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Abstract: SecuriDN v. 0.1 is a tool for the representation of the assets composing the IT and the OT

subsystems of Distributed Energy Resources (DERs) control networks and the possible cyberattacks

that can threaten them. It is part of a platform that allows the evaluation of the security risks of DER

control systems. SecuriDN is a multi-formalism tool, meaning that it manages several types of models:

architecture graph, attack graphs and Dynamic Bayesian Networks (DBNs). In particular, each asset

in the architecture is characterized by an attack graph showing the combinations of attack techniques

that may affect the asset. By merging the attack graphs according to the asset associations in the

architecture, a DBN is generated. Then, the evidence-based and time-driven probabilistic analysis

of the DBN permits the quantification of the system security level. Indeed, the DBN probabilistic

graphical model can be analyzed through inference algorithms, suitable for forward and backward

assessment of the system’s belief state. In this paper, the features and the main goals of SecuriDN are

described and illustrated through a simplified but realistic case study.

Keywords: cyberattack detection; cyber physical power systems; distributed energy resources;

Bayesian Networks; risk assessment; attack graphs; MITRE ATT&CK framework; IEC 61850; evidence-

based and time-driven probabilistic analysis; multiformalism models

1. Introduction

In the last decades, electro-energetic infrastructures have rapidly evolved from a unidirec-
tional “producer to consumer” model to a more complex scenario in which the distributed
resources can be both producers and consumers. The management of the power fluxes in
this heterogeneous grid environment entails an increased exchange of information, and hence
it requires high connectivity of the devices and control logic; as a consequence, the surface
exposed to cyberattacks is extensive, making the whole system potentially vulnerable to
adversarial activity. Cyberattacks to such critical systems may have severe consequences and
put at risk national stability; for this reason, the issue is receiving great attention.

Several European legislative acts address the data exchanges of energy infrastructures
and their cybersecurity. Within the electrical sector regulation, the EU Regulation 2017/1485
System Operation Guideline provides a set of indications including those concerning opera-
tion security for the transmission grid, consistent rules for transmission and distribution
system operators and the Significant Grid User (SGU), concerning grid connection oper-
ations. The EU cybersecurity Directive NIS2, which became effective in 2023, updates
the previous NIS Directive introduced in 2016, adding new cybersecurity obligations for
essential and important critical infrastructure operators including, e.g., the operators of
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renewable power plants and electric vehicle charging infrastructures. Specifically, Arti-
cle 21 of the NIS2 Directive states that “Member States shall ensure that essential and
important entities take appropriate and proportionate technical, operational and organi-
sational measures to manage the risks posed to the security of network and information
systems [. . . ] When assessing the proportionality of those measures, due account shall be
taken of the degree of the entity’s exposure to risks, the entity’s size and the likelihood of
occurrence of incidents and their severity, including their societal and economic impact”.
Each member state shall implement the NIS2 Directive by means of a series of national
legislative acts. To comply with sector-specific and cybersecurity legislations, some national
norms of the energy sector already include cybersecurity obligations based on international
standards, e.g., the Norms CEI 0-16 [1] (high- and medium-voltage SGU connection rules)
and CEI 0-21 [2] (low-voltage SGU connection rules). One of the reference standards in the
Norm CEI 0-16 is the ISA/IEC 62443 [3] that addresses the support to incident management
with the foundational requirement FR 6 “Timely response to events”, a specific focus in
our work.

In this obligation framework, tools are needed to help the cybersecurity analyst in
facing the cybersecurity threats in a more informed way: indeed, automatic tools may
help specialized personnel in the assessment of the potential risks and the evaluation of
the appropriate countermeasures. Since cyberattacks progress through various steps of a
cyber kill chain, the main objective is to enable the early detection of threats in order to
discover adversarial activity in its first phases and possibly enact mitigation actions, to
prevent any damage to the assets and any degradation of functionality. For this reason, we
have developed a modular platform whose aim is to offer methodological and practical
support to the cybersecurity analysts in evaluating the risk, both in the design phase, when
the countermeasures placement is planned, but also in the monitoring phase, when the
system is up and running, for a model based on early detection of ongoing attack processes.
In this paper, we present SecuriDN, which is one component of such a platform.

SecuriDN includes a Graphical User Interface (GUI) and a few solvers. The GUI allows
us to describe the configuration of the system under study and the possible attacks that
may be directed towards the various assets; the solvers automatically derive a global
attack graph (AG) and a Dynamic Bayesian Network (DBN) from such a description. The
latter can then be exploited for a what-if analysis of possible attack scenarios and for
online monitoring.

This paper is an extended and enriched version of [4]. With respect to [4], more details
are provided here on the SecuriDN tool, and a realistic case study (of limited size for space
limit reasons) is presented, considering the connection and the associated information
exchanges of Distributed Energy Resources (DERs) to the power grid. The case study
allows us to explain the features of SecuriDN and give a flavor of the whole process, from
the design of the system structure, the modeling of its vulnerabilities and of the attack
processes that may exploit it, to the evaluation of the potential risks.

Let us briefly describe the typical security assessment process exploiting our platform:
the security analyst uses the SecuriDN GUI to input a representation of the data networks,
with their hardware and software assets, and the communication channels connecting them.
Such components come from a predefined and customisable library, and embed relevant
information on the possible attacks that may be directed to each of them, as well as the way
an attack process may propagate within the network. The GUI allows the analysts to switch
between the system architecture level and the attack model level, enabling them to edit
both the external and internal topology. Once the architecture and local attack descriptions
are complete, SecuriDN generates a global AG and a corresponding DBN, which can
then be used to compute the probability that a specific target is or will be compromised.
The DBN can be used both to perform offline what-if analysis (e.g., comparing different
configurations of the countermeasures, or different probabilistic characterizations of the
attack steps) or as an online AI-based detection model when integrated in the framework’s
testbed for Intrusion Detection experimentation. Observe that the manual generation of the
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AG and of the DBN would be time-consuming and error-prone, and hence its automatic
production through SecuriDN is valuable support to the work of the security analyst.

SecuriDN is a prototype developed on top of DrawNET and the DNlib, and leverages
the ability of DrawNET v. 3.7 to deal with multiple user-defined graph-based formalisms.
Moreover, for the specification of the possible attack steps and their composition, Meta-
Attack Language (MAL) [5] has been considered and adapted.

The SecuriDN tool, which is the focus of this paper, is part of a comprehensive
platform [6] designed to create a flexible detection system for adversarial activities. It
operates on the cybersecurity analyst’s workstation, allowing the development of new
models to analyze evidence of attack steps. These models are deployed as detection
modules within the platform. Evidence gathered from the monitored network is filtered in
real time through an OpenSearch database pipeline and delivered to the detection modules
via a communication channel based on a producer–consumer model. This setup allows
multiple detection modules to coexist and collaborate simultaneously. The analysis results
from these modules are then displayed to the analyst through the OpenSearch Dashboard,
facilitating the detection of adversarial activity as it occurs. The platform can also be used
as a testbed for the validation of detection models thanks to an emulated network and
attacker. We have taken advantage of this functionality for our experiments in Section 6.

The paper is organised as follows: in Section 2, the related work is discussed; in
Section 3, the relevant background on both the application domain and the adopted models
is introduced; in Section 4, the platform including SecuriDN is briefly introduced; in
Section 5, the structure and features of SecuriDN are described; and, in Section 6, the case
study is presented, modeled through SecuriDN and analyzed by the DBN solver.

2. Related Work

In the last decade, we have witnessed the digital evolution of energy systems, making
them more connected, smart, resilient and efficient. This transformation has had an impact
on the entire energy supply chain from bulk generation, transmission and distribution
to local generation and consumption. It requires new functionalities and infrastructures,
and this poses new challenges in terms of Information and Communication Technologies
(ICTs) and cybersecurity. New paradigms as virtualization and containerization represent
solutions to reduce costs and make component maintenance and updates easier by means of
resources traditionally tied to specific hardware. In energy control, the virtual power plant
concept and ICT virtualisation techniques allow us to monitor and control an increasing
number of DERs [7–9]. To create a higher level of abstraction and achieve optimal control
and coordination among a wide variety of components, a unified view of this diverse
setting is proposed. As noted in [9], to really implement such a solution, the use of
virtualization and containerization techniques is useful to ensure the necessary hardware
independence and facilitate the automated deployment throughout the entire infrastructure.
This emerging trend requires us to address also attack techniques exploiting vulnerabilities
exposed by, for instance, Docker [10] containerization technology (see Section 6.3 for
further details).

Among the noteworthy security assessment frameworks, ADVISE (ADversary VIew
Security Evaluation) [11,12] allows us to design an Attack Execution Graph (AEG), taking into
account the possible attack goals and the attack steps to reach them, as well as the capabilities
in terms of the access, skills and knowledge required for the attacker to attempt an attack step
in the graph. Given the characteristics of specific adversaries, including also their propensity
to incur costs, to spend time and to accept the risk of being detected, a State LookAhead Tree
(SLAT) is generated, and simulation is used to explore the paths that the attacker may pursue
to gather measures that provide a quantitative assessment of the possible consequences of
adversarial activities. An interesting extension of this formalism is the Advise Meta Modeling
Framework [13,14], a higher level structure that facilitates the creation of ADVISE models,
starting from Meta-Model definitions that include templates and structures for defining the
various elements within a security model (e.g., assets, attack steps and defenses). While
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ADVISE, compared with our solution, offers a more extensive attacker characterization with
the possibility to modify its behavior based on some predefined parameters, it does not
provide a library of ready-to-use components (e.g., assets or attack steps) to facilitate the
model design, which has to be performed from scratch for every specific use case.

Another important solution in the panorama of security assessment models is Securi-
CAD [15]. This tool, developed by Foreseeti (a KTH Royal Institute of Technology spin-off
company that has recently been acquired by Google and whose functionality is going to be
included in Google Cloud Security Command Center [16]), allows us to integrate a model
of the ICT (and OT) infrastructure and a description of possible attack steps targeting the
assets of such an infrastructure. Starting from the MAL [5] specification, a domain-specific
language can be defined. It can be used to describe the possible attack steps, the possible
countermeasures and the way attacks can propagate in the infrastructure towards a given
goal. A specific scenario can then be built, and from it an AG is automatically derived;
finally, the critical attack paths are calculated, allowing us to evaluate the security posture
of the system. In our platform, we adopted a MAL-derived approach for the architecture
specification but, as a distinction, we integrated real-world analytics to evaluate how the
attacks evolve over time (see Section 6.2 for further details).

In the context of AG generation, MulVAL [17] is a framework for conducting multi-host
security analysis to assess potentially multi-stage cyberattacks. It is based on the Datalog
programming language (a reduced version of Prolog), and can automatically generate a
list of vulnerabilities present on each analyzed host. Aggregating this information with
additional knowledge such as network configuration, user accounts on each host, the
interdependencies between different vulnerabilities and the access policies permitted for
each user, MulVAL can produce a complete AG of the examined infrastructure. While
vulnerability identification is performed automatically through an extended version of the
Open Vulnerability Assessment Language scanner, the remaining parts that are mandatory
to perform the analysis must be defined by the security analyst using the Datalog language.
This process can be nonintuitive and potentially prone to errors. In contrast, in SecuriDN,
despite the possibly lower expressive power of the adopted formalism, the definition
of assets within the architecture and their associations can be carried out by the analyst
through the user interface, making it more accessible to non-expert users. Additionally,
SecuriDN can generate a security assessment model capable of answering probabilistic
queries based on the provided input evidence.

While SecuriDN is primarily focused on supporting security assessment tasks to
determine the likelihood of a set of the attack steps leading to a potential power system
instability, both references [18,19] are more focused on assessing the impact of cyberattacks
on power flow stability, thus enabling risk assessment. Their effort to characterize attack
interactions and their probabilities are less detailed and articulated compared with our
approach, making our studies complementary in this regard.

In [18], a risk assessment framework for evaluating vulnerabilities and risks associated
with cyber–physical systems in distribution grids was proposed. The solution introduces a
DER model composed of three layers: the control layer, the physical system layer and the
communication system layer. The control layer employs algorithms like Optimal Power
Flow (OPF) and load-sharing control tailored to specific operational objectives. In the threat
identification step, potential vulnerabilities are identified through the National Vulnerability
Database (NVD) and the most common ones are modeled using analytical methods. In the
final step, impact quantification is performed by combining the likelihood of an attack with
its potential impact, measured in terms of financial repercussions and system stability. The
effectiveness of the framework was validated using simulations on modified IEEE 13-node
and 123-node test feeders, demonstrating its effectiveness in identifying vulnerabilities
and assessing risks in distribution grids integrating DER. While this framework focuses on
system responses to various attack scenarios separately, SecuriDN is a tool designed to sup-
port multi-stage cyberattack security assessment, allowing for the modeling of potentially
more complex interdependencies within the cyber kill chain. Although their solution uses
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Bayesian Networks (BNs) to compute the probabilities of attack success for each vulnerable
node, it does not consider their temporal evolution like the DBNs generated by SecuriDN do.

In [19], a dynamic risk assessment model for Cyber Physical Power Systems (CPPSs)
is proposed, focusing on assessing the network security vulnerabilities of SCADA systems
in substations, as well as the physical consequences these vulnerabilities could have under
malicious control. A key feature of the framework is the computation of the probability of
successful exploitation for each vulnerability based on characteristics extracted from the
Common Vulnerability Scoring System (CVSS), additional temporal information related to
the disclosure time and an attribute characterizing the attacker’s skills. Based on this pre-
computed information, a Probabilistic Attribute attacking-path Graph is defined and the
maximum likelihood path from the starting exploited vulnerability to the target attacker’s
goal is determined. The model also estimates the physical consequences of the cyberattack
by calculating the minimum load shedding in N-1 contingencies, simulating the impact of
a successful attack on the SCADA system that could lead to the tripping of transmission
lines and generators, resulting in cascading failures and load shedding in the power
system. Compared with this solution, SecuriDN uses a MAL-derived AG formalism that
can represent more complex interdependencies between attack steps within the modeled
infrastructure. While this framework in [19] considers only the best path leading the attacker
to its predefined goal based on the pre-computed attach step probabilities, SecuriDN
evaluates all the possible attack paths from the initial node to the target node, computing
the probability of successful exploitation over time based on the estimated completion
times and the interdependencies between attack steps.

CyberSAGE [20,21] is a tool that supports model-based evaluation of the security pos-
ture of an organization, providing the means for automating several tasks and decreasing
the modeling effort required by the user (providing ready-to-use templates and libraries).
It produces a Security Argument Graph combining a mal-activity scenario (a description of
the attack workflow based on a subset of UML activity diagram elements), a system de-
scription (describing the network of system components, with properties and implemented
defenses) and the adversary profile. A set of rules describes the logical relationships among
these three levels, and a rule engine generates the Security Argument Graph. An algorithm
computes the success probability of each attack step, and then of the whole attack workflow.
The rules are an important part of the model description: reusable extension templates are
defined to facilitate the user in preparing the necessary rule set. Similarly to our framework,
this tool is capable of calculating completion probabilities of each attack step; however,
it does not perform a time-dependent estimation, taking also into account the evidence,
while our platform can provide this estimation thanks to the use of DBNs combined with
security analytics.

As stated in [22,23], the need for effective dynamic risk assessment tools has led
researchers to explore the use of BNs, where the possibility to easily modify prior failure
probabilities and obtain updated results in real time can be a useful feature in the context
of developing reactive solutions deployable in diverse environments. However, almost
all the mentioned security assessment approaches do not derive the BN starting from
a high-level model, more familiar to the security analyst, as we do with the algorithm
detailed in Section 5.2.3. Instead, they are built from scratch for each specific use case.
Additionally, none of these works explore the possibilities offered by DBNs, which, through
the introduction of temporal dependencies [24], support the early detection and the fast
counteraction to attacks in the online detection platform (see Section 3.5 for further details).

The approach described in [25], known as DETECT, focuses on an actual Intrusion
Detection System (IDS), which is related to our proposal because it employs BNs derived
from Attack Trees to identify evolving attacks. Events are collected and monitored within a
specified time frame, and these observations are used to update the BN parameters. After
each event-driven update, the model is resolved, potentially triggering an attack warning
or alarm. Similarly, in our case, DBNs derived from AGs can be utilized for the online
detection of cyberattacks.
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In summary, the main novelty of our proposal is a tool that enables the security
analyst to automatically produce a detection model from a user-defined graphical rep-
resentation of the assets and their potential vulnerabilities: currently the SecuriDN tool
allows us to draw such representation through a domain-specific and fairly intuitive GUI.
This is part of a comprehensive detection platform that receives data analytics from the
energy infrastructure.

3. Background

In this section, some definitions and key concepts are introduced, which are needed as
a background knowledge basis for the next sections.

3.1. Industrial Control Systems and IT/OT Convergence

In Industrial Control Systems (ICSs), Operational Technology (OT) networks are the
areas where programmable systems or devices interact with the physical environment. The
digitisation of ICSs and, in particular, of the energy sectors comes through the integration
of Information Technology (IT) systems with the OT ones. IT/OT convergence offers
several benefits in terms of system availability and stability, and remote monitoring and
control. Cybersecurity is an important challenge for an effective IT/OT convergence where
emerging paradigms need to interact with legacy components. In this new landscape,
different areas have to communicate and interact, each of them with different objectives
and requirements in terms of performance and cybersecurity. Corporate networks can be
indirectly connected with OT areas.

The reference architecture of the case study considered in this paper is inspired by the
architecture of Figure 1. Although a more structured architecture with several protection
layers between the corporate and the OT networks is typically implemented, we chose a
simpler architecture for a more manageable but still realistic example. To move from the
corporate network to the OT network, potential attackers will need to traverse a single
DMZ (more levels of protection would require more lateral movements, exploiting different
vulnerabilities), or even, as the 2015 and 2016 attacks to Ukraine grids show [26,27], often
attackers manage to obtain user credentials to progress through networks. In this paper, we
refer a simplified, but realistic, use case where the included components and configurations
are taken from knowledge of the real energy networks and occurred attacks.

Figure 1. General ICS reference architecture [28].
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3.2. IEC 61850

To address interoperability in CPPSs, several standards have been developed by inter-
national committees. The IEC 61850 [29] standard is increasingly used for the monitoring
and control of distributed energy resources. This standard is structured in several parts,
specifying both the underlying data model for the representation of energy entities and
the communication protocols that can be used for exchanging those data. In particular, the
Manufacturing Message Specification (MMS) protocol is used in substation–DER communi-
cations for the monitoring and control of DERs. The IEC 62351 standard series [30] specifies
protocol-level security measures to protect the telecontrol communications based on pro-
tocols such as MMS. According to IEC 62351, secure MMS operates over Transport Layer
Security (TLS), thus reducing the risk of cyberattacks such as Adversary-In-The-Middle
(AITM) but not susceptibility to Distributed Denial of Service (DDoS) attacks.

3.3. MITRE ATT&CK Framework

To maintain a uniform terminology with the existing research and leverage the current
knowledge about real-world cyberattacks, we chose to adopt the MITRE ATT&CK frame-
work [31]. This comprehensive and constantly evolving repository about adversary tactics
and techniques is widely used by researchers and organizations to systematically categorize,
analyze and mitigate cyber threats. In our specific use case, this framework serves as an
ontology that underpins the definitions of the attack steps included in our models. Some of
these techniques are taken from the Enterprise Matrix [32], the most commonly used source
focusing on attack methodologies related to desktop and cloud environments, and some
are extracted from the ICS matrix [33], a specialized attack knowledge base for Industrial
Control Systems, whose components are widely adopted in critical infrastructures.

The MITRE ATT&CK project is complemented by the MITRE Cyber Analytics Reposi-
tory (CAR) [34], a knowledge base of analytics. It is compiled starting from the techniques
of the ATT&CK matrix: for each technique, the data necessary to detect the adversarial step
are identified and an appropriate sensor is implemented.

3.4. Attack Graphs

AGs are directed graphs used to describe attack processes as sequences of steps
from an initial condition to a target goal, or more generally from multiple initial states
to multiple goals. In particular, each path in the graph from an initial state to a goal is a
possible successful attack process.

Many variations of AGs have been used in the literature. SecuriDN works with AGs
whose nodes are attack steps, countermeasures or analytics. In particular, the attack steps
are techniques from the MITRE ATT&CK framework and the analytics are inspired from
MITRE CAR (for more details, see Section 6.2).

A directed edge from technique A to technique B defines a precondition: in order to be
able to carry out technique B, the attack step A must have been successful. A directed edge
from a technique to an analytic implies that the analytic is triggered by the exploitation of
the technique. A directed edge from a countermeasure to a technique indicates that the
countermeasure hinders the attack’s success. See Section 5.2.2 for further details.

3.5. (Dynamic) Bayesian Networks

BNs are the most adopted formalism in the area of predictive and causal inference.
In recent years, they have been proven to be a valuable tool for addressing security prob-
lems [35,36], especially related to cyberattack explainability and evidence correlation. A
BN can be defined as a pair N = ⟨⟨V, E⟩, P⟩, where ⟨V, E⟩ are variable nodes and edges
of a Directed Acyclic Graph (DAG), respectively, and P is a probability distribution over
V. To each node of the network V = {X1, . . . , Xn}, a Random Variable (RV) is assigned
so that a probabilistic relationship can be specified between them (if an edge e ∈ E exists
between the nodes Xi and Xj, it means that Xi directly influences Xj). In the specific case of
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discrete RVs, each local distribution can be specified in a tabular form (a column for each
combination of states of the parent variables) called a Conditional Probability Table (CPT).

To represent more complex time-dependent interactions, DBNs [37,38] introduce an
explicit temporal dimension so that the model is composed of multiple time slices. In our
specific use case, we chose 2-time-slice Temporal Bayesian Networks (2TBNs), where the
set of nodes {X1, . . . , Xn} is replicated over two consecutive time slices, t and t′. With these
premises, it is possible to define intra-slice edges (e.g., an edge from a node Xt

i to a node Xt
j ,

with i ̸= j) or inter-slice edges (e.g., an edge from a node Xt
i to a node Xt′

j , where i can be

equal to j). Notice that DBNs are a discrete time model and we need to use them to model a
continuous time reality. We will discuss this in Section 3.5.1 and later at the beginning of
Section 6.6.

Compared with the classic BNs, where only predictive and diagnostic inference can
be performed on a single static snapshot of the model, with DBNs it is possible to execute
more diverse inference tasks depending on the placement of unobserved variables (e.g.,
associated to specific attack steps) and observed variables (e.g., representing security alarms
that could be raised in a vulnerable system) within the timeline.

The possible inference tasks are:

• Filtering: computing the probability of an outcome at time t (now) given the evidence
available from time 0 up to the current time slice. From a security perspective, this
strategy can be used to monitor the current state of a potential cyberattack based on
the collected information.

• Prediction: computing the probability of a future outcome at time t + h (where h > 0)
given the evidence available up to the current time slice t. This inference task could
be useful for predicting a future state of a cyberattack based on currently known
information.

• Smoothing: computing the probability of a past outcome at time t − l (where l > 0)
given the available evidence up to time slice t. This kind of inference task could be
useful for answering queries about the preconditions of a specific attack step.

Another intriguing aspect of DBNs is that both structure and CPT parameters can be
learned from time-series data or security logs, such as the ones generated by online systems.
This can be achieved by using Expectation Maximization and other algorithms, such as the
one presented in [39], and allows semi-automatic model generation and parameterization
without restarting the model design from scratch. In this paper, the DBN is derived
from the AG modeling the combinations of attack techniques compromising the system
(Section 5.2.4), so we do not need the methodologies mentioned above.

3.5.1. Inference Algorithms

An exact algorithm for DBN inference is 1.5JT [37], which converts the DBN into
a Junction Tree (JT): the DBN variables are grouped into clusters, which become the JT
nodes [40]. Then the inference is actually performed on the JT. The following aspects rule
the computing effort for the execution of 1.5JT.

• Variable distribution in clusters: the higher the quantity of variables inside every
cluster is, the higher is the computing effort. This holds in particular for the interface
variables, i.e., all the nodes having inter-slice connections, because they influence the
variables in the next time step.

• Query time: due to the discrete time assumption, the inference requires the model to
be evaluated at every time step until reaching the query time.

• Time discretization step (∆): the choice of ∆ is crucial for the quality of the approxima-
tion, but at a cost.

– A small value of ∆ increases the number of time steps and the computing time as
a consequence, but the continuous time model is better approximated.

– A large value of ∆ accelerates the inference process, but the consequence is a less
accurate model.
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The Boyen–Koller algorithm (BK) [41] can be considered the approximate version of
1.5JT. BK is still based on JT, but the clusters are defined by the user, with a consequent de-
gree of result approximation depending on how the variables are distributed in the clusters.
There are two special cases: (1) the interface variables are concentrated in one cluster, so BK
is equivalent to 1.5JT (exact BK), with no approximation; and (2) each interface variable is
inside a different cluster (fully factorized BK), leading to the maximum approximation.

Other approximate algorithms, such as likelihood weighting [42] and particle filtering [43],
exploit stochastic simulation.

We exploit 1.5JT for the experiments presented in Section 6.6 because exact inference
can be performed in a reasonable time on the model under study for the chosen value of ∆.

4. SecuriDN and the Online Platform

Within our framework, various components cooperate to achieve the goal of providing
a comprehensive attack emulation and detection platform in order to allow the security
analyst to perform security assessment tasks on a specific online architecture. In the
following part of this section, we will briefly analyze the components of the platform.

At the core of our platform there is the capability of performing an automatic dis-
tributed deployment of the components specified in the architecture, thanks to the Docker
Swarm mode [44]. This specific functionality allows the management of multiple Docker
Engines running on different machines, with the benefit of being able to seamlessly recon-
figure the entire architecture based on the requirements of the security analyst.

To execute the attack steps and verify the robustness of the online infrastructure,
an emulated attacker has been developed. Its functionalities are mainly based on the
Metasploit [45] tool, which, thanks to its ready-to-use library of modules and payloads,
really facilitates the exploitation of a wide variety of real-world vulnerabilities. In addition
to the already existing attacks, we have also implemented more power-specific steps. The
emulated attacker is capable of autonomously performing the prescribed attack process up
to its predefined goal (we will see in Section 5 how the goal is defined).

The attacker’s activity is detected through various monitoring tools such as the Linux
Audit [46] framework, together with the auditd module of Auditbeat [47]. These tools are
able to perform integrity checks on critical files (e.g., modifications within the .ssh folder)
or highlight suspicious system activities, such as the ones presented in Section 6.2. The
data collected by the monitoring system are stored in the OpenSearch [48] database, where
analytics and filtering functionalities are implemented so that an alarm is raised when
specific events take place or certain thresholds are exceeded. Such alarms are conveyed
through a Kafka [49] broker to feed the detection models. The example described in this
paper shows the use of DBNs in modeling the conditional dependencies between certain
alerts and their associated attack steps (see Section 6 for further details on this aspect).

5. SecuriDN

5.1. DrawNET Modeling System

The DrawNET Modeling System (DMS) [50] is a customizable framework for design-
ing and solving models expressed in any graph-based formalism. Its open architecture
allows us to manage new formalisms or existing ones through an XML-based language
family; then, models expressed through such formalisms can be built by DrawNET, the
model editor. It is interesting that additions do not require recompiling the DMS source
code. Examples of applications of DMS in the past are formalisms such as Petri Nets,
Bayesian Networks and Fault Trees, all with the corresponding solvers [51,52].

DMS is written in Java and is based on the DNlib library. In the following, we detail
the main levels of DMS’s architecture (see Figure 2).
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Figure 2. DMS general architecture.

5.1.1. Formalism Level

All the primitives to design a model are specified at the formalism level. To define a
formalism, it is necessary to specify the tuple F = {E, P, C, S, H, TP}, where E is the set
of elements; P is the set of properties; C is the set of constraints; S is the structure function
that associates elements to properties and inner elements; H is the inheritance function that
specifies property inheritance for elements from specific (abstract) elements; and TP is the
property typing function that sets the type of each property.

Elements are the possible nodes and arcs in the model, and properties are their
attributes. Elements also have graphical properties (shape, size, color, etc.). Properties
are typed: integer, float, string, Boolean, etc. Logical propositions, constraints, describe
consistency relations that must be satisfied by elements of a model. Finally, an element
may contain inner elements in order to organize the model as a hierarchy of elements at
different levels of depth.

Elements along with their properties (including the graphical ones) are saved to
XML files.

5.1.2. Model Level

At the model level, the primitives defined at the formalism level are used to specify a
model as a tuple M = {F, I, m0, T, V, L}. Here, F is the formalism; I is the set of element
instances, with every i ∈ I representing an instance of an element of F; m0 ∈ I is the main
element containing the elements of the main model, which in turn contain the elements
of the submodels, in a recursive way according to the element hierarchy established in
F; T is the element typing function that associates i ∈ I with a (non-abstract) formalism
element to which i corresponds; and the assignment function, V, specifies the property
values, i.e., V(i, p) is the value of property p of instance i ∈ I.

On DrawNET’s GUI, a user selects one of the available formalisms, and the system
loads its definition from the XML files, so the user can design models conforming to that
formalism (Figure 2). The model is saved to an XML file.

5.1.3. Solver Level

At the solver level, any elaboration of the model can be carried out: conversion, analysis,
simulation, etc. The user defines the results to compute on any model. When the solver is
executed, the results can be shown by DrawNET at the end of the model solution (Figure 2).

5.2. The SecuriDN Tool

We implemented a prototype of the tool called SecuriDN, which allows us to define
the architecture of an IT/OT system, the attacks to which the system is possibly vulnerable,
and the parameters that characterize the various attack steps. Given these definitions, the
tool generates models that allow us to analyze the behavior of the system. The implemen-
tation of SecuriDN is based on the DMS that provides the GUI and the library DNlib for
model construction and manipulation. In particular, SecuriDN is based on the following
formalisms and corresponding models.

5.2.1. Architecture Graph

The Architecture Graph (ArchG) consists of a set of assets (nodes) and associations
(edges) between assets. As a first step, the user defines the ArchG. The assets currently
foreseen in the formalism represent the main possible targets of an attack: computers,
networks, applications, channels, etc. The assets are connected by arcs whose graphic style
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indicates the associations (connect, execute, communicate, attack, etc.), which represent
potential means of attack propagation across assets. The constraints in the formalism rule
the types of asset involved in a specific association. For example, a connect association can
be set between a network asset and a computer asset. The other associations are presented in
Section 6.5.1.

In addition to assets, the architecture contains two special nodes: attacker and goal.
The attacker node is connected (through an attack association) to the asset where the attack
begins, specifying the initial technique in a property of the node. In a similar way, the goal
node is connected to the asset that is the final target of the attack, and has a property to
indicate the technique to compromise the asset and the system as a consequence.

5.2.2. Local Attack Graph

The local attack graph (lAG) is a DAG that shows the attack processes that could be
carried out against the asset, built as chains of MITRE ATT&CK techniques. For each asset,
a lAG is defined by the user, modeling these combinations. The lAG can contain these
types of nodes:

• An internal technique (represented by a simple circle) is a technique that takes place
within the asset modeled by the lAG.

• An external technique (double circle) is a technique affecting another asset, but is
enabled by one or more techniques taking place in the local asset. The external
technique has a property specifying the path in the ArchG, going from the local asset
to the assets where the external technique takes place. The path is expressed as a
sequence of association types corresponding to the edges to be traversed in order to
reach such assets.

• A logical operator (AND, OR) expresses the combination of two or more techniques.
• A defense (graphically represented by shield) represents a countermeasure, such as a

firewall or an antivirus, able to mitigate or even inhibit an internal technique to which
it is connected.

• An analytic (graphically represented by a notepad) represents an event that may be a
clue about the exploitation of one or more techniques.

According to the constraints in the formalism, an oriented arc can go:

• From an internal technique to another technique (internal or external) to indicate that
the first technique enables the second one;

• From an internal technique to a logical operator to indicate that the technique is
combined with other ones;

• From a logical operator to a technique to indicate that a technique (internal or external)
is enabled by a combination of internal techniques;

• From a defense to an internal technique to indicate that the defense mitigates the
technique;

• From an internal technique to an analytic to indicate that the execution of the technique
determines the production of the analytic.

5.2.3. Global Attack Graph

The global attack graph (gAG) is automatically obtained by running a solver that
combines the lAGs of the individual assets present in the ArchG.

The generation process is accomplished through the following steps:

• Union of lAGs: a raw gAG is initially created as the union of the lAGs of all the assets
in the architecture.
The cost of this operation is linear in the total number of nodes (Nl) and edges (Ml) of
all lAGs, since it just requires copies: O(Nl + Ml).

• Connection of lAGs: if an external technique corresponds to an internal technique,
and the corresponding assets are connected in the ArchG following the path associated
with the external technique, then the external technique and the internal technique
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are merged in one node in the gAG. If these conditions are not satisfied, then the
external technique is removed from the gAG. This is done for every external technique
in the gAG.
Each external technique, te, must be compared with each internal technique of an asset
reachable from it. To determine reachability, a visit is carried out that works at a hybrid
level, since it moves between the single components of the raw AGs (corresponding to
the original lAGs), traversing edges from the ArchG. Then, the worst case complexity
is O((Nl + Ml + Ma)Nl), where Ma is the number of edges of ArchG, and Nl and Ml

are the total number of nodes and edges of the lAGs: O(Nl + Ml + Ma) the cost of
the visit, since it amounts to visiting a graph with Nl nodes and Ml + Ma edges. The
factor Nl bounds above the number of external techniques, te.
Current annotations of nodes in the lAGs (properties) enable faster performance in the
typical architectural topology in the context of power system networks by constraining
the search, exploiting limits imposed by network specificities. The annotations that
are now manually added by the cybersecurity analyst will be derived automatically
by the tool in a forthcoming version. Notice in any case that the overall asymptotic
complexity is not affected by these heuristics.

• Identification of attacker and goal: in the ArchG, the attacker node is connected to
the asset where the attack begins, while the goal node is connected to the asset that is
the final target. The attacker node and the goal node have a property to specify the
initial technique and the final technique, respectively. The two nodes corresponding
to these two techniques are identified in the gAG.
The number of nodes of the raw gAG is Θ(Nl), with Nl the total number of nodes of
all the lAGs. Identifying attacker and goal nodes has a cost linear in Nl : O(Nl).

• Reduction: by visiting the gAG, all the paths from the initial technique to the final
technique are identified. All the nodes and the arcs belonging to such paths are
maintained, while all the other ones are eliminated from the gAG, thus obtaining the
final, simplified gAG.
The total number of edges of the raw gAG is Θ(Ml + Ma). The reduction requires a
complete visit of the raw gAG from the attacker’s node (the initial technique): the cost
is O(Nl + Ml + Ma).

5.2.4. Dynamic Bayesian Network

The gAG is then converted into a DBN with a compact representation where all
associated state variables are binary. Each node in the gAG (technique, logic operator,
defense and analytics) is translated to a DBN node, and each arc to a DBN arc.

In this way, not only is the dynamics of the whole attack described, as in the gAG, but
also the underlying stochastic attack process is modeled. Technique nodes are enriched
with a self-loop temporal arc to model the dependence of their state from the state at the
previous time instant.

The production of the DBN requires creating Nr + Mr DBN elements, where Nr is
the number of nodes and Mr is the number of edges in the (reduced) gAG, with a self-
loop for each internal technique, at most Nr self-loops. Notice that Nr = O(Nl) and
Mr = O(Ml + Ma), so the total cost can be expressed as O(Nl + Ml + Ma) in terms of the
ArchG and lAGs.

A successfully executed technique influences the activation of the connected analytic
to model the occurrence of an alarm. Through the CPT parameters, we configure the rates of
false positives and negatives of each analytic. On the other hand, a defense node connected
to a technique node influences the activation of the latter, reducing its probability of success
possibly to zero; this models the mitigation or inhibition effect of the defense measure.

CPT parameters can be manually or automatically set. In the former case, using the
GUI, the user can inspect each node of the gAG and compile the corresponding CPT. In
the latter, various alternatives are possible. One possibility is that the user specifies an
estimated mean Time to Compromise for each technique node of the gAG in the GUI, and
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from all these values the conditional probabilities of each node are automatically computed
(see Section 6.6). Another option is that such parameters are learned by measurements from
a real system or experimental testbed, or also extracted from synthetic simulation traces; in
this case, no further input is required from the SecuriDN user because the learning process
will be performed by external tools.

The DBN model is then used as a detection module of the monitoring and detection
platform. The module can return predictive or diagnostic results conditioned by the
evidence (observations) about the events occurring in the monitored system, collected
through the platform. Several examples of the types of results provided by the analysis of
the DBN can be found in [6].

6. Case Study

6.1. Case Study Architecture

Figure 3 shows the architecture we refer to. On the left, the figure depicts the network’s
hardware, and on the right we detail the relevant applications running on each host.

Figure 3. Case study architecture.

The networks, from the top, are the corporate network (IT), the DMZ and OT networks
at substation level, and at the bottom the remote Distributed Energy Resources. The DERs
are connected to the substation through an external network.

A DMZ separates the IT network from the OT one. The networks are pairwise
connected by routers that filter traffic.
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On the corporate network, we highlight a workstation that we define as the attack’s
starting point (see Section 6.5.1). On the DMZ, we assume, among others, two differ-
ent hosts.

On the Historian server, a historian database is running; the database is updated
from the OT network but it can be consulted from the IT network through a web interface
running on the same host. The web interface requires no authentication, as it is meant only
to view and not to modify data. Unfortunately, the web interface is poorly designed as no
data sanitization is enforced (see Section 6.3).

The second host on the DMZ, the certificate management server, runs a PKI application.
The service connects to the target hosts through HTTPS connections. To enable this, the
firewall running on Router2 allows HTTPS connections to the OT network.

In the OT network, we focus on a station computer that runs two containerized
services: a Tomcat web server implementing the local HMI for monitoring and control of
the power area of responsibility, and an MMS client that connects to field devices to request
measures and to issue commands.

In our case study, we assume two DERs in each of which a IED runs an MMS server
which connects to the client on the station computer with MMS over TLS.

6.2. Monitoring System

In this network, a monitoring system has been implemented. On each server in the
DMZ and OT networks, the following operations are monitored and reported:

• Shell execution (on a server, a shell should be executed only for maintenance, and
therefore any such event must be reported).

• Remote shell session (a remote shell session should be reported and the source IP of
the connection should be verified).

• Frequent failed login attempts (whenever a service allows remote access, a series of
failed login attempts must be reported).

• Execution of suspicious commands (commands such as file system mounts, creation
of new users and installation of new software, e.g., with apt-get, must be reported as
they are not everyday operations).

• Access to files containing credentials (access by a non-intended actor should be con-
sidered suspicious; for instance if a server’s private key is accessed by any other user).

• Integrity checks of critical directories (for instance, a directory containing the certifi-
cates of trusted CAs or the .ssh directories of privileged users, or of any user on
critical hosts).

Moreover, we assume that specific application level analytics are implemented on the
MMS traffic. In particular, the following are monitored:

• The coherence of the measures received from the field devices;
• The coherence of the commands issued by the SCADA system.

If the sequence of measures/commands exhibits significant deviations from the ex-
pected behavior, an alarm is raised.

Most of the monitoring we implemented is inspired by the MITRE CAR framework [34]
(see Section 3.3), with the significant difference that the analytics from CAR are mostly
implemented for Windows systems, whereas we work in a Linux environment. For instance,
monitoring of shell execution is inspired by analytic CAR-2014-04-003, monitoring of remote
shell session by CAR-2014-11-004, and so on. As we mentioned in Section 4, the analytics
we use are implemented using the Linux Audit framework, together with the auditd module
of Auditbeat.

The application level analytics constitute an exception: we designed them specifically
for the power system environment.
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6.3. Attacks Description

We consider that the attackers can use the following attack steps. We refer for each
attack to the ATT&CK matrix technique it implements and the tactic it realizes [32,33].
Notice that a single technique can be used for various tactics; in case of ambiguities, we
choose according to the objectives we intend our attackers to achieve.

Scanning IP blocks (Enterprise ATT&CK matrix—Tactic: Reconnaissance—Technique:
Active Scanning). The attackers gather information on IP addresses actually used by hosts
to start their attack.

Vulnerability scanning (Enterprise ATT&CK matrix—Tactic: Reconnaissance—Technique:
Active Scanning). The attackers test potential victims for vulnerabilities.

Private keys (Enterprise ATT&CK matrix—Tactic: Credential Access—Technique: Un-
secured Credentials). Attackers obtain a private key that is insecurely stored and the
corresponding certificate.

Installing a rogue CA (Enterprise ATT&CK matrix—Tactic: Credential Access—Technique:
Modify Authentication Process). Attackers install their own rogue CA among trusted CAs
of the victim.

Password guessing (Container ATT&CK matrix—Tactic: Credential Access—Technique:
Brute Force). Preconditions for this attack are a remote service with weak administrator cre-
dentials, in particular running in a container. The attackers try a set of common passwords
and obtain access as an administrator on the victim host.

SQL injection (ICS ATT&CK matrix—Tactic: Lateral Movement—Technique: Exploitation
of Remote Services). Precondition for this attack is that on the victim machine a vulnerable
web application is running, which accesses an SQL database based on user input. The
attack step exploits the fact that the web application accepts user input without sanitizing
it. The attack has a high impact if the database runs as a SYSTEM user, with full privileges.
In our scenario, attackers use an SQL injection to run system commands as the SQL user.

Unix shell (ICS ATT&CK matrix—Tactic: Execution—Technique: Command Line Interface).
Precondition for this attack is that the attackers have user access on the target host. They
obtain a shell on the host.

Remote SSH connection (Enterprise ATT&CK matrix—Tactic: Command and Control—
Technique: Remote Access Software) Precondition for this attack is that the attackers have
obtained a user’s SSH private key on the remote target host or installed their own public
key. They open an SSH connection to the host.

Docker escape (Container ATT&CK matrix—Tactic: Privilege Escalation—Technique: Es-
cape to Host). This attack exploits the CVE-2019-14271 [53,54] vulnerability of Docker
v.19.03.0. Preconditions are that the attackers have control of a container with root privi-
leges. In this case, they can modify a system library file in the container to a malicious one,
and, when an unaware user copies a file from the machine to the compromised container,
the attackers gain access to the whole host with root privileges.

SSH Authorized Keys (Enterprise ATT&CK matrix—Tactic: Persistence—Technique: Ac-
count Manipulation). An attacker that has obtained a shell as user U on a host that runs
SSH installs its own SSH public key to obtain easy future access to the host with the same
privileges already obtained.

Adversary in the middle, on a TLS secured channel (ICS ATT&CK matrix—Tactic:
Collection—Technique: Adversary-in-the-Middle). Preconditions are that the attackers
have full control of the victim host, have hold of the client’s (resp. server’s) private key and
have installed their rogue CA on the client (resp. on the server). Alternatively, they may
have hold of both the client’s and server’s private keys or have installed their rogue CA on
both the client and the server. On the attackers’ host, malicious software handles the traffic.
The attackers first take advantage of the iptables service running on the host to hijack traffic



Energies 2024, 17, 3882 16 of 30

to/from specific IPs or ports. Then they send a RESET to terminate a possibly running
connection, and then, when the client starts a new connection, mount an adversary in the
middle attack, using SSLsplit [55]. When the client contacts the server to establish a new
communication, the attackers’ malware will, e.g., impersonate the server at the client using
a fake certificate signed by the attackers’ CA, and it will impersonate the client at the server
using the stolen client private key and certificate. (In case the preconditions are different,
according to the various options listed above, impersonation will work differently).

Reporting message/command injection (ICS ATT&CK matrix—Tactic: Impair Process
Control—Technique: Spoof Reporting Message/Unauthorized Command Message). We
specifically consider injecting packets in an MMS over TLS channel. Preconditions are that
the attackers can mount an adversary in the middle attack over TLS. Then, the attackers’
malicious software that handles the hijacked traffic is a package that either injects unautho-
rized commands for the server or spoofs measure-reporting messages from the server to the
client. The consequence sought by the attackers is a DER failure. In the case of a command
injection, the server will relate the command to the IED, which will operate according to
the attackers’ instructions, causing a failure of the DER. In the case of a reporting message
injection, the aim is to cause the client to have an altered view of the system’s state and to
react in a way that is appropriate for the view but not to the real system state, thus again
causing the DER’s failure.

6.4. Monitoring System and Attacks

We discuss here which of the listed attack steps can be exposed by the implemented
monitoring system. Table 1 summarizes the picture. Most entries in the table need no
comment but some do. In particular,

• The escapeHost implementation we consider (Docker escape) requires that the attackers
modify a specific system library file; this operation would be detected monitoring the
integrity of critical directories;

• The same Docker escape implementation requires a mount operation, and therefore
the analytic “execution of suspicious commands” would raise an alert in case this
attack step were attempted by attackers;

• Application level coherence monitoring on reporting messages and commands could
expose measure and command injection, unless the attackers are very careful to make
slow changes that raise no suspicions;

• An integrity check on the directory in which the iptables data are stored would expose
any changes to iptables’ configuration;

• We assume for the sake of the case study that no monitoring to detect suspicious traffic
related to scanning is implemented.

Table 1. Attacks and analytics.

Attack Steps (Abbreviations) Analytics (Abbreviations)

Scanning IP blocks (scanIP)
Vulnerability scanning (scanVuln)

Private keys unsecCred
access to files containing
credentials

(FILEACCESS)

Installing a rogue CA (modAuthProc)
integrity checks of critical
directories

(INTEGRITY)

Password guessing (bruteForce)
frequent failed login
attempts

(LOGINFREQUENCY)

SQL injection (rmtSrvc)
Unix shell (shell) shell execution (SHELLEXECUTION)
Remote SSH connection (rmtSrvc) remote shell session (RMTSHELLSESSION)

Docker escape (escapeHost)
execution of suspicious
commands

(SUSPICIOUSCMD)
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Table 1. Cont.

Attack Steps (Abbreviations) Analytics (Abbreviations)

SSH Authorized Keys (SSHkey)
integrity checks of critical
directories

(INTEGRITY)

Adversary in the middle,
on a TLS-secured channel

(AITM)

Reporting message
injection

(spoofRepMsg) coherence of measures (MEASCOHER)

Command injection
(unauthCmdMsg)

coherence of
commands

(CMDCOHER)

6.5. Modeled Scenario

We have built in SecuriDN the architecture of Figure 3. The lAGs of the various assets
describe the attacks we take into account for our case study (Section 6.3), together with the
analytics from our monitoring system (Section 6.2) and their relationships (Section 6.4).

6.5.1. Architecture Graph

Figure 4 shows the GUI of SecuriDN, where we can notice the drawing area and the
panels to select nodes and edges.

Figure 4. SecuriDN’s GUI, showing the ArchG graph of our case study. Notice the drawing area to

the left and the panels to select nodes and edges to the right.

In particular, in Figure 4 we can see the ArchG of the case study. Different icons are
used to draw different types of assets, to make the graph more intuitive. In particular,
we have

• Several computers (workstation, routers R1, R2, R3, historian server, station computer);
• Several networks (IT, DMZ, OT, WAN);
• One execution environment (virtual engine);
• Several applications (historian, Tomcat web server, MMS client, MMS server 1, MMS

server 2);
• Two channels (MMS TLS 1, MMS TLS 2);
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• Two IEDs (IED 1, IED 2).

In the ArchG formalism, other types of asset are available, as shown in the panel on
the right, in Figure 4. In addition to the nodes corresponding to assets, we have the nodes
that specify the adversarial setting the security analyst wants to analyze:

• The attacker node specifies, for the analysis, the asset that is assumed to be initially
compromised (compromise)—in our case study, it is a corporate work station, but it
could be external to the network;

• The goal node is the asset the security analyst wants to focus on; possible compromise
of this asset will be central in the analysis carried out by the model—in our case study
the goal is set as one of the DERs, DERfailure in IED 1.

The edges have different colors and labels in order to identify the possible associations
between assets:

• Connect (red) is the association between a computer and a network. For example,
between workstation and R1.

• Execute (green) is the association between a computer and an application, between a
computer and an execution environment, or between an execution environment and
an application. Examples are the associations between the historian and historian
server, between the station computer and virtual engine, and between the virtual
engine and Tomcat web server.

• Communicate (yellow) is the association between an application and a logic channel.
For example, MMS TLS 1 is associated with the MMS client and MMS server 1.

6.5.2. Local Attack Graphs

After the design of the ArchG, the combination of techniques inside each asset is
modeled by the corresponding lAG, as described in Section 5.2. As an example, let us
consider the lAG of the historian server, depicted in Figure 5. Table 1 lists the abbreviations
used in SecuriDN for techniques and analytics.

Figure 5. The lAG of the historian server (the red node will be merged with the corresponding red

node in Figure 6 during the construction of the gAG). If the attackers have the ability to run a shell on

the machine, they can install an SSH key. With an SSH key installed, they can connect also remotely

(remoteShell). Notice the two analytics SHELLEXECUTION and RMTSHELLSESSION. From this asset,

the attackers can try bruteForce on a remote device reachable via a network connection.

We can notice the internal techniques (circles), the logical operators (AND/OR), the
external techniques (double circles) and the analytics (notepads). In particular, shell en-
ables SSHkey, which in turn enables remoteShell, and they are all internal techniques. The
analytics SHELLEXECUTION and RMTSHELLSESSION are generated by the occurrence of
shell and remoteShell, respectively. Through the OR logical operator, shell or remoteShell
enables the external technique bruteForce, taking place in the assets reachable by following
a path composed of four connect associations and two execute associations. In the ArchG
(Figure 4), such a path exists from the historian server to the Tomcat web server. In the lAG
of the latter asset, we can see the corresponding internal technique, bruteForce (Figure 6).
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Figure 6. The lAG of the Tomcat web server shows that initial access can be obtained through

bruteForce, after which an escapeHost can be carried out on the virtual environment on which the

server is running. The analytic LOGINFREQUENCY exposes a bruteForce attempt. The red node will be

merged with the corresponding red node in Figure 5 during the construction of the gAG.

Another example is the lAG of the MMS client, depicted in Figure 7. The internal
techniques unsecCred and modAuthProc generate the analytics FILEACCESS and INTEGRITY,
respectively. Through the AND logical operator, the same techniques enable credAcc,
which in turns enables the external technique AITM taking place in the asset MMS TLS 1
(Figure 8), reachable from the MMS client through one communicate association (Figure 4).
The technique spoofRepMsg generates MEASCOHER and enables DERfailure taking place in
the asset IED 1, reachable through a path composed of two communicate associations and
one execute association (Figure 4).

Figure 7. The lAG of the MMS client is more articulated (the green node will be merged with the

corresponding green node in Figure 8 during the construction of the gAG). If attackers can steal

credentials and manipulate trust (unsecCred and modAuthProc), they can then carry out an AITM on

the communication channel. Or, if they manage to spoof reporting messages, they can induce the

MMS client to cause a DERfailure.

Figure 8. The lAG of the MMS over the TLS channel describes the fact that, in case an AITM is carried

out on the channel, attackers can then send crafted reporting messages to the client (spoofRepMsg) or

send unauthorized command messages (unauthCmdMsg) directly to the server to cause a DERfailure.

The green node will be merged with the corresponding green node in Figure 7 during the construction

of the gAG.

6.5.3. Global Attack Graph

The raw gAG is obtained (see Section 5.2) as the union of all lAGs. Then, in Figure 9,
we can see the gAG obtained by merging the external techniques with the corresponding
internal techniques. For example, the external technique historianServer_bruteForce (red
node in Figure 5) is merged with the internal technique tomcatWebServer_bruteForce (red
node in Figures 6 and 9). In the same way, the external technique MMSclient_AITM (green
node in Figure 7) is merged with the internal technique MMSTLS1_AITM (green node in
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Figures 8 and 9). Still, in Figure 9, the nodes and the edges not leading to the final technique
(DERfailure) from the initial technique (compromise) have been removed, as explained in
Section 5.2 (the nodes compromise and DERfailure are yellow).

Figure 9. The final gAG obtained merging lAGs and pruning the nodes not leading to the goal node.

The red and green nodes are examples of merged nodes (see Figures 5–8). The yellow nodes indicate

the initial technique and the final technique. Note that the figure shows precisely the output of

SecuriDN (the graphical aspects will be improved in a later version of the prototype).

6.5.4. Dynamic Bayesian Network

The DBN in Figure 10 is derived from the final gAG in Figure 9. Both models share the
same graph topology, but in the DBN the temporal arcs (blue) are added for the techniques
because of their probabilistic evolution during time (Section 5.2).

Figure 10. The DBN derived from the final gAG. The nodes containing the symbol “2” are binary

random variables representing techniques, analytics, or defenses, all characterized by two possible

states (not occurred, occurred). The logic nodes (AND, OR) contain the corresponding Boolean

operator (∧, ∨). The oriented black arcs indicate that a node influences another node. Finally the blue

loops represent the temporal arcs to model probabilistic evolution over time.
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6.6. Experiments and Results

In our experiments, we have parametrized the DBN on the basis of estimated mean
completion times of the attack steps. Notice that the DBN is a discrete time model, whereas
we need to model the continuous time reality. To approximate continuous time, we assume
that each time step of the DBN has a constant duration and re-scale all probabilities
with respect to this value. In this way, the elapsed times between two consecutive state
transitions in the continuous model are approximated by a geometric distribution in
the DBN.

Based on evidence from the monitoring system, the derived DBN can then be used
to forecast the most likely adversarial activity, along with a probability distribution of
expected upcoming attack steps. Knowledge of the time available before the attack actually
affects core functionalities enables cybersecurity analysts to evaluate the most appropri-
ate response.

The mean times to compromise (TTC) we adopted are reported in Table 2. They are
expressed in a 10 min unit.

For scanIP, scanVuln and bruteForce, we assumed that the attackers slow their activity
in an attempt to avoid detection (but not enough for bruteForce to escape our monitors).

The escapeHost technique is very slow because the attackers must wait until an unaware
user copies a file for their exploit to succeed. The mean TTC for this step should realistically
be even longer, but we limited it to bound the total time of the attack process for better
readability of the diagrams plotting the results; unauthCmdMsg takes a long time too.

Table 2. Mean times to compromise (TTC), expressed in 10 min units—see Table 1 for the meaning of

the technique names.

Technique Mean TTC Technique Mean TTC Technique Mean TTC

scanIP 3 rmtSrvc 2 SSHkey 1
scanVuln 3 shell 0.5 AITM 4
unsecCred 1 remoteShell 0.5 spoofRepMsg 15

modAuthProc 1 escapeHost 50 unauthCmdMsg 40
bruteForce 6

The implemented analytics are almost perfect (the assumed error probability is 0.01).
We have run our automated attacker in the testbed with different strategies and with

different configurations of the monitoring system.

Notation: in the following, we have abbreviated the names of the nodes of the DBN for
the sake of the presentation. The abbreviated names of the techniques from Table 1 are
completed, prepending HS for historianServer, WS for tomcatWebServer, cli for MMSclient,
VE for virtualEng and MMS for MMSTLS. Other simplifications are self-explanatory.

6.6.1. Experiment 1: No Monitoring Implemented

We have a first reference experiment in a setting in which the monitoring system is
not implemented, to evaluate how the DBN expresses the constraints among attack steps,
as defined by preconditions.

The results are shown in Figure 11. We show here only the probabilities of some of the
DBN’s nodes to stress our points.

The order in which the curves start to grow reflects the constraints and the TTC:
a remote shell session on the historian (HS_remoteShell) can be opened only after an
initial reconnaissance (DMZ_scanIP) has taken place. The injections of false reporting
messages (cli_spoofRep) and unauthorized commands (MMS_unauthCmd) are the final
ones in the attack process, and, therefore, the probability curves for these two techniques
start growing much later (notice the gap). Moreover, since MMS_unauthCmd has a much
higher TTC than the other techniques considered in the figure, the rate of growth of its
probability is the slowest. On the other hand, the probability of a failure of the DER
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(IED1_DERfailure) is higher than the latter two since it can occur when either cli_spoofRep or
MMS_unauthCmd occur.

Figure 11. Experiment 1. Probabilities of successful technique exploitation with no evidence (all

analytics disabled).

6.6.2. Experiment 2: Detection of Different Attack Processes

In our second experiment, monitoring is fully implemented. We had the automated
attacker scan the network and carry out an SQL injection on the historian to open a shell as
a privileged user. From that new foothold, the attacker carried out a password-guessing
attack on the Tomcat web server and, having gained control of the container on which the
server runs, it completed its attack with a Docker Escape.

Our monitoring system detected at time t = 9 a shell execution on the historian
(analytic HS_SHELLEXEC), at t = 16 frequent failed attempts to connect to the web server
as an administrator (analytic WS_LOGINFREQUENCY), and at t = 56 suspicious commands
on the machine that hosts the container (analytic VE_SUSPCMD).

Figure 12 shows the probabilities of some DBN nodes.
We have not plotted the probability that a shell has been opened on the historian,

but as a consequence of the first alert (HS_SHELLEXEC) we see that the probability that a
reconnaissance activity has taken place shoots to 1, to warn the security analyst that hostile
activity is taking place. Notice that we have not implemented a monitor to detect a scan of
the network, yet the DBN informs us that it must have happened, because in our model
we defined reconnaissance activity as a precondition of any attack. A more detailed model
could take into account a variety of reconnaissance techniques.

Also notice that the probability of a scan was in any case increasing before t = 9, when
the first alert was triggered, to reflect the fact that a security analyst cannot relax and sit
back but must always take into account that attacks can happen at any time.

The second alert that goes off, WS_LOGINFREQUENCY, at t = 16, specifically detects
that our automated attacker is trying a dictionary attack on the web server. Correspondingly,
in Figure 12, the probability that this technique is being used (WS_bruteForce in the figure)
suddenly jumps to 1.

Finally, the DBN interprets the evidence VE_SUSPCMD at t = 56 as a sure sign that
the attacker has managed an VE_escapeHost.

Notice that the probability that a shell has been opened on the substation computer
(SC_shell) remains 0 throughout our observation interval. This is because the event is
monitored and the corresponding analytic does not raise any alert.
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Figure 12. Experiment 2–part 1. Probabilities of successful technique exploitation with fully imple-

mented monitoring system, and partial execution of the attack process. Alerts: HS_SHELLEXEC at

t = 9, WS_LOGINFREQUENCY at t = 10, VE_SUSPCMD at t = 56. All other analytics raise no alerts.

In the second part of this experiment, we explore how our detection model reacts to a
different attack path. We observe our automated attacker after it has already installed an
SSH key on the historian server’s host and starts its attack with a remote connection to that
host. We disabled the monitor HS_SHELLEXEC to emulate the fact that we became aware
of the adversarial activity only later.

The automated attacker then carries out the dictionary attack on the web server and
does not proceed further in the observed time interval.

Figure 13 reports the probabilities of the same techniques as Figure 12 to compare
the results.

Figure 13. Experiment 2–part 2. Probabilities of successful technique exploitation, when the observed

attack process starts with a remote connection to the historian server. Analytic HS_SHELLEXEC not

active. Alerts: HS_RMTSHELL at t = 5, WS_LOGINFREQUENCY at t = 10. All other analytics are

implemented but raise no alerts.
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We have that a remote shell on the historian server is detected at time t = 5 (analytic
HS_RMTSHELL). At that time, the probability of the monitored event (HS_RMTSHELL)
correspondingly jumps to 1. Also, the probabilities of previous steps (we plotted in
Figure 13 again DMZ_scanIP) go to 1, as we observed in the previous experiment.

Again, we see how the model correctly detects the dictionary attack on the web server
at t = 10. No more adversarial activity takes place in the observed interval.

6.6.3. Experiment 3: Early Detection and Forecasting

In our final experiment, some analytics are disabled: HS_SHELLEXEC, SC_SHELLEXEC,
CLI_FILEACCESS and MMS_CMDCOHER. As a consequence, we cannot detect the launch
of a local shell, neither on the historian server nor on the station computer, and we are not
monitoring file access to the MMS client’s credentials, nor the coherence of commands to
the IED at the DER.

The attacker’s activity is again observed from the moment in which the attacker creates
a remote shell on the historian server. In the first part of this experiment (Figure 14), we
assume that the security analyst is observing the console of the detection system at time
t = 30. Therefore, the available evidence is that up to that instant; after that, the evidence
is undefined.

Figure 14. Experiment 3 part 1. Probabilities of successful technique exploitation with observa-

tions until time t = 30 and predictions after t = 30. Analytics HS_SHELLEXEC, SC_SHELLEXEC,

CLI_FILEACCESS and MMS_CMDCOHER not active. Analytics Alerts: HS_RMTSHELL at t = 5,

WS_LOGINFREQUENCY at t = 10. Analytics VE_SUSPCMD, CLI_INTEGRITY, CLI_MEASCOHER detect

no suspicious activity. After t = 30, all analytics undefined.

The automated attacker behaves as in part 2 of Experiment 2.
The significant difference between the current experiment and the previous one is that

in the previous we assume that the analyst is observing the console of the detection system
at time t = 50 (the last instant plotted in Figure 13). This implies that, for the whole time
interval considered there, evidence from all implemented analytics is known.

Correspondingly, in Figure 14, all probabilities up to t = 30 are exactly the same as
in Figure 13: the detection system has analyzed the evidence and proposes to the security
analyst its inference on the attacker’s activity until that moment.

After t = 30, in the current experiment (Figure 14), in absence of new evidence
and based on what has been seen so far, the detection model predicts the probabilities of
subsequent adversarial activity. Since the web server has been compromised at t = 30, it
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is increasingly likely over time that the attacker will escalate privileges escaping to the
host (VE_escapeHost), then open a shell on the station computer (SC_shell) and eventually
undermine the DER’s functionality (IED1_DERfailure).

In contrast, in Figure 13, all these further steps keep having a probability of 0 until
the final time instant considered (t = 50), since the observation instant is t = 50 and it is
known that no further alerts have been raised.

Figure 15 shows again a plot of a completely known time window: the observation
instant is now t = 85. The attacker carries out an attack, reaching the final goal, choosing
to spoof reporting messages once it has managed to intrude into the MMS over TLS
communication (AITM).

Figure 15. Experiment 3–part 2. Probabilities of successful technique exploitation with observations un-

til time t = 85. Analytics HS_SHELLEXEC, SC_SHELLEXEC, CLI_FILEACCESS and MMS_CMDCOHER

not active. Alerts: HS_RMTSHELL at t = 5, WS_LOGINFREQUENCY at t = 10, VE_SUSPCMD at t = 55,

CLI_INTEGRITY at t = 59 and CLI_MEASCOHER at t = 77.

The monitoring system raises the same two alerts as in Figure 14, and then the alerts
VE_SUSPCMD at t = 55 (detecting a suspicious command, given by the attackers to
complete the escape to host), CLI_INTEGRITY at t = 59 (detecting that CA certificates
trusted by the MMS client have been tampered with) and CLI_MEASCOHER at t = 77
(detecting an incoherence in the series of measures received by the MMS client from the
server, due to an injection of reporting messages).

Comparing Figures 14 and 15, we notice how the detection tool gives an early warning.
As an aside, notice that shortly after t = 60, even before the final alert is raised at

t = 77, the detection tool is warning that the DER functionality might be at risk. This is
because we assumed that the analytic MMS_CMDCOHER (detecting a command injection
attack) is not implemented, and therefore there is a possible final step of the attack process
that is not monitored.

We conclude our analysis, pointing out that our initial experiment gives the output of
the detection system at the very beginning of the observations: Figure 11 can be interpreted
as the output of the detection tool at t = 0 when no evidence has been observed yet, and all
probabilities represent a forecast of adversarial activity based on the structure of the DBN
produced by SecuriDN and the expert insight on attack steps codified in the CPTs.
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7. Conclusions and Future Works

The platform we have developed, and that was used for the case study presented in
this paper, can support cybersecurity analysts in the early detection of adversarial activity
and in the assessment of the cybersecurity posture of electro-energetic systems.

The realistic case study presented in this paper shows how the quantitative metrics
provided by the detection model may give a useful insight into the evolution of the attack
process according to the evidence collected by the monitoring system, and can be used to
forecast the most likely adversarial activity and evaluate the system security level.

In this paper, we have described in detail one module of the platform: SecuriDN; its
aim is to make it easier for cybersecurity analysts to define in a modular (bottom-up) way
the model of the assets under study and of the possible attacks threatening them. SecuriDN
is flexible because the library of elements to be included in the models can be expanded;
moreover, it can apply several transformations on such models by integrating a number
of so-called solvers that can produce the input for other modules in the platform. These
features make it suitable for integration with other cybersecurity tools and frameworks.
Since SecuriDN is completely customizable, it can be programmed to import and export
architectures, and attack graphs and DBN models in the native XML format; moreover,
implementing appropriate solvers, different formats can be chosen for export, and other
artifacts of interest can be produced.

In the case study, SecuriDN has been used to produce a DBN for offline what-if analysis.
The DBN model is conceived to be aligned with evidence collected by the online monitoring
platform. In future experiments, the data from the running platform will be exploited to
refine the DBN model and iterate the what-if analysis. In this paper, the practical application
of SecuriDN was demonstrated in a simplified, but still realistic, case study of a multi-
step attack process, starting from a compromised workstation in the corporate network
and aiming to cause a manipulation of DER measures. The considered attack includes
techniques taken from both Enterprise and ICS ATT&CK matrices realizing different stages
of a cyber kill chain, such as reconnaissance, credential access, lateral movement and
impairment of process control. From the proper composition of assets coming from a
predefined and customisable library, SecuriDN allows us to automatically generate a gAG
describing the whole attack process, and the corresponding DBN. Although SecuriDN is
still a prototype, it currently supports the analysis of diverse cybersecurity scenarios.

In the future, we will carefully evaluate SecuriDN through the development of several
case studies of increasing size and complexity, which will guide the tool development
plan. Possible limitations of SecuriDN that we will explore are the user friendliness of the
GUI (limited to its current usage within applied research projects); the maximum model
size that can be built without overcoming the current DrawNET limits; the memory and
computational resources required for the generation of the final attack graph and DBN;
and the expressive power of the formalism currently employed to describe the scenarios
(assets, configuration and corresponding attacks).

To improve usability, we are planning to create a library of attack graphs for each asset,
which can be imported by the user to compose more complex global attack graphs, taking
in consideration additional potential vulnerabilities.

As stated in [56], the computational complexity of generating AGs can become a
significant issue, especially for automatically created and highly connected topologies. An
approach pursued in [57] exploits the divide-and-conquer methodology by introducing
distributed firewalls between network partitions with the idea of reducing the number
of paths exploitable by the attacker. As further clarified in Sections 5.2 and 6.1, the task
performed by the security analyst of manually drawing the ArchG, paired with the in-
troduction of security rules in between the various sub-networks, implicitly reduces the
number of available paths to the attacker in the final gAG. For this reason, in this paper
we did not consider it necessary to study the performance of our generation algorithm, as
the main objective is to present SecuriDN functionalities. Notice, moreover, that, whereas
SecuriDN is an offline tool, the models it creates are meant to be used for online detection.
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This opens a different issue, on the real-time performance of DBN solvers. This point is out
of the scope of this paper, which focuses on SecuriDN, but for completeness we presented
in Section 3.5.1 various inference algorithms that can be applied, depending on the specific
DBN size and precision requirements to speed up the solution.

The limits on the model sizes that SecuriDN inherits from the tool DrawNET on which
it is based will be overcome in the future thanks to the new version of DrawNET that is
now under development [58].

Future work will focus on implementing in SecuriDN the automatic generation of
an Octave [59] script to perform the inferences on the DBN. The detection module in
the platform will execute the script when alerts are triggered by the attack to update the
inference according to the new collected evidence. Other additional SecuriDN solvers are
being designed to support the seamless integration of the SecuriDN module with other
modules of the platform, in particular with the attacks emulator (to be deployed in the RSE
testbed) and with the simulator.
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Abbreviations

The following abbreviations are used in this manuscript:

2TBN
2-time-slice Temporal Bayesian
Network

IED Intelligent Electronic Device

AEG Attack Execution Graph IDS Intrusion Detection System
AITM Adversary in the middle IP Internet Protocol
ArchG Architecture Graph IT Information Technology
AG Attack graph JT Junction Tree
BF Brute force lAG Local attack graph
BK Boyen–Koller MAL Meta-Attack Language
BN Bayesian Network MMS Manufacturing Message Specification
CA Certification Authority NVD National Vulnerability Database
CPPS Cyber Physical Power Systems OPF Optimal Power Flow
CPT Conditional Probability Table OT Operational Technology
CVSS Common Vulnerability Scoring System PKI Public Key Infrastructure
DAG Directed Acyclic Graph PLC Programmable Logic Controller
DBN Dynamic Bayesian Network RV Random Variable

DDoS Distributed Denial of Service SCADA
Supervisory Control And Data
Acquisition
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DER Distributed Energy Resources SGU Significant Grid User
DMS DrawNET Modeling System SLAT State LookAhead Tree
DMZ Demilitarized Zone SQL Structured Query Language
gAG General Attack Graph SSH Secure Shell
GUI Graphical User Interface TLS Transport Layer Security
HMI Human Machine Interface TTC Time To Compromise
HTTPS Hypertext Transfer Protocol Secure UML Unified Modeling Language
ICS Industrial Control System XML eXtended Markup Language

ICT
Information and Communication
Technologies
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