its action on the delta’s, is trivial i.e. posing d(δ(dθα))=0 for any α .
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In the second approach, one defines integral forms of degree p as sections of the
vector bundle on M

Σp(M ) := Ber(M )⊗OM
(Ωn−p(M ))∗ = Ber(M )⊗OM

Sn−p(ΠT (M )). (A.6)
where Ber(M ) is the Berezinian line bundle of M and ΠT (M ) the parity-reversed
tangent bundle. The correspondence between integral forms in the different repre-
sentations reads

ω(n−ℓ) = D ⊗ (πX1� . . .� πXℓ) ! ω(n−ℓ) = ιX1 . . . ιXℓωtop
int (A.7)

where D is a section of Ber(M ) and πX1� . . . � πXℓ is a section of SℓΠT (M ) ,
together with the correspondence of sections of Berezinian line bundle, or integral
top forms, mentioned above, i.e. ωtop

int ! D . Clearly, given the above tensor product
structure, defining a nilpotent differential acting as δp : Σp(M ) → Σp+1(M ) is not
at all trivial matter, as originally discussed in [49] and recently realized in [12], but
this can be done as getting a complex which will in general be unbounded from below
...→ Ber(M )⊗ Sn−p(ΠT (M )) → ...→ Ber(M )⊗ ΠT (M ) → Ber(M ) → 0. (A.8)
Remarkably, these different approaches, which agree in terms of general results,
complement each other. If on one hand, this second approach is probably more
suitable when it comes to dealing with mathematical and foundational issues where
well-definiteness is crucial, on the other hand, the first approach proves quite efficient
when it comes to actual computations. The different nature of these two approaches
is mirrored, for example, in the proof of which is probably the most important
result in the theory, i.e. the (natural) isomorphism between the cohomology of
differential forms Hp

d(Ω
•(M )) and integral forms Hp

δ (Σ
•(M )) on supermanifolds,

namely introducing in the first approach the crucial notion of Picture Changing
Operators (see, e.g., [22]), which maps differential to integral forms and vice-versa,
and via a spectral sequence argument in the second approach [12].

B. Explicit Expressions
Dimension 1
In this section, we collect explicit expressions for cohomology representatives of
susy(R1|2) as described in Section 4.1:

Hp
CE,dif (susy(R1|2)) ∼= R · {

(
ψ1

)p
,
(
ψ2

)p} , ∀p ∈ N . (B.1)
The dual integral form cohomology groups are generated by

H1−p
CE,int(susy(R1|2)) ∼= BerH

(
susy(R1|2)

)
· {πχp

1, πχ
p
2} ≡

≡ R ·
{
ιpχ1
, ιpχ2

}
V δ

(
ψ1

)
δ
(
ψ2

)
, ∀p ∈ N , (B.2)

where χα are the vector fields dual to πψα .
Dimension 2
In this section, we collect explicit expressions for cohomology representatives of
susy(R1,1|2) as described in Section 4.1:

H0
CE,dif (susy(R1,1|2)) ∼= R · 1, H1

CE,dif (susy(R1,1|2)) ∼= R · {ψ1, ψ2}

H2
CE,dif (susy(R1,1|2)) ∼= R ·

{ 2∑
α=1

(ψα)2
}
, Hp>2

CE,dif (susy(R1,1|2)) ∼= 0. (B.3)
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Analogously, the integral form cohomology representatives are given by

H2
CE,int(susy(R1,1|2)) ∼= R · V 1V 2δ(ψ1)δ(ψ2) ,

H1
CE,int(susy(R1,1|2)) ∼= R · {ιχ1V 1V 2δ(ψ1)δ(ψ2), ιχ2V 1V 2δ(ψ1)δ(ψ2)}

H0
CE,int(susy(R1,1|2)) ∼= R ·

{( 2∑
α=1

(ιχα)
2

)
V 1V 2δ(ψ1)δ(ψ2)

}
,

Hp<0
CE,int(susy(R1,1|2)) ∼= 0 , (B.4)

where χα are the vector fields dual to πψα .
Dimension 3
In this section, we collect explicit expressions for cohomology representatives of
susy(R1,2|2) as described in Sec. 4.1:

H0
CE,dif (susy(R1,2|2)) ∼= R · 1,

H1
CE,dif (susy(R1,2|2)) ∼= R · {ψα},

H2
CE,dif (susy(R1,2|2)) ∼= R ·

{
V aγa,αβψ

β
}
,

H3
CE,dif (susy(R1,2|2)) ∼= R ·

{
V aψαγa,αβψ

β
}
,

Hp>3
CE,dif (susy(R1,2|2)) ∼= 0 . (B.5)

In particular, we want to stress that the (3|0)-form generating H3
CE,dif (susy(R1,2|2))

is the well-known (see, e.g., [3, 7, 10, 11, 31]) Lorentz-invariant (3|0)-form of the
coset siso(1, 2|N = 1)/so(1, 2) . This class is of particular interest as it can be related
to the construction of Wess-Zumino terms for the superstring (see, e.g., [39]).
The integral form cohomology representatives are given by

H3
CE,int(susy(R1,2|2)) ∼= R · {V 0V 1V 2δ(ψ1)δ(ψ2)},

H2
CE,int(susy(R1,1|2)) ∼= R · {V 0V 1V 2ιχαδ(ψ

1)δ(ψ2)}
H1

CE,int(susy(R1,1|2)) ∼= R ·
{

V aV bγab,αβιχβ
δ(ψ1)δ(ψ2)

}
,

H0
CE,int(susy(R1,1|2)) ∼= R ·

{
V aV bιχαγ

αβ
ab ιχβ

δ(ψ1)δ(ψ2)
}
,

Hp<0
CE,int(susy(R1,1|2)) ∼= 0, (B.6)

where χα are the vector fields dual to πψα . Again, the Lorentz-invariant (0|2)-
integral form is of particular interest, as it represents the supersymmetric Picture
Changing Operator of the flat, rigid superspace siso(1, 2|N = 1)/so(1, 2) . In
[14, 25, 26, 37], some applications of this class are described.
Dimension 4
In this section, we collect explicit expressions for cohomology representatives of
susy(R1,3|4) as described in Section 4.1. We will restrict to the first cohomology
groups, general expressions for any cohomology groups can be easily calculated
analogously:
H0

CE,dif (susy(R1,3|4)) ∼=R · 1,

H1
CE,dif (susy(R1,3|4)) ∼=R · {χα, λ̄α̇}

H2
CE,dif (susy(R1,3|4)) ∼=R · {χαχβ, λ̄α̇λ̄β̇, χαϵαβV ββ̇, λ̄α̇ϵα̇β̇V ββ̇}, (B.7)
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H3
CE,dif (susy(R1,3|4)) ∼=R · {χαχβχγ , λ̄α̇λ̄β̇λ̄γ̇ , χγχαϵαβV ββ̇, λ̄γ̇ λ̄α̇ϵα̇β̇V ββ̇, χαλ̄α̇ϵαβϵα̇β̇V ββ̇},

H4
CE,dif (susy(R1,3|4)) ∼=R · {χαχβχγχδ, λ̄α̇λ̄β̇λ̄γ̇ λ̄δ̇,V αα̇ϵαβV ββ̇ϵα̇γ̇ϵβ̇δ̇λ̄

γ̇ λ̄δ̇,

V αα̇ϵα̇β̇V ββ̇ϵαγϵβδχ
γχδ, χδχγχαϵαβV ββ̇, λ̄δ̇λ̄γ̇ λ̄α̇ϵα̇β̇V ββ̇}, . . .

The (3|0)-form χαλ̄α̇ϵαβϵα̇β̇V ββ̇ and the two (4|0)-forms

ω
(4|0)
chir = V αα̇ϵαβV ββ̇ϵα̇γ̇ϵβ̇δ̇λ̄

γ̇λ̄δ̇ and (4|0)
antichir = V αα̇ϵα̇β̇V ββ̇ϵαγϵβδχ

γχδ 3

are the Lorentz-invariant cocycles of the superspace siso(1, 3|N = 1)/so(1, 3) . These
cocycles are used, e.g., to construct higher WZ terms and the corresponding branes
(see, e.g., [1, 3, 31]). The subscripts for the two (4|0)-forms indicate that they are
chiral and antichiral, respectively:

LD̄α̇
ω
(4|0)
chir = 0 , LDαω

(4|0)
antichir = 0 , ∀α, α̇ , (B.8)

where Dα is the dual of πχα and D̄α̇ is the dual of πλ̄α̇ . We will comment further
on this in a while.
The integral form representatives for the cohomology groups are given by a twist
via the Berezinian, as explained in Section 2.6. The Berezinian can be explicitly
realised as

Dsusy(R1,3|4)) = V αα̇ϵαβV ββ̇ϵβ̇γ̇V γγ̇ϵγδV δδ̇ϵδ̇α̇δ(χ
µ)ϵµνδ(χ

ν)δ(λ̄µ̇)ϵµ̇ν̇δ(λ̄
ν̇) . (B.9)

We can immediately introduce Lorentz-invariant integral forms, corresponding to
the Lorentz-invariant superforms as

ω(1|4) = (VVV )αα̇ ια (δ(χ
µ)ϵµνδ(χ

ν)) ῑα̇
(
δ(λ̄µ̇)ϵµ̇ν̇δ(λ̄

ν̇)
)
,

ω
(0|4)
antichir = (VV )αβ ιαιβ (δ(χ

µ)ϵµνδ(χ
ν))

(
δ(λ̄µ̇)ϵµ̇ν̇δ(λ̄

ν̇)
)
,

ω
(0|4)
chir = (VV )α̇β̇ (δ(χµ)ϵµνδ(χ

ν)) ῑα̇ῑβ̇
(
δ(λ̄µ̇)ϵµ̇ν̇δ(λ̄

ν̇)
)
. (B.10)

The subscripts on the two (0|4)-forms stand, as for their duals, for chiral and anti-
chiral:

LDαω
(0|4)
antichir = 0 , LD̄α̇

ω
(0|4)
chir = 0 , ∀α, α̇ . (B.11)

These forms and their duals are related to the Weyl / anti-Weyl decomposition of
the N = 1, D = 4 superspace and, in particular, they can be related to the notions
of (anti-)chiral Berezinian and (anti-)chiral Picture Changing Operator.
Really, if one considers only the chiral or the anti-chiral sector of even differential
forms, one can find four picture-2 cohomology classes:

ω
(4|2)
chir ≡ Berchir = V αα̇ϵαβV ββ̇ϵβ̇γ̇V γγ̇ϵγδV δδ̇ϵδ̇α̇δ(χ

µ)ϵµνδ(χ
ν) , (B.12)

ω
(4|2)
antichir ≡ Berantichir = V αα̇ϵαβV ββ̇ϵβ̇γ̇V γγ̇ϵγδV δδ̇ϵδ̇α̇δ(λ̄

µ̇)ϵµ̇ν̇δ(λ̄
ν̇) , (B.13)

ω
(0|2)
antichir = δ(λ̄µ̇)ϵµ̇ν̇δ(λ̄

ν̇) , ω
(0|2)
chir = δ(χµ)ϵµνδ(χ

ν) . (B.14)
The forms constructed with a non-zero and non-maximal number of δ s are called
pseudoforms (see, e.g., [60]); the rigorous construction of pseudoforms and their
cohomology on Lie superalgebras is studied in [27]. These forms have a wide in
many physical contexts: in N = 1, D = 4 supergravity, the action is naturally
written as a sum of a chiral and an anti-chiral action (see, e.g., [58]); they have been
studied for gauge theories and WZ theory, e.g., in [16].
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