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Bias correction of the maximum likelihood
estimator for Emax model at the interim analysis

Correzione per distorsione della stima di massima
verosimiglianza del modello Emax nell’analisi ad interim

Caterina May and Chiara Tommasi

Abstract The Emax model is a dose-response model commonly applied in clinical
trials, agriculture and environmental experiments. We consider a two-stage adaptive
design for collecting “optimal” data for estimating the model parameters. At the first
stage (interim analysis) a locally D-optimum design is computed to get a sample of
independent observations and to produce a first-stage maximum likelihood estimate
(MLE). At the second stage, the first-stage MLE is used as initial parameter-value
to determine another D-optimum design and then to collect the second-stage obser-
vations.

The first-stage estimate influences the quality of the data gathered at the second
stage, where a large number of observations can be collected. In real life problems,
instead, the sample size of the interim analysis is usually small; therefore, the first-
stage MLE should be precise enough even if based on few data. From this consider-
ation, our guess is that if we improved the behaviour of the first-stage MLE through
a bias correction, then the D-optimal design determined at the second stage would
produce better experimental points. In this study we provide the analytic expression
of the first-order bias correction of the MLE in the Emax model.

Abstract Il modello Emax é un modello di risposta alla dose comunemente us-
ato negli esperimenti clinici, agricoli e ambientali. In questo lavoro consideriamo
un disegno adattivo a due stadi per raccogliere dati “ottimali” al fine di stimare i
parametri del modello. Al primo stadio (analisi ad interim) viene calcolato un dis-
egno localmente D-ottimo per raccogliere un campione di osservazioni indipendenti
e ottenere una stima di massima verosimiglianza (SMV). Al secondo stadio la SMV
di primo stadio viene usata come valore inziale del parametro per determinare un
secondo disegno D-ottimo e raccogliere le osservazioni di secondo stadio a par-
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tire da quest’ultimo disegno sperimentale. Tali osservazioni dipendono quindi dalle
risposte precedenti.

La stima di primo stadio influenza la qualita dei dati al secondo stadio. Nei problemi
reali la dimensione campionaria dell’analisi ad interim e di solito bassa, quindi
la SMV di primo stadio sarrebbe opportuno fosse precisa anche se basata su un
campione piccolo. La nostra idea é quindi quella di migliorare la SMV di primo
stadio correggendone la distorsione, cosi che il disegno D-ottimo al secondo stadio
sia migliore. In questo lavoro determniamo [’espressione analitica al primo ordine
della distorsione della SMV di primo stadio dei parametri del modello Emax.

Key words: maximum likelihood estimator, interim analysis, small sample, bias
correction, D-optimality, two-stage adaptive design, Emax model

1 Introduction

The Emax model is well-characterized in the literature and it is frequently used for
dose-response designs in clinical trials, as well as in agriculture and in environmen-
tal experiments (see, for instance, [3] and [2]). It has the form y = 1 (x, 0) + € where
y denotes a response at the dose x € 2" = [a,b], 0 <a < b; 6 = (6),6,6,)7 is a
vector of unknown parameters; € is a Gaussian random error; the nonlinear mean

response is
X

x+6

In equation (1), 6y represents the response at the dose zero; 0; is the maximum effect
attributable to the drug; and 6, is the dose which produces the half of the maximum
effect.

In this study, to collect observations that provide a precise estimation of 8, we
consider a two-stage adaptive design. By the fact, sequential adaptive designs are
quite common in clinical trials. More specifically, assume that a guessed value 6 =
(60, 01,0,)T for 0 is available, for instance from an expert opinion. At the first stage
(or interim analysis) we take n; < n observations according to a locally D-optimal
design

n(x,0) =060+ 6 ()

£1'(6) = argmax |M(&:8)],

56:,

X1 o X . Lo o
where & = {(o“ wlMl} denotes a design, which is defined as a finite discrete
11 Q1

probability distribution over 2", E is the set of all possible designs and
M(E:0)= [ Vn(x,0)Vn(x.6) & (x) @

is the information matrix of &. Moreover V1) (x, 8) denotes the gradient of the mean
response 1N (x, 0) with respect to 0 (see for instance, [8] or [1] as references in op-
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timal design of experiments). The design é*(é) is said locally optimal because it
depends on a guessed parameter value 6 due to the non-linearity of n(x,0). Since
a D-optimal design minimizes the generalized asymptotic variance of the MLE for
0, it should improve the precision of the parameter estimates. Let én] be the first-
stage MLE based on the n; observations gathered during the interim analysis. At the
second stage, the available data information can be used to improve the choice of
the experimental points. Therefore, n, = n — n; additional responses are collected
according to another locally D-optimal design, 52*(@,,1), where ém is used in (2)
instead of 6.

The final MLE is computed employing the whole sample of n = n| + n, data,
which are dependent because the second-stage data depend on the first-stage re-
sponses through é,,l. In [9] and in [10] the theoretical properties of this final MLE
are described.

The sample size of the interim analysis is usually small and thus é,,l might be
affected by the bias which converges to zero as n increases to infinity. On the other
hand, the second-stage D-optimal design depends on énl and at this stage a larger
number of observations are collected. If these n, responses are observed at bad
design points (or in bad proportions), they might produce an unreliable final MLE.
On the other hand, if we improve the behaviour of the first-stage MLE through a
bias correction, then the D-optimal design determined at the second stage should
produce better experimental points. In Section 2 we provide the analytic expression
of the first-order bias correction of the MLE in the Emax model.

2 Simulations of MLEs efficiencies and first order bias correction

As explained in the introduction, we need to understand how the MLE at the first
stage influences the D-optimal design at the second stage. From the analytical ex-
pression of the locally D-optimal design &;; for the Emax model ( provided by [7]):

w oy g _fa x*(6) b
where the interior support point is
y __bla+6)+alb+6,)
) = e T b1 ) @

we have that the second stage D-optimal design depends only on 6.

The behaviour of x*(6,) when [a,b] = [0, 150] is plotted in Figure 1. Let 65 de-
notes the “true” value of 6,. From Figure 1 we can note that the derivative of x*(6,)
is a positive decreasing function of 6, and thus the effect on x*(8,) is larger for the
values 6, < 65.

The following theorem provides the expression for the bias of the first stage MLE
of 6, which is herein denoted by én 12
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Fig. 1 D-optimum middle dose x*(6,) for the Emax model

Proposition 1. Let 6, o be a nominal value for 6. If ny first stage observations are
taken according to the local D-optimal design (3), with equal numbers treated at the
experimental points a, x*(60,,0) and b, then the bias of the first stage MLE of 0, is

by(0)
n

E(énhz — 92) =

where by(0) > 0 is given by
1
(a—b)*0103(a+6,0)2(b+6,0)>
{30%(a+6)*(b+6:)*[2ab+ (a+b)Brg + O (a+b+26:)]
[3ab(a+b)+ (a* + 10ab+b*) 60+ 3(a+b)63,
+26,(a® +ab+b* +3(a+b)620+363)] }. (5)

by (8) =

Proof. Cox and Snell (1968) introduced the O(n~!) formula for the bias of the MLE
in the case of n observations not being identically distributed. Cordeiro and Klein
(1994) proposed a matrix expression for this bias, which is herein specialized for
the Emax model and the D-optimal design &/(6, ). Calculations are available by
the authors upon request.

This result justifies the fact that, when 6, ¢ < 6 the fixed procedure (that consists

in collecting all the n observations according to the initial (first-stage) D-optimal
design) seems to have a worst performance than a two-stage design; in facts, 6, »
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has a positive bias and thus it takes (on average) larger values, and thus we expect
that x*(6,, 2) is closer to x*(63) than x*(6,,) does.

3 Conclusions

In this paper we have presented the idea of improving the two-stage adaptive design
proposed in [9] by introducing a bias correction. An analytic form of the first-order
bias correction under the Emax model has been provided. We also justify the non-
symmetric performance of the adaptive procedure in comparison with a fixed one,
that results from the simulations in [9].

As a future work, we aim to apply the bias correction to the two-stage procedure
in order to investigate its possible improvement. We aim at exploring also other
types of bias corrections, in particular the ones obtained by modifying the score
function (see, for instance, [11]).

References

1. A. C. Atkinson, A. N. Donev, and R. D. Tobias. Optimum experimental designs, with SAS,
volume 34 of Oxford Statistical Science Series. Oxford University Press, Oxford, 2007.

2. M. Baker, J. L. Hobman, C. Dodd, S. J. Ramsden, D. J. Stekel. Mathematical modelling of
antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS
Microbiology Ecology, 92(4), 2016.

3. F Bretz, H. Dette, and J. Pinheiro. Practical considerations for optimal designs in clinical dose
finding studies. Statistics in medicine, 29(7-8), 731-742, 2010.

4. B. Bornkamp, J. Pinheiro, and F. Bretz. DoseFinding: Planning and Analyzing Dose Finding
Experiments, 2018. R package version 0.9-16.

5. D.R. Cox and E.J. Snell. A general definition of residuals. Journal of the Royal Statistical
Society (B), 30 (2):248-275, 1968.

6. G.M. Cordairo and R. Klain. A general definition of residuals. Statistics and Probability
Letters, 19:169-176, 1994.

7. H. Dette, C. Kiss, M. Bevanda, and F. Bretz. Optimal designs for the emax, log-linear and
exponential models. Biometrika, 97(2):513-518, 2010.

8. V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.

9. N. Flournoy, C. May, and C. Tommasi. The effects of adaptation on maximum likelihood in-
ference for nonlinear models with normal errors. Journal of Statistical Planning and Inference,
214:139-150, 2021.

10. C. May, and C. Tommasi. On the behaviour of the maximum likelihood estimator for expo-
nential models under a fixed and a two-stage design. Book of Short Papers SIS 2020, Pearson,
2020.

11. L. Pronzato and A. Pazman. Design of experiments in nonlinear models, volume 212 of
Lecture Notes in Statistics. Springer, New York, 2013. Asymptotic normality, optimality criteria
and small-sample properties.

1976



