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We propose a Java-like calculus where declared variables can be annotated by coeffects
specifying constraints on their use, e.g., affinity or privacy levels. Such coeffects are 
heterogeneous, in the sense that different kinds of coeffects can be used in the same 
program; combining coeffects of different kinds leads to the trivial coeffect. We prove 
subject reduction, which includes preservation of coeffects, and show several examples. 
In a Java-like language, coeffects can be expressed in the language itself, as expressions of 
user-defined classes.
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1. Introduction

Type-and-coeffect systems [21,8,2,12,13,19,9,10] are type systems where the typing judgment takes the form
x1 :r1 T1, . . . , xn :rn Tn � e : T , with r1, . . . , rn coeffects (also called grades, using the alternative terminology graded type sys-
tem) modeling how the corresponding variables are used in e. For instance, coeffects of shape r ::= 0 | 1 | ω trace when 
a variable is either not used, or used at most once, or used in an unrestricted way, respectively, in the expression e. In 
this way, functions, e.g., λx:int.5, λx:int.x, and λx:int.x + x, which have the same type in the simply-typed lambda calculus, 
can be distinguished by adding coeffect annotations: λx:int[0].5, λx:int[1].x, and λx:int[ω].x + x. Other typical examples 
are counting usages (coeffects are natural numbers), and privacy levels. Coeffects usually form a semiring, specifying 
sum +, multiplication ·, and 0 and 1 constants, satisfying some natural axioms. Some kind of order relation is generally 
required as well.

This approach has been exploited to a fully-fledged programming language in Granule [19], a functional language 
equipped with a type-and-coeffect system, hence allowing the programmer to write function declarations as those above. 
In Granule, different kinds of coeffects can be used at the same time, including naturals for counting usages, privacy levels, 
intervals, infinity, and products of coeffects; however, the available coeffects are fixed once and for all.

In this paper, we aim at providing a similar support in Java-like languages, by allowing the programmer to write coeffect 
annotations in variable declarations. As in Granule, heterogeneous coeffects can coexist in the same program. When com-
bining coeffects of different kinds, we take the simple solution that this leads to the trivial coeffect. (We will investigate in 
future work how to provide a general form of combination, see the Conclusion.) This is formally modeled by a construc-
tion which, given a family of coeffect algebras, indexed over a set of kinds, returns a coeffect algebra where coeffects are 
decorated by their original kind. We prove subject reduction, which includes preservation of coeffects.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
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In a Java-like language, coeffects desired for a specific application could be expressed in the language itself. More in 
detail, coeffect annotations could be expressions of coeffect classes, that is, classes providing methods corresponding to the 
ingredients of a coeffect algebra. In this way, the programmer could write user-defined coeffects desired for a specific 
application, rather than rely on a fixed set of coeffects as in Granule.

This paper is an improved version of [4]. The main improvement is the above mentioned formal construction (Section 4), 
which makes it possible for the programmer to use in the same program different arbitrary coeffect algebras (an example 
is given in Section 6), without caring about their combination, which is internally handled by the type system. In the 
preliminary paper, instead, a coeffect class was not really implementing one coeffect algebra, since its methods, e.g., the sum, 
had an argument of a generic Coeffect class, and the programmer had to add cases corresponding to coeffect arguments 
of a different kind. Moreover, in the current paper coeffect classes are introduced as a specific feature which can be added 
to the Java-like calculus, thus abstracting from language details allowing to implement such feature.

In Section 2 we define a Java-like calculus where variable declarations are annotated with coeffects, taken in an arbi-
trary coeffect algebra. In Section 3 we provide a type-and-coeffect system for the calculus, parametric on the underlying 
coeffect algebra, and prove type and coeffects preservation. In Section 4 we show the construction of the coeffect algebra 
of heterogeneous coeffects. In Section 5 we describe a slight extension of the calculus supporting the declaration of coeffect 
classes, show the instantiation of the previous parametric type system to the case where coeffects are values of such coef-
fect classes, provide several examples, and outline an implementation in full Java. In Section 6 we provide a more extended 
programming example using different kinds of coeffects. We discuss related work in Section 7, and, finally, we summarize 
the contribution and outline further work in Section 8. The straightforward proof that the construction in Section 4 gives a 
coeffect algebra is given in the Appendix.

2. Calculus

The calculus which we enrich by coeffect annotations, ranged over by r, s, t , is a variant of Featherweight Java [17] (FJ for 
short), a functional subset of Java which is widely used as reference calculus to study properties and/or propose extensions 
of Java-like languages.

We assume variables x, y, z, . . . which either are bound in the source code (method parameters, including the special 
variable this, and local variables in blocks) or are free, that is, denote external resources. Moreover, we assume class names
C, D, field names f , and method names m, and the standard predefined class Object, root of the inheritance hierarchy. We 
write es as metavariable for e1, . . . , en , n ≥ 0, and analogously for other sequences.

The syntax of expressions is given in Fig. 1. Standard FJ expressions are variable, field access, constructor invocation, 
method invocation, and cast (here actually only downcast, see next section). In addition, we include a block expression, 
relevant for our aims since the variable declaration specifies a coeffect annotation. The format of coeffect annotations is 
inspired by that used in Granule [19]. Moreover, we add some other features mainly needed to write examples: abstract 
classes, abstract and static methods, conditional, dynamic typecheck, and booleans with their (omitted) operations. Types 
are either class names or the predefined primitive type boolean.

To be concise, the class table is abstractly modeled as follows, omitting its (standard) syntax:

• ≤ is the subtyping relation (the reflexive and transitive closure of the extends relation)
• fields(C) gives, for each class C, the sequence of fields with their types, assumed to have all distinct names
• mbody(C,m) gives, for each method m of class C, the parameters and body.

Reduction rules are given in Fig. 1. Since the language is functional, FJ configurations are expressions, and, in particular, 
constructor invocations where all arguments are fully evaluated represent objects (instances of classes). Indeed, in FJ, each 
class has exactly one constructor, with a sequence of arguments corresponding to the fields of the class.

Rule (ctx) is the standard contextual rule, where evaluation contexts E express the usual left-to-right evaluation strategy.
In rule (field-access), accessing a field of an object succeeds if the field is one of the fields of the object’s class. In this 

case, the field access evaluates to the corresponding value.
Invocation of an instance and static method are modeled by rules (invk) and (st-invk), respectively. The sequence of pa-

rameters and the body of the method are retrieved from the class table, and the invocation is reduced to the body where 
the parameters have been replaced by the corresponding arguments. In the case of an instance method, the implicit this
parameter is replaced by the receiver as well.

Rules (block), (if-true), and (if-false) are the standard rules for declaration of a local variable and conditional.
Rules (instof-true) and (instof-false) model the dynamic check that an object be an instance of (a subclass of) the specified 

class. Finally, cast is modeled by rule (cast). A cast succeeds, hence can be removed, if the object to be reduced is an instance 
of (a subclass of) the specified class. Otherwise, reduction is stuck (an alternative semantics could raise a dynamic error).

Differently from the original FJ semantics [17], rules are instantiated on open expressions, since otherwise the fact that 
reduction preserves coeffects, in addition to types, would trivially hold. In other words, we model reduction of expressions 
which refer to external resources. In particular, values are open as well, and a variable can be safely used as constructor or 
method argument, whereas reduction is stuck when it is used as receiver.
2
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Fig. 1. Calculus.

3. Parametric type-and-coeffect system

In type-and-coeffect systems, the typing judgment has shape � � e : T , where � is a (type-and-coeffect) context, that is, 
a (finite) map from variables to pairs of a coeffect and a type, written � = x1 :r1 T1, . . . , xn :rn Tn . We write dom(�) for the 
(finite) domain of �. Equivalently, � can be seen as the pair of a coeffect context and a type context, mapping variables to 
coeffects and types, respectively, with the same (finite) domain. We assume that coeffects form a coeffect algebra, specifying 
partial order � with binary join ∨, sum +, multiplication ·, zero coeffect 0, and one coeffect 1, satisfying some axioms. That is, 
as detailed in Definition 4.1 in Section 4, they should form a semiring with sum and multiplication monotonic with respect 
to the partial order, and 0 should be the least element.

Our definition is a slight variant of others proposed in literature [8,13,18,2,12,1,19,9,22]. In particular, the partial order 
models overapproximation in the usage of resources, and allows flexibility, for instance we can have different usage in the 
branches of an if-then-else construct. The fact that the zero is the least element means that, in particular, overapproximation 
can add unused variables, making the calculus affine.

The typical example of coeffect algebra is the affinity algebra, which is used to track whether a variable is unused (0), 
used at most once (1), or used in an unconstrained way (ω). The partial order and the operations are defined in a pretty 
intuitive way, as shown below.

0 � 1 � ω

+ 0 1 ω

0 0 1 ω

1 1 ω ω
ω ω ω ω

· 0 1 ω

0 0 0 0
1 0 1 ω

ω 0 ω ω
3
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As customary in type-and-coeffect systems, in typing rules contexts are combined by means of some operations, which 
are, in turn, defined in terms of the corresponding operations on coeffects (grades).

More precisely, we define

Partial order ∅ � ∅ (x :r T, �) � (x :s T, �) if r � s and � � �

� � (x :r T, �) if x /∈ dom(�) and � � �

Binary join ∅ ∨ � = � (x :r T, �) ∨ � = x :r T, (� ∨ �) if x /∈ dom(�)

(x :r T, �) ∨ (x :s T, �) = x :r∨s T, (� ∨ �)

Sum ∅ + � = � (x :r T, �) + � = x :r T, (� + �) if x /∈ dom(�)

(x :r T, �) + (x :s T, �) = x :r+s T, (� + �)

Scalar multiplication r · ∅ = ∅ r · (x :s T, �) = x :r·s T, (r · �)

As the reader may notice, these operations on type-and-coeffect contexts can be equivalently defined by lifting the corre-
sponding operations on coeffect contexts, which are the pointwise extension of those on coeffects, to handle types as well. 
In this step, the sum and the join operators becomes partial since a variable in the domain of both contexts is required 
to have the same type.

In the following, we assume the standard precedence of multiplication over sum.
The type-and-coeffect system for the calculus introduced in the previous section relies on the type information extracted 

from the class table, which, again to be concise, is abstractly modeled as follows:

• ¬abs(C) means that C is a non-abstract class
• mtype(C,m) gives, for each method m of class C, its enriched method type, including coeffect annotations, that is, of 

shape:
– either r0, Tr1

1 . . . Trn
n → T

– or Tr1
1 . . . Trn

n → T , meaning that the method is static.

In a well-typed class table, we expect the following conditions to hold:

(t-meth) mtype(C,m) = r0,Tr1
1 . . . Trn

n → T and ¬abs(C) implies
mbody(C,m) = (x1 . . . xn, e) and
this :r0 C, x1 :r1 T1, . . . , xn :rn Tn � e : T

(t-st-meth) mtype(C,m) = Tr1
1 . . . Trn

n → T implies
mbody(C,m) = (x1 . . . xn, e) and
x1 :r1 T1, . . . , xn :rn Tn � e : T

(t-inh-fields) C ≤ D implies fields(D) is a prefix of fields(C)

(t-inh-meth) C ≤ D and mtype(D,m) = r0,Tr1
1 . . . Trn

n → T imply
mtype(C,m) = s0,Ts1

1 . . . Tsn
n → T ′

with T ′ ≤ T, si � ri for i ∈ 0..n

Conditions (t-meth) and (t-st-meth) express that method bodies should conform to method types. Condition (t-inh-fields) ex-
presses that fields are inherited, and, together with the assumption that they have distinct names, that there is no field 
hiding. Finally, condition (t-inh-meth) expresses that methods are inherited, cannot be overloaded, and can be overriden with 
a more specific return type, and the more restrictive coeffects. Note that this condition only concerns instance methods, 
indeed static methods are not inherited.

In Fig. 2, we describe the typing rules, which are parameterized on the underlying coeffect algebra.
In the subsumption rule (t-sub), both the coeffect context and the type can be made more general. This means that 

variables can get less constraining coeffects. For instance, assuming again affinity coeffects, an expression which can be 
typechecked assuming to use a given variable at most once (coeffect 1) can be typechecked with no constraints (coeffect ω).

In rule (t-var), the given variable is used exactly once, and no other variable is used. In rules (t-field-access) and (t-new), 
coeffects of the subterms are summed.

In rule (t-invk), the coeffects of the arguments are summed, after multiplying each of them with the join (least upper 
bound) of the coeffect annotation of the corresponding parameter, and the one coeffect. This guarantees to take into account 
the coeffects of the initialization expression for parameters not used in the body, as needed in type-and-coeffect systems 
for call-by-value calculi (see the end of Example 3.1 below). The rule uses the auxiliary function mtype mentioned before, 
which returns an enriched method type, where the types of the parameters and of this have coeffect annotations. Rule
(t-st-invk) is the analogous rule for static methods.

In rule (t-block), the coeffects of the initialization expression are multiplied by the join of the coeffect annotation of the 
variable, and the one coeffect, and then summed with those of the body. Analogously to method invocation, the join with 
the one coeffect is needed when the variable is not used in the body. Note that the variable is used in the body accordingly 
with the annotation written by the programmer.
4
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Fig. 2. Parametric type-and-coeffect system.

In rule (t-if), the join operator is applied to the contexts of the two branches. The result is a context where each variable 
has a coeffect which is greater (less constraining) than those in the two branches. This guarantees that, regardless of which 
branch will be executed, each variable will have the right amount of resources. Then, the coeffects of this context are 
summed with those in the context of the guard. Note that we could have equivalently given a rule where the same context 
is imposed for the two branches, since this can be obtained by subsumption; however, in the instantiation in Section 5, this 
more effective version of the rule corresponds to the fact that the join context is computed through a user-defined method.

Rules (t-instof), (t-cast), (t-true) and (t-false) are straightforward, apart that we only allow downcast. This is just to avoid the 
well-known (orthogonal) problem [17] that subject reduction is not preserved by allowing upcast as well. Also note that, 
as in the original FJ paper, the standard formulation of progress does not hold, since failure of a downcast is for simplicity 
modeled by a stuck computation. This is not an issue, since here we are only interested in subject reduction.

Example 3.1. We illustrate the use of the type-and-coeffect system on a simple class table, assuming the affinity coeffects 
0 (unused), 1 (used at most once), ω (no constraints) introduced before. Here they occur as annotation of this, written 
between the method name and the list of parameters. In the examples, for brevity, we omit the stylized constructor and 
extends Object, required in the original FJ paper [17].

class Pair{A fst; A snd;}
class A{

A drop [0] () {new A()}
A identity [1] () {this}
Pair duplicate [ω] () { new Pair(this,this)}

}

Let us see some examples of how the type system works. The above declarations correspond to have:

mtype(A,drop) = 0, ε → A
mtype(A,identity) = 1, ε → A
mtype(A,duplicate) = ω, ε → Pair

To check that, e.g., the method duplicate is well-typed, we have to typecheck the method body, and then verify the 
condition (t-meth) at page 4. A type derivation for the method body is as follows:
5
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(t-var)

this :1 A � this : A (t-var)

this :1 A � this : A
(t-new)

this :ω A � new Pair(this,this) : Pair
so the condition of rule (t-meth) holds. Analogously we can see that the other two methods are well-typed.

To see an example of ill-typed method, assume, e.g., that the expression new Pair(this, this).fst was the body of 
method identity. Indeed, we would have a similar derivation:

(t-var)

this :1 A � this : A (t-var)

this :1 A � this : A
(t-new)

this :ω A � new Pair(this,this) : Pair
(t-field-access)

this :ω A � new Pair(this,this).fst : A
However, this :ω A� this :1 A does not hold, so we cannot apply rule (t-sub), and condition (t-meth) does not hold.
A call of duplicate can be typed as shown below:

(t-var)

x :1 A � x : A (t-var)

y :1 A � y : A
(t-new)

x :1 A,y :1 A � new Pair(x,y) : Pair
(t-field-access)

x :1 A,y :1 A � new Pair(x,y).fst : A
(t-invk)

x :ω A,y :ω A � new Pair(x,y).fst.duplicate() : Pair
since mtype(A,duplicate) = ω, ε → Pair, ω = ω ∨ 1, and ω = ω · 1.

Finally, we show an example motivating the need for the join with 1 in rules (t-invk), (t-st-invk), and (t-block). For instance, 
this prevents to derive the judgment y :0 A � {Pair[0] x = y.duplicate; new A()} : A, incorrectly stating that the vari-
able y is not used, whereas it is used in the initialization expression of x. The join with 1 would be not needed in a 
call-by-name calculus.

Our main technical result is subject reduction (Theorem 3.5), expressing, as customary in type-and-coeffect systems, that 
not only the type, but also the coeffects are preserved by reduction. By subsumption, this means that the type can become 
more specific, and the coeffects more constraining, as illustrated by the example below:

e = if (true) new Pair(x, new A())else (Object)new Pair(x, x)

x :ω A � e : Object
e −→ e′ = new Pair(x, new A())

x :1 A � e′ : A

The proof of Theorem 3.5 uses the standard lemmas of inversion for expressions and contexts (Lemmas 3.2 and 3.3), and 
substitution (Lemma 3.4).

Lemma 3.2 (Inversion).

1. If � � x : T, then x :1 T ′ � � with T ′ ≤ T.
2. If � � e.fi : T, then �′ � e : C, and fields(C) = T1 f1; . . . Tn fn;, i ∈ 1..n, with �′ � � and Ti ≤ T.
3. If � � new C(e1, . . . , en) : T, then �i � ei : Ti for all i ∈ 1..n, ¬abs(C), and fields(C) = T1 f1; . . . Tn fn;, with �1 + . . . + �n � �

and C ≤ T.
4. If � � e0.m(e1, . . . , en) : T, then �0 � e0 : C, and �i � ei : Ti for all i ∈ 1..n, and mtype(C,m) = r0, Tr1

1 . . . Trn
n → T ′ , with 

s0 · �0 + . . . + sn · �n � �, where si = ri ∨ 1 for all i ∈ 0..n, and T ′ ≤ T.
5. If � � C.m(e1, . . . , en) : T, then �i � ei : Ti for all i ∈ 1..n, and mtype(C,m) = Tr1

1 . . . Trn
n → T ′ , with s1 · �1 + . . . + sn · �n � �, 

where si = ri ∨ 1 for all i ∈ 1..n, and T ′ ≤ T.
6. If � � {T1[r] x = e1; e2} : T, then �1 � e1 : T1 and �2, x :r T1 � e2 : T2 , with s · �1 + �2 � �, where s = r ∨ 1, and T2 ≤ T.
7. If � � if (e) e1 else e2 : T, then �′ � e : boolean, �1 � e1 : T ′ and �2 � e2 : T ′ , with �′ + (�1 ∨ �2) � � and T ′ ≤ T.
8. If � � e instanceof C : T, then T = boolean and �′ � e : D, with �′ � �.
9. If � � (C)e : T, then �′ � e : D, and C ≤ D, with C ≤ T, and �′ � �.

Proof. By cases on typing rules. �
Lemma 3.3 (Context Inversion). If � � E[e] : T, then �′, x :r T ′ � E[x] : T and � � e : T ′ for some �′, �, x /∈ dom(�), r and T ′ such that 
�′ + r · � � �.
6
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:

Proof. By straightforward induction on the structure of E using Lemma 3.2. �
Lemma 3.4 (Substitution). If � � e′ : T ′ and �, x :r T ′ � e : T then � + r · � � e[e′/x] : T.

Proof. By straightforward induction on the derivation of �, x :r T ′ � e : T . �
Theorem 3.5. If � � e : T and e −→ e′ , then � � e′ : T.

Proof. We proceed by induction on reduction rules.

(CTX) We have E[e] −→ E[e′] and e −→ e′ . From � � E[e] : T , by Lemma 3.3, we have �′, x :r T ′ � E[x] : T and � � e : T ′
with x /∈ dom(�) and �′ + r · � � �. By induction hypothesis we derive � � e′ : T ′ . Then, by Lemma 3.4, we get 
�′ + r · � � E[e′] : T since E[x][e′/x] = E[e′]. Finally, the thesis follows by rule (t-sub).

(FIELD-ACCESS) We have new C(v1, . . . , vn).fi −→ vi and fields(C) = T1 f1; . . . Tn fn; with i ∈ 1..n. From � � new C(v1, . . . , vn).fi :
T , by Lemma 3.2(2), we have �′ � new C(v1, . . . , vn) : D and fields(D) = T ′

1 f ′
1; . . . T ′

m f ′
m; and fi = f ′

k , for some 
k ∈ 1..m, with �′ � � and T ′

k ≤ T . By Lemma 3.2(3), we know that C ≤ D and � j � v j : T j for all j ∈ 1..n, with 
�1 + . . . + �n � �′ . By condition (t-inh-fields), we get m ≤ n and T ′

j f ′
j; = T j f j;, for all j ∈ 1..m, hence, in particular, 

i = k ≤ m and Ti = T ′
k . Therefore, we have �i � vi : Ti and, since Ti = T ′

k ≤ T and �i � �1 + . . . + �n � �′ � �, we get 
the thesis by rule (t-sub).

(INVK) We have new C(vs).m(v1, . . . , vn) −→ e[new C(vs)/this][v1/x1 . . . vn/xn] and mbody(C,m) = (x1 . . . xn, e). From 
� � new C(vs).m(v1, . . . ,vn) : T , by Lemma 3.2(4), we have �0 � new C(vs) : D and �i � vi : Ti for all i ∈ 1..n, 
and mtype(D,m) = r0, Tr1

1 . . . Trn
n → T ′ , with s0 · �0 + . . . + sn · �n � �, where si = ri ∨ 1 for all i ∈ 0..n, and T ′ ≤

T . By Lemma 3.2(3), we have C ≤ D and ¬abs(C), hence, by (t-inh-meth), we get mtype(C,m) = t0, Tt1
1 . . . Ttn

n →
T ′′ with T ′′ ≤ T ′ and ti � ri for i ∈ 0..n. Then, by condition (t-meth), we also get this :t0 C, x1 :t1 T1, . . . , xn :tn

Tn � e : T ′′ . By iteratively applying Lemma 3.4 to all variables this, x1, . . . , xn , we get t0 · �0 + . . . + tn · �n �
e[new C(vs)/this][v1/x1 . . . vn/xn] : T ′′ . Since ti � ri � si for all i ∈ 0..n, we have t0 · �0 + . . . + tn · �n � s0 · �0 +
. . . + sn · �n � � and T ′′ ≤ T ′ ≤ T . Then, by rule (t-sub), we get the thesis.

(ST-INVK) Analogous to (invk).
(BLOCK) We have {T1[r] x = v; e′} −→ e′[v/x]. From � � {T1[r] x = v; e′} : T , by Lemma 3.2(6), we have �1 � v : T1, and 

�2, x :r T1 � e′ : T ′ , with s · �1 + �2 � �, where s = r ∨ 1, and T ′ ≤ T . By Lemma 3.4 and by (t-sub), we derive 
s · �1 + �2 � e′[v/x] : T ′ . Since s · �1 + �2 � � and T ′ ≤ T , by rule (t-sub) we get the thesis.

(IF-TRUE) We have if (true) e1 else e2 −→ e1. From � � if (true) e1 else e2 : T , by Lemma 3.2(7), we have �′ � true :
boolean, �1 � e1 : T ′ and �2 � e2 : T ′ , with �′ + (�1 ∨ �2) � � and T ′ ≤ T . We have �1 � �1 ∨ �2, so, since 
�1 � �1 ∨ �2 � �′ + (�1 ∨ �2) � � and T ′ ≤ T , by rule (t-sub) we derive � � e1 : T .

(IF-FALSE) Analogous to (if-true).
(INSTOF-TRUE) We have new C′(e1, . . . , en) instanceof C −→ true with C′ ≤ C. From � � new C′(e1, . . . , en) instanceof C

T , by Lemma 3.2(8), we have T = boolean and �′ � new C′(e1, . . . , en) : D, with �′ � �. By (t-true) we have 
∅ � true : T . Since ∅ � �, by rule (t-sub) we derive � � true : T .

(INSTOF-FALSE) Analogous to (instof-true).
(CAST) We have (C)new C′(v1, . . . ,vn) −→ new C′(v1, . . . ,vn) with C′ ≤ C. From � � (C)new C′(v1, . . . ,vn) : T , by 

Lemma 3.2(9), we have �′ � new C′(v1, . . . ,vn) : D, and C ≤ D, with �′ � � and C ≤ T . By Lemma 3.2(3) we have 
�i � vi : Ti for all i ∈ 1..n, ¬abs(C′), and fields(C′) = T1 f1; . . . Tn fn;, with �1 + . . . + �n � �′ and C′ ≤ D. By rule
(t-new) we derive �1 + . . . + �n � new C′(v1, . . . ,vn) : C′ . Since �1 + . . . + �n � �′ � � and C′ ≤ C ≤ T , by rule (t-sub)

we derive � � new C′(v1, . . . ,vn) : T . �
4. Combining coeffect algebras

We formally define coeffect algebras and related notions, and a construction which, given a family of coeffect algebras, 
returns a unique coeffect algebra of heterogeneous coeffects.

Definition 4.1 (Coeffect algebra). A coeffect algebra is a tuple R = 〈|R|,�,+, ·,0,1〉 such that:

• 〈|R|, �〉 is a partially ordered set, with binary joins ∨;
• 〈|R|, �, +, 0〉 is a partially ordered commutative monoid;
• 〈|R|, �, ·, 1〉 is a partially ordered monoid;

and, moreover, the following axioms are satisfied:

• r · (s + t) = r · s + r · t and (s + t) · r = s · r + t · r, for all r, s, t ∈ |R|;
• r · 0 = 0 and 0 · r = 0, for all r ∈ |R|;
7
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• 0 � r, for all r ∈ |R|.

Essentially, a coeffect algebra is a partially ordered semiring, that is, a semiring together with a partial order relation on 
its underlying set, making addition and multiplication monotonic with respect to it and having the zero as its least element. 
The partial order relation is assumed to have binary joins; that is, for any pair of coeffects r, s, there is a coeffect, denoted 
r ∨ s, such that r � (r ∨ s) and s � (r ∨ s), that is, it is an upper bound for r and s, and, for each other upper bound t , 
(r ∨ s) � t , that is, it is the least upper bound (join). Without this property, typing rules (t-invk), (t-st-invk), (t-block), and (t-if)

in Fig. 2 should be expressed in a non-algorithmic way, relying on the existence of some upper bound. A homomorphism of 
coeffect algebras f : R → S is a monotone function f : 〈|R|, �R〉 → 〈|S|, �S〉 between the underlying partial orders, which 
preserves binary joins and the semiring structure, that is, it has to satisfy the following equations:

• f (r ∨R s) = f (r) ∨S f (s), for all r, s ∈ |R|;
• f (0R) = 0S and f (r +R s) = f (r) +S f (s), for all r, s ∈ |R|;
• f (1R) = 1S and f (r ·R s) = f (r) ·S f (s), for all r, s ∈ |R|.

Coeffect algebras and their homomorphisms form a category denoted by CoeffAlg .
The following example presents two coeffect algebras which will play an important role.

Example 4.2.

1. The semiring N = 〈N, ≤, +, ·, 0, 1〉 with the natural order and the usual arithmetic operations is a coeffect algebra.
2. The trivial semiring T , whose carrier is a singleton set |T | = {∞}, the partial order is the equality, addition and 

multiplication are defined in the trivial way and 0T = 1T = ∞, is a coeffect algebra.

It is easy to see that, given a coeffect algebra R, if 0 = 1, then R is isomorphic to T . Indeed, for all r ∈ |R|, we have 
r = 1 · r = 0 · r = 0, hence the underlying set of R is a singleton and so it is isomorphic to T .

Consider a coeffect algebra R. Then, we can define functions ιR : |N | → |R| and ζR : |R| → |T | as follows:

ιR(n) =
{

0R if n = 0

ιR(m) +R 1R if n = m + 1
ζR(r) = ∞

That is, ιR maps a natural number n to the sum in R of n copies of 1R , while ζR maps every element of R to ∞. Both 
these functions give rise to homomorphisms ζR : R → T and ιR : N → R. This fact for ζR is straightforward, and for ιR
is proved in Proposition 4.3 below. Moreover, ιR is the unique homomorphism from N to R, and, conversely, ζR is the 
unique homomorphism from R to T . In other words, in the terminology of category theory, N and T are, respectively, the 
initial and final object in the category CoeffAlg of coeffect algebras with their homomorphisms. This property is important 
in the construction of a unique coeffect algebra of heterogeneous coeffects from a family of coeffect algebras, as described 
in the following.

Proposition 4.3. The following facts hold:

1. N is the initial object in CoeffAlg ;
2. T is the terminal object in CoeffAlg .

Proof. Item 2 is straightforward as the singleton set is a terminal object in the category of sets and functions. Towards a 
proof of Item 1, let f : N →R be a coeffect algebra homomorphism and note that, since n = 1 + · · · + 1 (n times), for all 
n ∈ N , and f preserves sums and the unit, we get f (n) = f (1) +R · · · +R f (1) = 1R +R · · · +R 1R (n times). That is, 
we have f (n) = ιR(n), for all n ∈ N . Therefore, to conclude, we just have to show that the map ιR is a coeffect algebra 
homomorphism. The fact that ιR(0) = 0R and ιR(1) = 1R is immediate. The fact that ιR(n + m) = ιR(n) +R ιR(m) and 
ιR(n · m) = ιR(n) ·R ιR(m) follows from a straightforward induction on n, using distributivity and nullity properties of the 
coeffect algebra R. In order to prove monotonicity, consider n ≤ m and proceed by induction on m − n. If m − n = 0, then 
n = m and so the thesis is trivial. If m −n = k +1, we have m −(n +1) = k, then by induction hypothesis we get ιR(n +1) �R
ιR(m). Since ιR(n + 1) = ιR(n) +R ιR(1) and 0R �R ιR(1), we get ιR(n) = ιR(n) +R 0R �R ιR(n) +R ιR(1) �R ιR(m), 
as needed. Finally, to prove that ιR preserves binary joins, note that n ∨ m in N is either n or m as either n ≤ m or m ≤ n. 
Let us assume n ≤ m hence n ∨m = m, the other case is analogous. By monotonicity of ιR , we have ιR(n) �R ιR(m), hence 
ιR(n) ∨R ιR(m) = ιR(m) = ιR(n ∨ m), as needed. �

We describe now a construction which, given a family of coeffect algebras, returns a unique coeffect algebra of heteroge-
neous coeffects. The fact that the construction actually gives a coeffect algebra is modularly expressed by some lemmas and 
a main theorem; all proofs are in the Appendix.
8
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In the following, we assume a set of kinds K including Nat and Triv and a K-indexed family of coeffect algebras (Rk)k∈K
such that RNat = N and RTriv = T . For each k ∈ K , we abbreviate by ιk and ζk , respectively, the homorphisms ιRk and ζRk

defined above.

Heterogeneous coeffects The set of heterogeneous coeffects is defined as |H| = {k:r | r ∈ |Rk|}. That is, they are all those of 
the coeffect algebras in the family, each one paired with its original kind.

Coeffects counting occurrences (natural numbers) and the trivial coeffect are assumed to be always included for the 
following reasons. The 1 in the coeffect algebra of heterogeneous coffects will be Nat:1, that is, that of natural numbers. 
Such coeffect is assigned to any occurrence of a variable, see rule (t-var) in Fig. 2. This means that bottom-up computations 
of coeffects always start by counting occurrences; when a coeffect needs to be combined with another, this is always 
possible since natural numbers can be mapped into coeffects of any kind, with the ιk homomorphism. On the other hand, 
apart from natural numbers, the result of combining coeffects of different kinds will always be the trivial coeffect.

Partial order The partial order �H on |H| is defined as follows:

(�H 1) k:r �H k:s iff r �k s, k �= Triv

(�H 2) k:r �H Triv:∞ for all k and r

(�H 3) Nat:n �H k:s iff ιk(n) �k s, k �= Nat,Triv

where �k is the partial order of algebra Rk . Here and in the following, we emphasize in grey conditions which are only 
added to have non-overlapping cases, otherwise we should prove well-definedness.

The partial order on coeffects of the same kind is preserved; coeffects of different kinds are uncomparable, with two 
exceptions: the trivial coeffect is an upper bound of any other, and a natural number is a lower bound of a coeffect of a 
certain kind if the same holds for its image in such kind, obtained through the unique homomorphism.

Lemma 4.4. 〈|H|, �H〉 is a partially ordered set.

We define the binary join operator ∨H as follows:

(∨H1) k:r ∨H k:s = k:(r ∨k s)

(∨H2) k1:r ∨H k2:s = ∞ if k1 �= k2, k1 �= Nat,k2 �= Nat

(∨H3) k:r ∨H Nat:n = k:(r ∨k ιk(n)) if k �= Nat

(∨H4) Nat:n ∨H k:r = k:(ιk(n) ∨k r) if k �= Nat

where ∨k is the binary join of algebra Rk . That is, the join of coeffects of the same kind is that in their coeffect algebra; 
the join of coeffects of different kinds is the trivial coeffect, apart from natural numers which can be mapped into coeffects 
of any kind.

Lemma 4.5. For all k1:r, k2:s, k3:t ∈ |H|:

1. k1:r �H k1:r ∨H k2:s, k2:s �H k1:r ∨H k2:s
2. k1:r �H k3:t, k2:s �H k3:t implies k1:r ∨H k2:s �H k3:t

Sum and multiplication We define the sum operator +H as follows:

(+H1) k:r +H k:s = k:(r +k s)

(+H2) k1:r +H k2:s = ∞ if k1 �= k2, k1 �= Nat,k2 �= Nat

(+H3) k:r +H Nat:n = k:(r +k ιk(n)) if k �= Nat

(+H4) Nat:n +H k:r = k:(ιk(n) +k r) if k �= Nat

where +k is the sum of the coeffect algebra Rk . The definition is similar to that of the join operator.
9
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Lemma 4.6. 〈|H|, �H, +H, Nat:0〉 is a partially ordered commutative monoid.

We define the multiplication operator ·H as follows:

(·H1) k:r ·H k:s = k:(r ·k t) if k:r,k:s �= Nat:0

(·H2) k1:r ·H k2:s = ∞ if k1 �= k2, k1 �= Nat,k2 �= Nat

(·H3) k:r ·H Nat:n = k:(r ·k ιk(n)) if n �= 0, k �= Nat

(·H4) Nat:n ·H k:r = k:(ιk(n) ·k r) if n �= 0, k �= Nat

(·H5) Nat:0 ·H k:r = k:r ·H Nat:0 = Nat:0

where ·k is the multiplication of the coeffect algebra Rk . The definition is analogous to those of the join and sum operators, 
except that the result of multiplying by Nat:0 should be Nat:0, rather than being obtained mapping 0 in the kind k of the 
other argument, which would produce the 0 of that kind.

Lemma 4.7. 〈|H|, �H, ·H, Nat:1〉 is a partially ordered monoid.

Theorem 4.8. H = 〈|H|, �H, +H, ·H, Nat:0, Nat:1〉 is a coeffect algebra.

5. User-defined coeffects

We describe now an extension of the calculus supporting user-defined coeffects, reported in Fig. 3.

Fig. 3. Syntax with user-defined coeffects.

The only differences with the previous syntax are emphasized in grey: we include a non-annotated block, and in the 
annotated version the coeffect is in turn an expression of the calculus, notably a value, as detailed below.

We take a stratified approach, where the class table consists of two parts.

Standard class table The first part is a standard FJ class table, without coeffect annotations. Classes declared in this class 
table can be coeffect classes, that is, classes implementing methods corresponding to the ingredients of a coeffect algebra. In 
the calculus, we assume a predicate coeff(C) holding when C is a coeffect class. In the explicit syntax of the class table used 
to write examples, we will add a coeffect modifier before class. We assume that, if coeff(C) holds, then:

mtype(C,leq) = 	, C → boolean
mtype(C,join) = 	, C → C
mtype(C,sum) = 	, C → C
mtype(C,mul) = 	, C → C
mtype(C,zero) = → C
mtype(C,one) = → C

where, in the standard class table, we use 	 to denote that the method is an instance method.
We assume the following predefined coeffect classes:

abstract coeffect class Nat {
Nat join(Nat x){if (this.leq(x)) x else this}
static Nat zero(){new Zero()}
static Nat one(){new Succ(Nat.zero())}
}

class Zero extends Nat {
10
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boolean leq(Nat x){true}
Nat sum(Nat x){x}
Nat mult(Nat x){this}

}

class Succ extends Nat {
Nat pred;
boolean leq(Nat x){
if (x instanceof Zero) false
else pred.leq(((Succ) x).pred)

}
Nat sum(Nat x){new Succ(pred.sum(x))}
Nat mult(Nat x){pred.mult(x).sum(x)}

}

coeffect class Triv {
boolean leq(Triv t){true}
Triv join(Triv t){this}
Triv sum(Triv t){this}
Triv mult(Triv t){this}
static Triv zero(){new Triv()}
static Triv one(){new Triv()}

}

Annotated class table The second part is a class table where coeffect annotations are (closed) values; we use the meta-
variable v̂ rather than v to suggest that they are expected to be coeffect values, that is, values of (a subclass of) a coeffect 
class. Coeffect annotations could be generalized to be arbitrary expressions; here we use this simpler assumption to make 
the presentation lighter. We will write �coeff v̂ : C to abbreviate ∅ � v̂ : C and coeff(C), where these are judgments in the 
standard class table, and �coeff v̂ if �coeff v̂ : C for some C, that is, v̂ is a coeffect value.

In this class table, we have that the enriched method type, returned by function mtype, is of shape:

• either v̂0, Tv̂1
1 . . . Tv̂n

n → T

• or Tv̂1
1 . . . Tv̂n

n → T , meaning that the method is static.

The class table is stratified in the sense that the second part can use classes declared in the first part (the standard class 
table), but not conversely. Notably, as said above, coeffect annotations in the second class table are values typechecked in 
the standard part; moreover, standard classes can be used in the annotated class table assuming everywhere an implicit 
trivial annotation, that is, new Triv().

For a given class table, the parametric type system defined in Fig. 2 is instantiated taking the coeffect algebra of hetero-
geneous coeffects obtained with the construction in Section 4, starting from the following family of coeffect algebras:

• the kinds are the names of declared coeffect classes (including the predefined Nat and Triv)
• for each kind (coeffect class), the elements of the carrier are the corresponding coeffect values, and the partial order 

and the operations are derived from methods, as will be detailed in the following.

Note that, since overloading is prevented by assumption (t-inh-meth), a coeffect class cannot be extended by another 
coeffect class. Hence, the coeffect class of each coeffect value is uniquely determined.

Also note that a coeffect value v̂ such that �coeff v̂ : C corresponds to a kinded coeffect C:v̂ as abstractly defined in 
Section 4. Accordingly with this remark, we will abbreviate new Zero() and new Succ(new Zero()) by Nat:0 and Nat:1, 
respectively.

The typing rules obtained by this instantiation are all reported, for reader’s convenience, in Fig. 4. Points where it is 
made explicit that coeffects are values of the calculus are emphasized in grey. In particular, note that the one coeffect of 
the heterogeneous coeffect algebra is Nat:1, and that, in rule (t-block), it must be checked that the annotation is actually a 
coeffect value.

Provided that code defining coeffects is terminating (see below), the typing rules directly lead to a typechecking algo-
rithm. Indeed:

• the type of an expression, if any, can be computed in the standard way, notably subsumption can be replaced by explicit 
subtyping conditions for arguments in rules (t-new), (t-invk), and (t-st-invk), and initialization expression in rule (t-block), 
and for arguments/result in conditions (t-meth) and (t-st-meth)

• the coeffects can be computed bottom-up, starting from the rules for variable and constants, also thanks to the 
fact that, when an upper bound of coeffects is required, as in rule (t-if) and side conditions of rules (t-invk), (t-st-
11
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Fig. 4. Type-and-coeffect system with user-defined coeffects.

invk), and (t-block), it is computed by using the join operator; subsumption can be analogously replaced by explicit 
subtyping conditions on coeffect contexts for initialization expression in rule (t-block), and for arguments/result in 
conditions (t-meth) and (t-st-meth).

Example 5.1 (Affinity). Affinity coeffects could be implemented as follows:

abstract coeffect class Affinity {
Affinity join(Affinity x){if (this.leq(x)) x else this}
static Affinity zero(){new ZeroA()}
static Affinity one(){new One()}
}

class ZeroA extends Affinity {
boolean leq(Affinity x){true}
Affinity sum(Affinity x){x}
Affinity mult(Affinity x){this}

}
class One extends Affinity {

boolean leq(Affinity x){!(x instanceof ZeroA)}
Affinity sum(Affinity x){
if (x instanceof ZeroA) this else new Omega()

}
Affinity mult(Affinity x){x}

}
class Omega extends Affinity {

boolean leq(Affinity x){x instanceof Omega}
Affinity sum(Affinity x){this}
Affinity mult(Affinity x){
if (x instanceof ZeroA) x else this

}
}

and the previous Example 3.1 becomes as follows:
12
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class Pair {A fst; A snd;}
class A {

A drop [new ZeroA()] () {new A()}
A identity [new One()] () {this}
Pair duplicate [new Omega()] () { new Pair(this,this)}

}

Example 5.2 (Privacy levels). The following coeffect class Privacy provides a way to specify the privacy level of data. In this 
case, the coeffects form a three point lattice: Public, Private and Irrelevant with zero being Irrelevant, one being 
Private and order Irrelevant�Private�Public. Sum is the join and multiplication is defined by r1 · r2 =Irrelevant
if either r1 =Irrelevant or r2 =Irrelevant, otherwise r1 · r2 = r1 ∨ r2.

abstract coeffect class Privacy {
Privacy join(Privacy x){if (this.leq(x)) x else this}
Privacy sum(Privacy x){this.join(x)}
static Privacy zero(){new Irrelevant()}
static Privacy one(){new Private()}
}

class Irrelevant extends Privacy {
boolean leq(Privacy x){true}
Privacy mult(Privacy x){this}

}
class Private extends Privacy {

boolean leq(Privacy x){!(x instanceof Irrelevant)}
Privacy mult(Privacy x){this.join(x)}
}

}
class Public extends Privacy {

boolean leq(Privacy x){x instanceof Public}
Privacy mult(Privacy x){this.join(x)}

}

Example 5.3 (Pairs). The following example shows that the programmer can also define coeffect classes constructed by com-
bining other coeffect classes. The class APPair implements coeffects which are pairs of affinity coeffects and privacy levels.

coeffect class APPair {Affinity left; Privacy right;
boolean leq(APPair p){
this.left.leq(p.left)&&this.right(p.right)

}
APPair join(APPair p){
new APPair(this.left.join(p.left),this.right.join(p.right))

}
APPair sum(APPair p){
new APPair(this.left.sum(p.left),this.right.sum(p.right))

}
APPair mult(APPair p){
new APPair(this.left.mul(p.left),this.right.mul(p.right))

}
static APPair zero(){
new APPair(Affinity.zero(),Privacy.zero()

}
static APPair one(){
new APPair(Affinity.one(),Privacy.one())

}
}

In full Java, where a coeffect class could be expressed as a class implementing a certain generic interface, as described later, 
we could even define a generic class implementing pairs of arbitrary coeffects.

Following the stratified approach, we expect typechecking to be performed in two steps:

1. The standard class table, containing declarations of coeffect classes, is typechecked by the standard compiler.
13
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2. Code containing coeffect annotations written in Java is typechecked accordingly to the type-and-coeffect system in 
Fig. 4, where the underlying coeffect algebra is obtained by composing, with the construction described in Section 4, 
the user-defined coeffect algebras, whose operations are computed by executing user-defined methods in such class, as 
detailed below.

Recall that, with the usual notations and terminology of reduction relations, −→	 denotes the transitive and reflexive 
closure of −→	 , and e′ is a normal form of e if e −→	 e′ and there is no e′′ such that e′ −→ e′′ . It is easy to see that the FJ

reduction relation is deterministic, hence the normal form of e, if any, is unique. However, there can be no normal form at 
all, since the reduction of e could be non-terminating. We assume that methods leq, join, sum, mult, zero, and one in 
coeffect classes always terminate, so that the notation nf(e) for the normal form of e in the definitions below is well-defined. 
Then, operations on coeffects of kind C, that is, coeffect values of class C, are defined as follows:

Leq v̂1 �C v̂2 = nf(v̂1.leq(v̂2))

Join v̂1 ∨C v̂2 = nf(v̂1.join(v̂2))

Sum v̂1 +C v̂2 = nf(v̂1.sum(v̂2))

Multiplication v̂1 ·C v̂2 = nf(v̂1.mul(v̂2))

Zero 0C = nf(C.zero())

One 1C = nf(C.one())

Note that the unique homomorphism ιC from the initial coeffect algebra to the coeffect algebra implemented by C
turns out to be computed using the zero, one, and sum methods, as follows, where ιC(n) is the coeffect of class C
corresponding to n:

ιC(Nat:0) = nf(C.zero()) ιC(Nat:1) = nf(C.one())

ιC(new Succ(n)) = nf(ιC(n).sum(C.one()))

For the whole process to work correctly, the following are responsabilities of the programmer:

• Code defining coeffects should be terminating, since, as described above, the second typechecking step requires to exe-
cute code typechecked in the first step.

• Coeffect classes should satisfy the required axioms, e.g., the sum derived from sum methods should be commutative 
and associative. The same happens, for instance, in Haskell, when one defines instances of Functor or Monad.

Implementations could use in a parametric way auxiliary tools, notably a termination checker to prevent divergence in 
methods implementing grade operations, and/or a verifer to ensure that they provide the required properties.

We end this section outlining how the approach could be implemented in full Java. We omit access modifiers to make 
the code lighter.

In the calculus, we abstractly modeled coeffect classes as classes required to implement certain methods. In the full Java 
language, such requirement could be imposed by defining the following generic interfaces:

interface Coeffect<T extends Coeffect<T>> {
boolean leq(T x);
T join(T x);
T sum(T x);
T mult(T x);

}

interface CoeffectFactory<T extends Coeffect<T>>{
T zero();
T one();

}

For instance, the implementation of affinity coeffects would become as follows, with subclasses as before:

abstract class Affinity implements Coeffect<Affinity>{
Affinity join(Affinity x){
if (this.leq(x)) x else this

}
}

class AffinityFactory implements CoeffectFactory<Affinity>{
Affinity zero(){new ZeroA()}
Affinity one(){new One()}

}

14
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Fig. 5. Some auxiliary classes.

Fig. 6. Channels.

Note that the implementation, as expected, depends on the features of the target language; for instance, in Scala we 
would likely use case classes, and, turning to a different paradigm, in Haskell we could express Coeffect as a typeclass, 
and coeffect algebras as its instances.

6. A programming example

We show a more significant programming example, which illustrates how different kinds of coeffects can be helpful in 
the same program; indeed it uses the coeffect classes Affinity and Privacy defined before. In this code we omit curly 
brackets when the body of a block is a block in turn, and we use sequences, which can be encoded as blocks where the 
local variable is unused.

The example illustrates a client-server application in which a client sends some data to a server using a session-based 
approach. We take inspiration from the encoding of sessions into the π -calculus with variants and linear I/O types of [11]. 
In our framework, where the zero coeffect is the least element, linear types are approximated as affine types. We assume 
to have some classes implementing the data and messages exchanged, see Fig. 5.

In Fig. 6 are the classes implementing affine input and output channels over which we can send a message and some 
private data. The affinity of the input and output channels is expressed by annotating the receiver of the send and receive 
methods with new One() of the Affinity coeffects. The send method of the class OutPrivChannel takes as input, in 
addition to the message and the data to be sent, an output channel that will be used, by whoever is receiving the message, 
to continue the interaction, that is, to send back a message. On the channels only private data can be sent. This is enforced 
by the annotation new Private() of the parameter data. The new One() annotation of the parameter cont asserts that 
the argument must be an affine channel. The method rcv of the class InPrivChannel returns a triple containing a message, 
a data and an output channel that will be used, by whoever receives the message, to continue the conversation.

The class Server of Fig. 7 implements a server which waits on a channel for a triple whose message should be either 
NextData or Stop.
If the server receives NextData, then, after creating a pair of input and output channels, it sends to whoever sent the triple 
(by using the output channel received) a triple containing the message new OK(), no data and the output channel created. 
Then, after processing the received data, the server continues the interaction by waiting on the input channel just created, 
which is paired with the output channel sent. This is done by the recursive call main(inCh).
If the server receives Stop, then it stops returning new OK() (we use this message also to signal that the protocol ended 
successfully).
If the server receives any other message, then it stops returning new KO(), meaning failure of the exchange. Note that the 
server receives the initial message from the client on the channel which is the parameter of the method. After receiving the 
message, the channel cannot be used any longer.
15
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Fig. 7. The server.

Fig. 8. The client.

Fig. 9. Starting the protocol.

The class Client of Fig. 8 implements a client of the previous server.
If the client wants to send more data to the server, after creating a new pair of input and output channels, it sends, on the 
channel it was given, a triple consisting of the message NextData, a new data and the created output channel. Then the 
client waits to receive a message on the input channel paired with the one sent. If the received message is OK, meaning 
that the server correctly processed the sent data, then the client starts again using the channel received from the server. 
This is done by the recursive call main(ch1). If the received message is KO, meaning that the server could not process the 
sent data, then the client stops returning new KO().
If the client does not want to send more data to the server, then it stops returning new OK().

The computation of the server and the client is started, see Fig. 9, by creating a pair of input and output channels and 
sending the output channel to the client and the input channel to the server. The fact that the channels are affine ensures 
that they will be used to realise the wanted binary session. Here we assume to have a parallel composition operator.
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7. Related work

Our work has been inspired by Granule [19], a functional language equipped with graded modal types, where different 
kinds of coeffects (grades) can be used at the same time, including naturals for exact usage, security levels, intervals, infinity, 
and products of coeffects.

We owe to Granule the overall objective of exploiting coeffects in a programming language, pursued here in a different 
paradigm, and the idea of allowing different kinds of coeffects to coexist. Concerning this latter objective, in this paper 
we push forward the Granule approach, since we do not want the available coeffects to be fixed, but definable by the 
programmer. To this aim we define the coeffect algebra of heterogeneous coeffects in Section 4. The solution offered by this 
construction is rudimentary, in the sense that combination of coeffects of different kinds always leads to the trivial coeffect, 
apart from natural numbers which can be properly combined with others through their embedding. On the contrary, by 
relying on the fact that the available coeffects are known in advance, Granule can provide ad-hoc combinations. However, 
our approach has the important advantage to be modular, in the sense that combination of several coeffect algebras is shown 
to produce a coeffect algebra, allowing us to reuse the general meta-theory, e.g., to prove soundness, rather than providing 
an ad-hoc proof. The simple construction of this paper is a first step towards more flexible definitions, as discussed in the 
next section.

Other practical programming languages incorporating (a variant of) coeffects are Idris 2 [7] and Linear Haskell [3]. The 
first is a dependently typed functional language implementing an instance of quantitative type theory [2], thus serving also 
as a proof assistant. Differently from Granule and this paper, Idris 2 uses just a single semiring of coeffects consisting of 0, 
1 and ω, as the main goal is to identify code not needed at runtime. The second adds to Haskell first-order linearly typed 
functions and data structures. Function types are annotated with the multiplicity (a natural number) of the argument that 
they require to produce their output. In our setting this would be using as coeffects the semiring of natural numbers. We 
conjecture that, with a construction similar to the one we propose in this paper, Linear Haskell could support user-defined 
coeffects. As mentioned before, they would be, rather than values of a (subclass of) a coeffect class as in our calculus, values 
of instances of a predefined Coeffect typeclass offering the ingredients of coeffect algebras.

Turning now to the literature on coeffects in general, the notion was firstly introduced by [20] and further analyzed 
by [21]. In particular, [21] develops a generic coeffect system which augments the simply-typed λ-calculus with context 
annotations indexed by coeffect shapes. The proposed framework is very abstract, and the authors focus only on two opposite 
instances: structural (per-variable) and flat (whole context) coeffects, identified by specific choices of context shapes.

Most of the subsequent literature on coeffects focuses on structural ones, for which there is a clear algebraic description 
in terms of semirings. This was first noticed by [8], who developed a framework for structural coeffects for a functional lan-
guage. Many advances have then been made to combine coeffects with other programming features, such as computational 
effects [12,19,10], dependent types [2,9,18], and polymorphism [1]. Other graded type systems are explored in [2,13,1], also 
combining effects and coeffects [12,19]. In all these papers, the process of tracking usage through grades is a powerful 
method of instrumenting type systems with analyses of irrelevance and linearity that have practical benefits like erasure of 
irrelevant terms (resulting in speed-up) and compiler optimizations (such as in-place update).

In [18] and [22] it was observed that contexts in a structural coeffect system form a module over the semiring of grades, 
even though they do not use this structure in its full generality, restricting themselves to free modules, that is, to structural 
coeffect systems. Recently, [6] shows a significant non-structural instance, namely, a coeffect system to track sharing in the 
imperative paradigm.

8. Conclusion

We proposed a Java-like calculus supporting, in variable declarations, coeffect annotations, allowing to express how 
variables should be used. We formally defined the type system and proved subject reduction, which includes preservation 
of coeffects, and provided several examples. Moreover, we have shown that coeffects can be heterogeneous, in the sense that 
different kinds of coeffects can be used in the same program, and they do not need to be fixed once and for all. Indeed, we 
provided a formal construction leading to a unique coeffect algebra, where, roughly, combining coeffects of different kinds 
gives the trivial coeffect. Finally, we proposed an extension of the calculus where programmers are able to define their own 
classes implementing coeffect algebras, so that coeffect annotations are themselves expressions of the calculus, similarly to 
what happens with user-defined Java exceptions.

In further work [5], we investigated three further developments of the contribution presented in this paper. First of all, 
the coeffect algebra of heterogeneous coeffects defined in Section 4 is constructed taking the simplest choice, corresponding 
to assume that the programmer “does not know” how to combine coeffects of different kinds. In [5], we designed a more 
general framework where, depending on some additional parameters, a coeffect algebra of heterogeneous coeffects can be 
constructed in many ways. Then, a limitation of the proposal in this paper is that, whereas it is possible to specify how a 
variable should be used (e.g., a parameter should be used at most once in a method’s body), it is not possible to do the 
same for the result of an expression (e.g., the result of a method). The variant of the calculus in [5], equipped with graded 
modal types, which are types annotated with coeffects (grades) [8,19,10], also similar to types annotated with modifiers or 
capabilities [16,15,14], overcomes this limitation. Finally, the soundness theorem proved in this paper states that coeffects 
are preserved, but does not express the fact that coeffects actually overapproximate the usage of resources, since the latter 
17
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is not modeled in the standard reduction semantics. To this end, we developed in [5] an instrumented semantics keeping 
track of resource consumption, as done in [9].

Coeffects considered in this paper are structural, in the sense that they are expressed and computed on a per-variable 
basis. However, in some cases the coeffect, expressing how an expression uses external resources, cannot be captured by 
just assigning independent scalar coeffects to single variables, but should be assigned to the whole context [21]. In our 
work, this would correspond to allow a “global” annotation in a method’s signature.

Moreover, expressive power could be added by allowing variables in coeffect annotations, so to specify, e.g., that a 
variable should be used no more than a certain number computed at runtime. This approach would require first the study 
of dependent coeffects on the foundational side, which, to the best of our knowledge, has not been done yet.

On the more applicative side, we could investigate how the proposal scales to realistic subsets of Java, and possible 
implementations. As mentioned, an interesting point is that implementations could use in a parametric way auxiliary tools. 
The application of the approach to different paradigms, e.g., in Haskell as sketched before, is also an interesting direction.
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Appendix A. Proofs of Section 4

Proof of Lemma 4.4. We have to prove that �H is reflexive, transitive and antisymmetric.
Reflexivity. Let k:r ∈ |H|. Since �k is reflexive, we have r �k r. By (�H 1) we get k:r �H k:s.
Transitivity. Let k1:r, k2:s, k3:t ∈ |H| and k1:r �H k2:s and k2:s �H k3:t . We split cases on the definition of k1:r �H k2:s.

(�H 1) k1 = k2 and k2 �= Triv
If k2 = k3 then, by transitivity of �k1 and (�H 1), we can conclude k1:r �H k3:t . If k3 = Triv then k1:r �H k3:t
holds by (�H 2). If k2 = Nat and k3 �= Nat, then we have ιk3 (s) �k3 t . Since ιk3 is an homomorphism, r �Nat s
implies ιk3 (r) �k3 ιk3 (s), so by transitivity of �k3 we have ιk3 (r) �k3 t . By (�H 3), we can conclude k1:r �H k3:t .

(�H 2) k2 = Triv
In this case we know that k3 = Triv, so k1:r �H k3:t by (�H 2).

(�H 3) k1 = Nat and k2 �= Nat
We have ιk2 (r) �k2 s. If k2 = k3 then, by transitivity of �k2 , we have ιk2 (r) �k2 t and, by (�H 3), k1:r �H k3:t . If 
k3 = Triv then we have the thesis by (�H 2).

Antisymmetry. Let k1:r, k2:s ∈ |H| and k1:r �H k2:s and k2:s �H k1:r. Then it must be k1 = k2. Therefore the thesis 
follows by the antisymmetry of �k1 and (�H 1). �
Proof of Lemma 4.5. Proof of Item 1. We split cases on the definition of k1:r ∨H k2:s.

(∨H1) k1 = k2
The thesis follows since �k1 has this property.

(∨H2) k1 �= k2, k1 �= Nat, k2 �= Nat
We have k1:r ∨H k2:s = Triv:∞, so, by (�H 2), we have the thesis.

(∨H3) k1 �= Nat, k2 = Nat
The thesis follows by (∨H3), (�H 3) and since �k1 has this property.

(∨H4) k1 �= Nat, k2 = Nat
The proof is similar the one above.

Proof of Item 2. We split cases on the definition of k1:r �H k3:t .

(�H 1) k1 = k3 and k1 �= Triv
If k1 = k2 then the thesis follows since �k1 has this property. If k2 = Nat then we know k1:r ∨H k2:s = k1:(r ∨k1

ιk1 (s)). By (�H 1) we have r �k1 t and by (�H 3) we have ιk1 (s) �k1 t . By these considerations we know r ∨k1

ιk1 (s) �k1 t and so by (�H 1) we have the thesis.
(�H 2) k3 = Triv:∞

The thesis follows from (�H 2).
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(�H 3) k1 = Nat and k3 �= Nat, Triv
If k2 = Nat we have k1:r ∨H k2:s = Nat:(r ∨Nat s). By (�H 3) we have ιk3 (r) �k3 t and ιk3 (s) �k3 t , so we know 
ιk3 (r) ∨k3 ιk3 (s) �k3 t . Since ι is an homomorphism, ιk3 (r) ∨k3 ιk3 (s) = ιk3 (r ∨Nat s), so by (�H 3) and (∨H1) we 
have the thesis. The proof for the case k2 = k3 is analogous to the proof for the case k1 = k3, k1 �= Triv and 
k2 = Nat. �

Proof of Lemma 4.6. We have to prove that +H is commutative, associative and monotonic with respect to �H and that 
Nat:0 is the identity of +H . In particular, given k1:r, k2:s, k3:t:

Commutativity. k1:r +H k2:s = k2:s +H k1:r. We split cases on the definition of k1:r +H k2:s.

(+H1) k1 = k2

The thesis follows since +k1 is commutative.
(+H2) k1 �= k2, k1 �= Nat.k2 �= Nat

The thesis follows since k1:r +H k2:s = ∞ and k2:s +H k1:r = ∞.
(+H3) k1 = Nat, r = n, k2 �= Nat

We have k1:r +H k2:s = Nat:n +H k2:s = k2:(ιk2 (n) +k2 s). By commutative property of +k2 we have k2:(ιk2 (n) +k2

s) = k2:(s +k2 ιk2 (n)) = k2:s +H Nat:n.
(+H4) k2 = Nat, s = n, k1 �= Nat

Analogous to the case above.

Associativity. (k1:r +H k2:s) +H k3:t = k1:r +H (k2:s +H k3:t). We split cases on the definition of k1:r +H k2:s.

(+H1) k1 = k2

If k2 = k3 the thesis follows from the associativity of +k2 . If k3 �= k2, k3 �= Nat, k2 �= Nat then we have the thesis 
since (k1:r +H k2:s) +H k3:t = k1:(r +k1 s) +H k3:t = Triv:∞ and k1:r +H (k2:s +H k3:t) = k1:r +H Triv:∞ = Triv:∞. 
If k1, k2 = Nat and k3 �= Nat we have (k1:r +H k2:s) +H k3:t = Nat:(r +Nat s) +H k3:t = k3:(ιk3 (r +Nat s) +k3 t). Since 
ι is an homomorphism, k3:(ιk3 (r +Nat s) +k3 t) = k3:((ιk3 (r) +k3 ιk3 (s)) +k3 t) and by the associativity of k3 we have 
k3:((ιk3 (r) +k3 ιk3 (s)) +k3 t) = k3:(ιk3 (r) +k3 (ιk3 (s) +k3 t)) = Nat:r +H k3:(ιk3 (s) +k3 t) = Nat:r +H (Nat:s +H k3:t). If 
k3 = Nat and k1 �= Nat the proof is analogous.

(+H2) k1 �= k2 and k1, k2 �= Nat
If k3 �= k1, k3 �= k2 and k3 �= Nat, then the thesis follows since (k1:r +H k2:s) +H k3:t = k1:r +H (k2:s +H k3:t) =
Triv:∞. If k3 = k1 then (k1:r +H k2:s) +H k3:t = Triv:∞ +H k3:t = Triv:∞ = k1:r +H (k2:s +H k3:t) = k1:r +H Triv:∞. 
If k2 = k3 then (k1:r +H k2:s) +H k3:t = Triv:∞ +H k3:t = k1:r +H (k2:s +H k3:t) = k1:r +H k2:(s +k2 t) = Triv:∞. If 
k3 = Nat then (k1:r +H k2:s) +H k3:t = Triv:∞ +H k3:t = Triv:(Triv:∞ +Triv ιTriv(t)) = Triv:∞.

(+H3) k1 = Nat, k2 �= Nat
If k3 = k2 then (k1:r +H k2:s) +H k3:t = k2:(ιk2 (r) +k2 s) +H k3:t = k2:((ιk2 (r) +k2 s) +k2 t). By associativity of +k2

we have k2:((ιk2 (r) +k2 s) +k2 t) = k2:(ιk2 (r) +k2 (s +k2 t)) = k1:r +H (k2:s +H k3:t). If k3 �= k2 and k3 �= Nat then we 
have (k1:r +H k2:s) +H k3:t = k2:((ιk2 (r) +k2 s) +H k3:t = Triv:∞. We also have k1:r +H (k2:s +H k3:t) = k1:r +H
Triv:∞ = Triv:∞. If k3 = Nat then (k1:r +H k2:s) +H k3:t = k2:(ιk2 (r) +k2 s) +H k3:t = k2:((ιk2 (r) +k2 s) +k2 ιk2 (t)) =
k2:(ιk2 (r) +k2 (s +k2 ιk2 (t))) = k1:r +H (k2:s +H k3:t).

(+H4) k2 = Nat, k1 �= Nat
Analogous to the case above.

Monotonicity. If k1:r �H k2:s and k3:t �H k4:u then k1:r +H k3:t �H k2:s +H k4:u. We split cases on the definition of 
k1:r �H k2:s.

(�H 1) k1 = k2 and k1, k2 �= Triv
If k2 = k3 = k4 we have by (�H 1) r �k1 s and t �k1 u, so we have the thesis by the monotonicity of +k1 with 
respect to �k1 and (�H 1). If k3 = k4 and k2 �= k4 then we have k2:s +H k4:u = ∞, so, by (�H 2) we have 
the thesis. If k4 = Triv by (�H 2) and since k2:s +H k4:u = ∞ we have the thesis. If k3 = Nat and k4 �= Nat and 
k4 = k1 then, by (�H 1) we have r �k2 s and ιk2 (t) �k2 u. By the monotonicity of +k2 with respect to �k2 we have 
r +k2 s �k2 ιk2 (t) +k2 u and so, by (�H 1), (+H1) and (+H4), we have the thesis. If k3 = Nat and k4 �= Nat and 
k4 �= k1 then by k2:s +H k4:u = ∞ and (�H 2) we have the thesis.

(�H 2) k2 = Triv:∞
Since k2:s +H k4:u = ∞ by (�H 2) we have the thesis.

(�H 3) k1 = Nat and k2 �= Nat
If k1 = k3 = Nat and k4 = k2 then we have ιk2 (r) �k2 s and ιk2 (t) �k2 u, so by monotonicity of +k2 with respect 
to �k2 we have ιk2 (r) +k2 s �k2 t +k2 u. By (�H 1), (+H4) and (+H1) we have the thesis. The other cases are 
analogous as the cases in which k3 = Nat and k4 �= Nat.
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Identity element. k:r +H Nat:0 = Nat:0 +H k:r = k:r for all k:r ∈ |H|. If k = Nat then Nat:0 +H k:r = Nat:0 +H Nat:r =
Nat:(0 +Nat r) = Nat:r = k:r. If k �= Nat then Nat:0 +H k:r = k:(ιk(0) +k r) = k:r since ιk(0) = 0k and 0k +k r = r. �
Proof of Lemma 4.7. We have to prove the same properties as Lemma 4.6, except commutativity. Since ·H is defined simi-
larly to +H we can ignore the cases already covered in the previous proof and consider only the additional cases of ·H:

Associativity. (k1:r ·H k2:s) ·H k3:t = k1:r ·H (k2:s ·H k3:t). We consider only one possible definition of k1:r ·H k2:s:

(·H5) k1:r = Nat:0 or k2:s = Nat:0 or k3:t = Nat:0
We consider only k1:r = Nat:0, the other cases are similar. We have k1:r ·H k2:s = Nat:0 by (·H5). Again by (·H5)

we have Nat:0 ·H k3:t = Nat:0. Since k1:r ·H (k2:s ·H k3:t) = Nat:0 for all k2, k3, s, t we have the thesis.

Monotonicity. If k1:r �H k2:s and k3:t �H k4:u then k1:r ·H k3:t �H k2:s ·H k4:u. The only interesting case is when 
k1:r = Nat:0 or k3:t = Nat:0. We consider only the first case, the other is analogous. We have k2:s ·H k4:u = k′:r′ for a given 
r′, k′ . We also have that 0k′ �k′ r′ and ιk′ (0) = 0k′ , so, by (·H5) and (�H 3) we derive k1:r ·H k3:t = Nat:0 �H k2:s ·H k4:u, 
that is, the thesis.

Identity element. k:r ·H Nat:1 = Nat:1 ·H k:r = k:r for all k:r ∈ |H|. The proof is analogous to the +H case. �
Proof of Theorem 4.8. We have to prove the properties listed in Definition 4.1. We already proved that 〈|H|, �H〉 is a 
partially ordered set with binary joins ∨H , that 〈|H|, �H, +H, Nat:0〉 is a partially ordered commutative monoid and that 
〈|H|, �H, ·H, Nat:1〉 is a partially ordered monoid. It has remained to prove:

Distributivity. k1:r ·H (k2:s +H k3:t) = k1:r ·H k2:s +H k1:r ·H k3:t and (k2:s +H k3:t) ·H k1:r = k2:s ·H k1:r +H k3:t ·H k1:r, 
for all k1:r, k2:s, k3:t ∈ |H|. We prove only left-distributivity, right-distributivity is analogous. We split cases on the definition 
of k2:s +H k3:t .

(+H1) k2 = k3
If k1 = k2 and k1:r, k2:(s +k2 t) �= Nat:0 we have the thesis since ·k1 distributes over +k1 . If k1 �= k2 and k1, k2 �= Nat
we have k1:r ·H (k2:s +H k3:t) = k1:r ·H k2:(s +k2 t) = Triv:∞ and k1:r ·H k2:s +H k1:r ·H k3:t = Triv:∞ +H Triv:∞ =
Triv:∞. If k1 = Nat, r �= 0 and k2 �= Nat we have k1:r ·H (k2:s +H k3:t) = k1:r ·H k2:(s +k2 t) = k2:(ιk2 (r) ·k2 (s +k2 t)). 
We have k2:(ιk2 (r) ·k2 (s +k2 t)) = k2:((ιk2 (r) ·k2 s) +k2 (ιk2 (r) ·k2 t)) = k2:(ιk2 (r) ·k2 s) +H k2:(ιk2 (r) ·k2 t) = k1:r ·H k2:s +H
k1:r ·H k3:t . If k2 = Nat, s, t �= 0 and k1 �= Nat, the proof is analogous. If k1:r = Nat:0 we have k1:r ·H (k2:s +H k3:t) =
Nat:0 by (·H5) and k1:r ·H k2:s +H k1:r ·H k3:t = Nat:0 +H Nat:0 = Nat:0. If k2:(s +k2 t) = Nat:0 we know that 
k2:s = Nat:0 and k3:t = Nat:0. We also have k1:r ·H (k2:s +H k3:t) = Nat:0 by (·H5) and k1:r ·H k2:s +H k1:r ·H k3:t =
Nat:0 +H Nat:0 = Nat:0.

(+H2) k2 �= k3 and k2, k3 �= Nat
If k1:r �= Nat:0 we have k1:r ·H (k2:s +H k3:t) = k1:r ·H Triv:∞ = Triv:∞. We know k1:r ·H k2:s +H k1:r ·H k3:t =
k′:s′ +H k′′:t′ . We know that necessarily k′ �= k′′ and k′, k′′ �= Nat, so k′:s′ +H k′′:t′ = Triv:∞. If k1:r = Nat:0 we have 
k1:r ·H (k2:s +H k3:t) = Nat:0 and k1:r ·H k2:s +H k1:r ·H k3:t = Nat:0 +H Nat:0 = Nat:0.

(+H3) k2 �= Nat and k3 = Nat
if k1 = k2 we have k1:r ·H (k2:s +H k3:t) = k1:(r ·k1 (s +k1 ιk1 (t))) and so by (·H1) and (+H1) and since ·k1 and +k1

have the required property, we have the thesis. If k1 = Nat and r �= 0, then k1:r ·H (k2:s +H k3:t) = k2:(ιk2 (r) ·k2 (s +k2

ιk2 (t))). By (·H1), (+H1), (·H3), (+H3) and since ·k2 and +k2 have the required property, we have the thesis. If 
k1:r = Nat:0 by (·H5) we have k1:r ·H (k2:s +H k3:t) = Nat:0 and by (·H5) we have k1:r ·H k2:s +H k1:r ·H k3:t =
Nat:0 +H Nat:0 = Nat:0, that is, the thesis. If k1 �= k2 and k1 �= Nat we have k1:r ·H (k2:s +H k3:t) = k1:r ·H (k2:s′). 
By (·H2) we have k1:r ·H (k2:s′) = Triv:∞. We also known by (·H2) that k1:r ·H k2:s +H k1:r ·H k3:t = Triv:∞ +H
Triv:∞ = Triv:∞.

(+H4) k2 = Nat and k3 �= Nat
Similar to the case above.

Zero element. k:r · Nat:0 = Nat:0 · k:r = Nat:0, for all k:r ∈ |H|. By definition in (·H5).
Nat:0 is minimum element. Nat:0 �H k:r for all k:r ∈ |H|. We know that for all kinds k, for all its elements r, it holds 

0k �k r. We know that ιk(0) = 0k so by (�H 3) we have Nat:0 �H k:r. �
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