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1. Introduction
1.1. Background

Random walks in random environments [60] have been in the focus of attention since the 1970’s, exhibiting rich behaviour that
is associated with slow-down phenomena and anomalous large deviations [7-9,14-16,21,27,32,33,35-38,44,48,51-55,61]. Large
deviations have also been investigated for random polymers and random walks in random potentials [13,22,39,40,42], and more
recently for random walks in dynamic random environments [2,3,5,41,50]. Surprisingly, in spite of the great theoretical importance
and the wide applicability of renewal processes, much less attention has been paid to renewal processes in random environments. To the
best of our knowledge, the only attempt in this direction was made in [6], in which the waiting times depend on a latent stochastic
process and some of the standard limit theorems of renewal theory are generalised, including the renewal theorem and Blackwell’s
theorem. Viewed from a different perspective, renewal processes in random environments appear in the study of random polymers
pinned at an interface with disorder [19,23], and of large deviations for words cut out from a random letter sequence [10,20].

The purpose of the present paper is to develop large deviation principles (LDPs) for renewal processes in random environments.
Specifically, we assume that each renewal involves a reward taking a value in a real separable Banach space, and we characterise
the quenched fluctuations of the total reward over time, i.e., fluctuations conditional on a typical realisation of the environment.
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In the absence of disorder, the total reward over time defines a so-called renewal-reward process [31], so that in fact we deal with
renewal-reward processes in random environments. Our approach exploits subadditivity properties of renewal models, which in
the absence of disorder lead to LDPs for the total reward under optimal hypotheses [58,59]. Subadditivity arguments for proving
the existence of thermodynamic limits in statistical mechanics and ergodic limits in probability theory trace back to Ruelle [46],
Lanford [30], and Kingman [29].

The problem we address fits naturally into the context of large deviations for random walks in random environments and
random potentials, but it differs from the mainstream literature in two respects. First, the renewal processes we consider allow for
renewal times with possibly unbounded and heavy-tailed increments, in contrast to the random walks in random environments and
random potentials with bounded increments that are typically considered in the literature. Second, motivated by queuing theory [1],
insurance and finance [43], and statistical mechanics [56], which consider rewards of various types, we investigate large deviations
for random variables that span vector spaces, rather than process-level large deviations. LDPs for the total reward cannot be deduced
from process-level LDPs, except for special cases where a contraction principle [17,18] can be employed and exponential moments
are finite [47].

In order to identify rate functions, we consider a class of models where the rate function in the quenched LDP can be related
via convex conjugation to a cumulant generating function, which itself is traced back to a quenched free energy. Since the latter in
general is known only as a subadditive limit, we also provide a variational formula for the quenched free energy, which involves
correctors (gradients of sorts) and is deduced as a variational solution for the growth rate of a renewal equation in a random
environment. This variational formula applies, in particular, to the free energy of the random pinning model and appears to be new
in that context. Similar variational formulas have been obtained previously for random walks in random environments and random
potentials [13,22,40,42,44,51].

The paper is organised as follows. Section 1.2 introduces the class of models considered, identified as generalised pinning models
with general rewards, as well as some basic tools needed for the study of their large deviations, including Kingman’s subadditive
ergodic theorem. Section 1.3 states our main assumptions and formulates our main results in the form of LDPs. Section 1.4 offers a
brief discussion, while Section 1.5 describes three examples to which the main results can be applied. Proofs are given in Sections 2
and 3.

1.2. Basic ingredients

Random environment. The random environment, also called disorder, is sampled from a probability space (£2, F,P) endowed with an
ergodic measure-preserving transformation f. Expectation under P is denoted by E.

Renewals and rewards. PutN :={1,2,...}, N, := {0}UN, and N := NU{co}. Let p,, be a probability mass function on N parametrised
by w € 2 in such a way that o ~ p,(s) is a measurable function for all s. In addition, let (X, ||-||) be a real separable Banach space
equipped with the Borel s-field B(X) and, for s € N, let 4,(+|s) be a probability measure on B(X) parametrised by w in such a way
that w — 4,(Al|s) is measurable for all A € B(X). We call p,, the waiting-time distribution and A,,(-|s) the reward probability measure.
In fact, for a given disorder w, we consider a sequence S,,S,,... of waiting times taking values in N and a sequence X, X,,... of
rewards taking values in X whose joint law P, satisfies

n
Pw[Sl = Sl""’Sn = Sp» Xl € Al’ ""Xn = An] = prll*la)(si) Af’/‘—l(u(Ailsi)
i=1

forn € N, sy,...,s, € N, and A,,...,A, € B(X), where 1, := 0 and #;, := s; + - + s, for i > 1. This law describes some
phenomenon that occurs at the renewal times T; := S, + - + S;, with T, := 0, while an initial environment w evolves over time by
successive applications of the transformation f. The ith renewal involves the reward X;, which can depend on S; (other than the
previous waiting times through the environment) with the reward probability measure playing the role of conditional probability:
P,X; €18 =s1,.....8; = 5;1 = A1, (|s;). Expectation under P, is denoted by E,.

The number of renewals up to time ¢ € Ny is the largest non-negative integer N, such that Ty, <1, and the total reward up to
time ¢ is

N
W, = in
i=1

(empty sums are equal to zero). The process {W,} ey, is a renewal-reward process in a random environment, which turns out to be
the classical renewal-reward process in the absence of disorder [31]. We emphasise that W is a random variable, i.e., a measurable
function, with respect to any probability space associated with the law of waiting times and rewards. In fact, for each n € N,
the product o-field ®"B(X) coincides with B(X") because X is separable (see [28], Lemma 1.2), so that the sum of n rewards is
measurable.

Pinning models. Let v, be a real function on N, which we call the potential, parametrised by w € 2 in such a way that o — U, (s) is
measurable for all s. For t € N, we define the pinning model as the law P,,, determined by the Gibbs change of measure

e, oHou

dP, © E, [eHor]’
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where H,,, := Zl’l v,1i11,(S)) is the Hamiltonian. This definition generalises the standard pinning model [19,23], which will be
recalled in Section 1.5, and contains as the special case v, = 0 the above renewal-reward system in a random environment.
Denote by 7 the random set {T}};cy,. Together with the pinning model, we consider the constrained pinning model corresponding
to the law Q,,, obtained via the change of measure
H
do,,, L Lyeryetor

ap, " E, [ ereor] '

The constrained pinning model turns out to be a useful tool to investigate the pinning model. One of its interesting features is that
the measure Q,,, depends on the waiting-time distribution p,, and the potential v,, only through the combination g, := e%p,, so
that they are convertible one into another in a sense. In a nutshell, this is due to the fact that within the constrained model there
is no residual lifetime after time ¢, to which no potential is associated, as it happens in the non-constrained setting. We generically
refer to P,, or Q,,, as pinning models.

Conditional independence. We aim to analyse the quenched large deviations of the renewal-reward process {W,};cy,, taking
advantage of the fact that a renewal process at every renewal starts afresh in the current environment. This fact is formalised
by the identity

n

Pw[Sl =Sl""’Sn+n’ = Sp4n Xl € Al""’Xn+n’ € An+n’

-]

=Pw[S1 =51 Sy =5, X, €A ... X, €A,

T, = t]Pf,w [Sl = Spateee s Sy = Sy X € Apyys o Xy € AW,] a1
forn,n’ €N, sp, ..., 8 GN, and Aj,..., A, € B(X) (with the convention g :=0).

Subadditive ergodic theorem. To describe the asymptotic behaviour of probabilities, we use Kingman’s subadditive ergodic theo-
rem [49]:

(%) Let {F,},cn be a sequence of measurable functions on €2 such that E[max{0, F;}] < 4o and F,,, < F, + Fyof" for all 1, € N.
Set L := inf,eN{IE[?]} < +o0. The following hold:

(i) lim,y o B[] = L.

- F,(0)
(i) limyq o, ’Tm

=L P-a.e. .

Note that the condition E[max{0, F; }] < +oo can be replaced by the condition E[max{0, F,}] < +oo for all ¢ > ¢, for some 7, € N. In
that case £ := inf 5, (E[-]}.

1.3. Main results

We investigate quenched large deviations for the process {W,},cy, under the following assumptions about the waiting-time
distribution p, and the potential v, through their combination ¢, := e»p,, and the reward probability measures 4,(:|s) for s € N
(which are assumed to be in force throughout the paper). Recall that a finite set & c N is coprime if the greatest common divisor
of all its elements is 1. Denote by B,, ; the open ball of radius § > 0 centred at w € X. For r € X and A C X, let r + A be the set of
points r + w with w € A.

Assumption 1.1. There exists a coprime set & C N such that E[min{0,logg.(s)}] > —o for all s € &. Moreover, E[sup,cy max{0,
log q.(s) — ns}] < +oo for some real number 5 > 0 (with the convention log0 := —). &

Let G be as in Assumption 1.1.

Assumption 1.2. There exist a finite-dimensional subspace ¥V C & and, for s € N, measurable functions w - r, ; valued in V and
points x; € X such that E[log A.(r. ; + B, ;s|$)] > -0 for all s € & and 6 > 0 and E[supcy max{0, ||, ;|| — #5}] < +oco for some 1 > 0.
Moreover, for each s € & there exists a compact set K, C X such that Eflog .(r. ; + K[s)] > —c0. &

Our first main result concerns the large deviations of the total reward W, with respect to the constrained pinning model Q,,, for
a typical disorder w. For convenience, we leave out normalisation and consider the random measure w + y,,, on B(X) defined, for
t €N, by

Heyp = E, [1{45.’167}6}1(‘)’!]' (1.2)

The following result about the cumulant generating function associated with y,,, comes before an LDP. Let X* be the topological
dual of X, and let R, be the set of positive random variables on £ that are almost surely finite. For ¢ € X* and ¢ € R, consider
the extended real number, i.e., a number that might be infinite,

. _ ST w)—
Yw(g) = R1€n7£ P_esjesélp{bg E, [ew(xl)wm(sl) {S1+R(f°1 w) R(w)]l(Sl<oo)] } (1.3)
+

Finally, denote by z the function that maps ¢ € X* to z(p) :=inf{{ € R: Y, ({) < 0}.
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Proposition 1.3. The following hold:
(i) z is proper convex, with z(0) finite, and is lower semi-continuous.
(i) lim;y o, % log [, €y, (dw) = z(p) P-a.e. w for every ¢ € X*.

The variational definition of the function z, which in (1.3) involves the gradient Ro 1 — R of auxiliary random variables R € R .
as a corrector, is our variational formula for the quenched free energy. The number ¢ is reminiscent of a renewal equation, and
accommodates for a Cramér-Lundberg parameter to describe its growth rate [31]. We will comment further on this formula below.
For now, we note that Proposition 1.3 suggests as a putative rate function the Legendre transform of z, which is the convex lower
semi-continuous function J that maps w € X to

J(w) := sup {p(w) - z(p)}.
PEX*
Formula (1.3) makes evident that z, and hence J, depends on the waiting-time distribution p, and the potential v, only through
the combination ¢, = e p,. The following theorem states a quenched LDP for the family of measures {u,,},en-

Theorem 1.4. P-a.e. w the family {u,,},cy satisfies the weak LDP with rate function J, ie.,
(#) liminf % log p,,,(G) > —inf e J(w) for all G C X open.
(if) lim sup, o, } log i, (K) < —inf g J (w) for all K € X compact.

It is desirable (for example, in order to be able to apply Varadhan’s lemma [17,18]) that P-a.e. w the family {u,,, },y satisfies
a full LDP with a good rate function. This means that the large deviation upper bound (ii) in Theorem 1.4 holds for all closed sets,
and not only for compact sets, and that J has compact sublevel sets, i.e., the sets {w € X : J(w) < a} are compact for all a € R.
The following corollary of Theorem 1.4 addresses this issue when the dimension of & is finite in the wake of Corollary 6.4 in [4].

Corollary 1.5. If X is finite-dimensional and there exist real numbers & > 0 and M > O such that

E[supmax{o,log/ e‘ﬂ"‘”_M"/{,(dxls)}] < +o0,
X

seN
then P-a.e. w the family {u,,,},cy satisfies the full LDP with good rate function J.

Remark 1.6. Since lim,, %log Hep(X) = 2(0) P-a.e. w with z(0) finite by Proposition 1.3, Theorem 1.4 and Corollary 1.5 establish
quenched LDPs with rate function J + z(0) for the total reward with respect to the constrained pinning model.

Our second main result describes the large deviations of W, with respect to the pinning model P,, by exploiting the large
deviation bounds for the constrained model. As before, we leave normalisation aside and focus on the random measure ® ~ v, , on
B(X) defined, for t € N, by

— |1 eH“”]. a4
=t
Given an extended real number ¢ € [—0,0], denote by I, the Legendre transform of z, := max{z, ¢}, which associates w € X with
I,(w) = sup {p(w) - z,(0) }.
PEX*
Note that z, =z and I, = J if £ = —c0.

Theorem 1.7. Suppose that there exists an ¢ € [—o0, 0] such that P-a.e. @

lim lim sup sup { 1 log P, [.S) > s]— eL } <7, limliminf inf {
s

1 t
—log P, [S| > s]l+e- p > 7. 1.5
el0 st reN, LS el0  stoo  reN, & PriolS) ] s}_ (1.5

S
Then the following hold:

(i) lim,;, 1 log [ ey, (dw) = z,(¢) P-a.e. o for every ¢ € X*.

(if) If either £ = —co or £ > —co and X* is separable, then P-a.e. w the family {v,,,},cy satisfies the weak LDP with rate function 1,.

The parameter # in Theorem 1.7 plays the role of an exponential tail constant for the waiting-time distribution. The combination
q,, = e“»p,, of the waiting-time distribution p,, and the potential v,, does not suffice to uniquely identify the non-constrained pinning
model and, at the level of LDPs, the necessary additional data are condensed in the number #. When # > —c0, we need separability
of X* to prove that the large deviation upper bound for compact sets holds uniformly P-a.e. w. The large deviation lower bound
for open sets holds uniformly P-a.e. w even without separability of X*. If X is finite-dimensional, then the weak LDP can be easily
promoted to a full LDP according to the following corollary of Theorem 1.7.

Corollary 1.8. Suppose that (1.5) holds. Then, under the hypotheses of Corollary 1.5, P-a.e. w the family {v,,,},cn satisfies the full LDP
with good rate function I,.

Remark 1.9. Since lim,;, %log Ve (X) = z,(0) P-a.e.  with z,(0) finite, Theorem 1.7 and Corollary 1.8 establish quenched LDPs
with rate function I, + z,(0) for the total reward with respect to the pinning model.
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1.4. Discussion

Variational free energy. Assumption 1.1, through the requirement E[min{0,loggq.(s)}] > —oo for all s € &, formulates a notion of
aperiodic probability mass function in a context with disorder that is suitable for the exponential scale of LDPs. The requirement
E[sup,cy max{0,log ¢.(s)—ns}] < +oo for some n > 0, which basically is a hypothesis on the potential, is motivated by and applies to the
polymer pinning model, discussed below in more detail, and its generalisations, such as the spatially extended pinning model [12].
We note that a homogeneous version, i.e., without disorder, of these assumptions is already present in [58], where LDPs for the
total reward are established within the framework of homogeneous pinning models.

According to (ii) of Proposition 1.3 with ¢ = 0, Assumption 1.1 suffices to obtain the following limit, which shows that z(0) is
the quenched free energy of the (constrained) pinning model:

.1 1 H,
}#r;} m log py, (X) = H{B n logE, [IL(,ET}e wv'] =z(0) P-a.e. @.

We stress that the instance ¢ = 0 puts the reward probability measures 4,(-|s) out of the picture. The role of the assumption
E[sup,cy max{0,logg.(s) — ns}] < +oo for some n > 0 is to ensure that z(0) is finite.

Our variational definition of the function z based on (1.3) turns out to be a variational formula for the quenched free energy:
z(0) = inf{{ € R: Y{(¢) < 0} with

Yo(¢) := inf P-ess sup{log E, [e”w“l)*?sl“‘(f Slo-Rw)q Slm;] }
ReR, wER

It is interesting to note that the quantity Y;({) can itself be interpreted as the quenched free energy of a random walk in a
random potential. To make contact with the existing literature, suppose for a moment that the distribution p, has a bounded
and w-independent support, and let p be an arbitrary homogeneous distribution over N with the same support as p,. Since the
waiting-time distribution p,, and the potential v, enter Y;({) only through the combination ¢, = e’~p,, we can replace p, by p
and v, by v, + logp,, — log p. Then Y(¢) becomes the quenched free energy for the random walk {7;} ey, of renewal times in the
random potential w — v, + logp,, — logp — ¢id [13,22,40,42]. These connections, together with the findings of [42], suggest that
the formula for Y,,({) does not always have a minimiser over R, . Recasting this expression in terms of centered cocycles could lead
to a minimiser, as shown for a class of random walks in random potentials [13,22,42]. This issue, which we leave for future work,
may open a new perspective in the study of the random pinning model.

Reward laws with disorder. Assumption 1.2 on the distribution of rewards raises a new problem, namely, that of incorporating
generic rewards into a renewal model with disorder. We are not aware of seeing this in similar or other contexts. The assumption
is always verified by probability measures 4,(:|s) that do not depend on the disorder w. In this case we can take r,, ; = 0. In fact, for
any probability measure 1 on (X) there exists a point x € X such that A(B, ;) > 0 for all 6 > 0. On the contrary, if for every y € X
it were possible to find a number 5, > 0 such that M(By;5,) =0, then the open covering {Bys,}yex of X would contain a countable
subcollection covering X by Lindel6f’s lemma, with the consequence that A(X) = 0 instead of A(X) = 1. Furthermore, there exists a
compact set K C X such that A(K) > 0, because A is tight as X is separable (see [11], Theorem 7.1.7).

In the presence of disorder, what Assumption 1.2 requires is basically that the random probability measures w — 4,(+|s) satisfy
the properties of homogeneous laws, in mean and on the exponential scale of LDPs, under possibly a shift by the vectors r, ;. The
points r,, ; are incorporated in the theory to account for a disorder-dependent deterministic component of rewards, which becomes
dominant in the limiting case 4,,(-|s) = 6, , with 6, the Dirac measure centered at x. This limiting case allows, for instance, to study
the large deviations of the Hamiltonian Hw,,, which is the total reward W, in a model where 1,(:|s) = §, (. The vectors r,; are
required not to vary too much, in particular, to lie in a common finite-dimensional subspace V. We make use of this assumption,
together with the hypothesis E[sup;cy max{0, ||r. ;|| — #s}] < +oo for some # > 0, to ensure that the disorder-dependent deterministic
component } Z’Z’I T, of the scaled total reward is in a compact set P-a.e. . We stress that Assumption 1.2 simplifies when
the reward space X is finite-dimensional, as in this case V can be taken equal to X and the compact sets K, can be taken equal to
the closure of an open ball.

Difficulties and open problems. Since Assumption 1.2 allows for any homogeneous reward law, our LDPs contain as a particular
case the LDPs established in [58] under optimal hypotheses for homogeneous pinning models. Our variational definition of the
function z generalises to a setting with disorder the variational definition given in [58] for the same function. We note that, in the
homogeneous setting, the subadditivity properties of renewal models allow among others to extend the large deviation upper bounds
from compact sets to open and closed convex sets under the same assumptions as the weak LDPs [58]. In the presence of disorder,
our main assumptions and methods appear to be unable to reach the same result, because we exploit subadditivity properties after
an approximation argument, as explained in Section 2.3. We also note that, in the homogeneous setting, conditions for the full
LDP to hold for infinite-dimensional rewards are known [59]. Such conditions come from large deviation theory of sums of i.i.d.
random variables and are formulated in terms of exponential moments. We leave the investigation of these conditions to models
with disorder as an open problem.
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1.5. Examples

Compound Poisson processes in random environments. Suppose that, in an economic scenario w € £2, a customer can arrive in a
shop with probability p,, and can spend an amount of money smaller than or equal to x € R with probability F,(x). If the
economic scenario evolves according to an ergodic measure-preserving transformation f, then the customer arrives at time s € N
with probability

s—1

po() = [0 = ppi)psen

=1
(empty products are equal to one), and spends an amount of money with probability distribution 4,(-|s) over B(R) defined, for
x € R, by

Ap((—=00,x]|s) := Frsep(x).

Note that we are implicitly assuming that F,(x) is non-decreasing and right-continuous with respect to x. We also assume that
o v+ p, and o — F,(x) are measurable. In this way, when other customers arrive progressively after the first customer, all of
them are described by the law P, associated with the waiting time distribution p,, and the reward probability measures 4,(:|s) over
X :=R. The total reward W, turns out to be the amount of money earned by the shop up to time ¢.

We are able to characterise the large deviations of W, via our theory for a pinning model with potential v, equal to zero.
Assumption 1.1 is met with & = {1} if E[log p.(1)] > —o0, i.e., E[log p.] > —co. Since the reward probability measures A,(-|s) depend
on s and @ only through f*w, Assumption 1.2 is satisfied if there exists a measurable function w ~ r,, taking values in R such that
E[|r.|] < +co and Eflog{ F.(r. + ) — F.(r. — §)}] > —co for all § > 0. The hypothesis of Corollary 1.5 becomes E[log /;, e!*ldF.(x)] < +oo
for some real number ¢ > 0. Thus, Theorem 1.7 and Corollary 1.8 give the following result after we show that the condition (1.5)
is verified with # = E[log(1 — p.)].

Corollary 1.10. Suppose that E[log p.] > —oo and that there exists a real measurable function @ + r,, such that E[|r.|]] < +oo0 and
E[log{F.(r. + 6) — F.(r. — 6)}] > —co for all § > 0. Then the following hold:

(i) P-a.e. w the family {v,,,},cn, associated with the total profit, satisfies the weak LDP with rate function I,, where ¢ := E[log(1 — p.)] €
[—o0,0].

(ii) If, moreover, E[log |, ¢ XIdF.(x)] < +oo for some number & > 0, then P-a.e. o the family {v,,,},ey satisfies the full LDP with good rate
function 1I,.

Proof of Corollary 1.10. It remains to verify that the condition (1.5) holds with # := E[log(1 —p.)]. The waiting-time tail probability
is now, for s € Ny,

s
P8, > s1 =[]0 = pyia.
i=1
First we prove that (1.5) is fulfilled with the above # when E[log(1 — p.)] > —oco. To this aim, we note that Birkhoff’s ergodic
theorem allows us to find a set 2, € F with P[£2,] = 1 such that, for w € 2,, lim, % log P,[S| > s] = ¢. Thus, for a given w € 2,
and for each ¢ > 0, there exists a constant k such that the bounds —k + (¢ — €/2)s <log P, [.S| > s] < k + (¢ + €/2)s are valid for all
s € Ny. These bounds imply

log Py, [S| > s] =log P,[S| > 1+ 5] —log P[5, > ] <2k + (£ + €/2)(t+5)— (€ —e/2)t <2k + (€ + €)s + et,

which shows that the first inequality of (1.5) holds. A similar argument proves the second inequality.
In the case ¢ := E[log(1 — p.)] = —oo, the second inequality of (1.5) is trivial. Regarding the first, put p* := min{p,, 1 — 1/k} for

k € N. Since P,[S| > s] < H,.S:l(l — pl}iw) for all s and &, and E[log(1 — p¥)] > —c0, we can conclude as before that there exists 2, € F
with P[£,] = 1 such that

T 1 t k

lim lim sup su —log P, [ S| > s]—e- p <Ellog(1 —
for all w € 2, and k € N. Letting k 1 oo, we see that the monotone convergence theorem demonstrates the first inequality of
(1.5). O
Pinning of polymers at interfaces with disorder. We recover the standard pinning model [19,23] as follows. Suppose that the disorder
o ={w }ey, Isa real sequence, which is sampled from a probability space (£2, F,P) in such a way that the canonical projections
o ~ o, form a sequence of i.i.d. random variables, and that the transformation f is the left-shift acting on w. Next, suppose that
the waiting-time distribution is independent of ® and is defined, for s € N, by

L(s)

sa+l

Po(s) = p(s) =

with an index « > 0 and a slowly varying function at infinity L. Finally, given parameters h,§ € R, consider the potential

U,(s) := h+ pw, for s € N, whose associated Hamiltonian turns out to be

N;
H,, = Z(h + por,).

i=1
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This model represents a heteropolymer consisting of + monomers that interacts with a substrate through the monomers 7}, ..., Ty, .
Monomer 7 has binding energy s + fw,, and the spacing along the polymer chain of pinned units has a heavy-tailed distribution.
If the last monomer is forced to be bound to the substrate, then the polymer is described by the constrained Gibbs measure Q,,,,,
otherwise the law is the Gibbs measure P,,,.

Our theory allows us to study the fluctuations of the number N, of pinned monomers. In fact, we have W, = N, P, -a.s. when
X :=R and A,(:|s) := 6, for each s € N. Our theory also allows us to investigate the fluctuations of the polymer excursions between
pinned units. To this aim, we may suppose that, e.g., X is the Hilbert space of square-summable real functions on N endowed with the
Euclidean inner product (., -) and the corresponding norm ||-||. The space X is separable, and so is its topological dual X*. Then, given
an orthonormal basis {e,},cy of &, we can put 4,(|s) := 6, for s € N. In this framework, we have W, = ZZ’I es, = Xsen H(Seg
P,-a.s., where #,(s) is a non-negative integer random variable that counts the number of times that a waiting time of size s has
occurred up to time 7.

Both for the number of pinned monomers and the number of polymer excursions between pinned units, the reward probability
measures do not depend on w, so that Assumption 1.2 is automatically satisfied, as seen in Section 1.4. Assumption 1.1 only requires
that fg |@wg| P[dw] < +o0, and the condition (1.5) is met with # = 0. In fact, since p(s) > 0 for all sufficiently large s by definition, the
set G can be taken equal to any pair of sufficiently large consecutive integers. Thus, Theorems 1.4 and 1.7 provide quenched weak
LDPs with respect to the constrained and non-constrained model, respectively. Regarding the number of pinned monomers, the LDP
is actually full and the rate function is good according to Corollaries 1.5 and 1.8. We note, in general, that if /[, || P[dw] < +oo
and rewards are bounded by a common constant p > 0, i.e., 4,(By,|s) = 1 for all s € N and € Q as in the above cases, then
z(p) > 0 for all ¢ € X*, so that z, = z and I, = J. This follows from (ii) of Proposition 1.3 since, for ¢ € X* and ¢ € N, we have

/Xetw(w')’uw’t(dw) =E, []l(teﬂeq?(WyHHw.r] >E, []l{n:y]ew(W’HH“’"] = p(,)'/X e¢(x>+h+ﬂ“’1/lw(dx|t) > p(r) e~ Iello+h+por
On the other hand, the hypothesis [, |wg| Pldw] < +oco implies lim,;, % =0 P-a.e. w, which can be easily justified by means of the
strong law of large numbers. In conclusion, Theorems 1.4 and 1.7 lead to the following results.

Corollary 1.11. Suppose that [, |wy| P[dw] < +co. Then the following hold:

(i) P-a.e. w the families {u,,, },en and {v,,,},en, associated with the number of pinned monomers, satisfy the full LDP with good rate function
J.

(ii) P-a.e.  the families {u,,,},ey and {v,,,},en, associated with the polymer excursions between pinned units, satisfy the weak LDP with
rate function J.

The example of the number of pinned units allows to appreciate the effect of disorder on rate functions. The following proposition
makes use of a known smoothing effect of disorder in the pinning model (under more restrictive hypotheses on disorder than
necessary for the sake of simplicity) to unveil some properties of the rate function J of the number of pinned monomers. Note that,
as % € [0, 1] for all ¢, the large deviation lower bound for open sets implies J(w) = +oo for w & [0, 1]. Put u := ZoenP0) € (0,1) if

Lsen $P(s)
D sen $P(s) < +o00 and u := 0 otherwise.

Proposition 1.12. Assume that p(s) > 0 for all s € N and that either w,, is bounded with full probability or is Gaussian distributed. Then
the following hold:

(i) If p =0 and u > 0, then the rate function J of the number of pinned monomers has an affine stretch on (0, u], whereas it is strictly convex
and infinitely differentiable on (u, 1).

(i) If either p =0 and u =0 or B # 0, then J is strictly convex and infinitely differentiable on (0, 1).

Thus, for a model with u > 0, the rate function J of the number of pinned monomers has an affine stretch terminating at the
point u when disorder is absent, i.e., when f = 0. But as soon as disorder comes into play, i.e., when g # 0, the rate function J loses
such an affine stretch. We note that the phenomenon of affine stretches in rate functions of homogeneous pinning models have been
investigated in detail in [56,57]. When g = 0 and u > 0, the function J is continuously differentiable on the whole interval (0, 1)
despite a singularity at u (see [56], Paragraph 4.4.2).

Proof of Proposition 1.12. Let us denote the free energy of the constrained pinning model z(0) by F(4) to highlight the dependence
on the parameter h. Since we are considering a problem where W, = N, P,-a.s., so that [, @y, (dw) = E,[1 oy e?PH o] =
E,[1ere?DNitHon, (ii) of Proposition 1.3 shows that z(¢) = F(h + k) with k := ¢(1). It therefore follows that, for w € R,

J(w) := sup {@(w) - z(p)} = sup{wk — F(h+ k)} = sup{wk — F(k)} — wh. 1.6)
PEX* keR keR

The overall features of the free energy under the hypotheses of the proposition on disorder have been characterised and are
now needed. In order to make contact with the existing literature, we suppose without loss of generality that [, wyP[dw] = 0 and
f_Q cugIP[da)] = 1. To begin with, we recall that there exists a number A, such that F(h) = 0 for » < h, and F(h) > 0 for h > h,
(see [23], Chapter 5). The function that maps 4 in F(h) is convex on the real line and is infinitely differentiable and strictly convex
on the open interval (A, +o0) (see [25], Theorem 2.1 and [24], Theorem B.1). In the absence of disorder, i.e., when g = 0, we have
that h, = —log Y . P(s) and that F(h) for h > h, is the unique positive real number that solves the equation ¥y p(s)e T = ="
(see [23], Proposition 1.1). Then, when g = 0, we can easily verify that lim,, h, F’(h) = u. This limit is affected by disorder, which has a

7
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smoothing effect. In fact, when § # 0, it is known that lim,,, he F’(h) = 0 (see [26], Theorem 2.1). In all cases, we find limpg, o F'(h)=1
since p(1) > 0. To prove this claim, we note that, for h > 0,7 €N, and w € Q,

eZimibopitlogr®) - iy ooyt '] sk, [ﬂ{rer}eH"”'] < eh'Ew[ﬂueT)eH“"'th'],

so that & + log p(1) < F(h) < h + F(0) by Proposition 1.3 and Birkhoff’s ergodic theorem. The latter bounds imply lim,., % =1
In this way, since convexity of F entails @ < F'(h) < W for max{0,h.} < h < k, we get lim;; ., F’(h) = 1 from here by
letting k 1 +oo first and then A 1 +oo.

Coming back to formula (1.6), the listed overall features of the free energy allow us to conclude that

Tw) w(h, — h) if f=0and w € [0,u]
w) =
w(k —h)—F(k) if p=0and we (w,1) or f#0and w € (0, 1),

where k > h, is the unique real number that satisfies F/(k) = w. The implicit function theorem demonstrates that J is strictly convex
and infinitely differentiable on the interval (4, 1) for # = 0 and on the interval (0, 1) for  #0. [

Returns of Markov chains in dynamic random environments. Let C be a finite set and let  » K, := {K,(a,b)},,cc be a random
stochastic matrix over C, i.e., a random non-negative matrix that satisfies ) .. K, (a,b) = 1 for all a and w. If the environment
evolves by successive applications of an ergodic measure-preserving transformation f, then the random matrix @ — K, defines a
Markov chain in a dynamic random environment, which at time  jumps from state a to state b with probability K (a, b).

Given a distinguished state ¢ € C, the returns of the Markov chain to the state ¢ define a renewal process in a random
environment. Its waiting-time distribution reads, for s € N,

K, (ay,a,) ifs=1
Pp(s) = 1 .
Taecvie) " Za,_yecvic) Hizo Krio(@isaiyy) if s 22

with a; = a, := c. We can use our theory to investigate, e.g., the number of distinct states that the Markov chain explores during its
excursions from the state ¢. To this aim, for each s > 2 such that p,(s) > 0, denoting by #{a,, ..., a,} the number of distinct elements
in the collection {q, ..., a,}, we introduce over X := R the reward probability measure

s—1

1
ApCls) 1= 2 Z O4tay....a5) HKfiw(an“m)
Po(s) 0

ajeC\{c}  ag_1€C\{c}

with ay = a; :=c. We put 4,(-|1) :=§; if p,(1) > 0 and 4,(-|s) := &, whenever p,(s) = 0. Under the law P, associated with p, and
Au(:]8), the total reward W, is almost surely the number of visited states in all excursions from the state ¢ up to time ¢.

Since there is no potential in this example, Assumption 1.1 immediately holds in the easy case E[log K.(a, b)] > —cc for all a,b € C,
which gives E[log p.(s)] > —oo for every s. Assumption 1.2 is verified as follows. Fix s € N and, for n € {0, ..., s}, denote by £, the
set of all w € 2 with the property that » is the smallest non-negative integer i such that A,({i}|s) > & The sets Q, ..., 8, are
measurable, because they inherit this property from the random stochastic matrix w — K, and are disjoint. Moreover, U’_ 2, = Q
since Y°_; A({n}|s) = 1. With such sets, consider the measurable function o r, that takes value n over £,. This functlon leads to
the fulfilment of Assumption 1.2, since |r,, | < s and 4,({r,}|s) > — for all w by construction. Finally, we note that the hypothesis
of Corollary 1.5 is satisfied with, e.g., £ = 1 and M = 1 since /1“,([0 s]|s) =1 for all s and w. Thus, Theorem 1.7 and Corollary 1.8
give the following result after we show that the condition (1.5) holds with some ¢.

Corollary 1.13. Assume that E[log K.(a, b)] > —co for all a,b € C. Then there exists a finite number ¢ < 0 such that P-a.e. @ the family
{Voo.r }renvs associated with the total number of visited states in the excursions from the distinguishable state c, satisfies the full LDP with good
rate function I,.

Proof of Corollary 1.13. It remains to verify that condition (1.5) holds with a finite number #. The waiting-time tail probability
reads, for s € N,
RISy >sl= D Y K,(ag,a) Ky, (a,y,a,) a7
ajeC\fe}  a,eC\{c)
with a, :=c.
Denoting by M,, the restriction of K,, to C\ {c} and putting M! := M, - M ., for r € N with M? the identity matrix, we can
recast (1.7) as
PIS;>sl= Y Y K, c.aM(a.b).
aeC\{c} beC\{c}
Since E[log M.(a, b)] = E[log K.(a,b)] > —oo for all a,b € C\ {c}, there exist a finite number ¢ and a set 2, € F with P[Q,] =1
such that lim,;, % log M;)(a, by=7¢ forall a,b € C\ {c} and w € 2, (see [29], Theorem 5). We can choose £, in order to also have
lim,q, % log K f1,,(c,a) =0 forall a € C\ {c} and w € 2,. A simple way to justify this claim involves Birkhoff’s ergodic theorem, since
log K f1,,(c, a) = 21{:0 log K i, (c,a) — Zf;é log K i,(c, a). Let us show that (1.5) holds for all @ € 2, with such 7.

8
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Pick w € 2, and ¢ > 0. By construction, there exists a constant k such that (¢ — ¢/3)t — k < log Ma’)(a, b) < (¢ +¢/3)t + k and
log Kf1(c,a) > —(e/3)t — k for all a,b € C\ {c} and 7 € N. The latter can be extended to also include the case 7 = 0. In this way,
given any g, € C \ {c}, the identity

M (a,, a)M},’ul) (a,b) = M Y(a,,b)

aeC\{c}
shows that, for s e N, t € Ny, and b € C \ {c},

e@—e/3)(s=1)=(2¢/3)1-2k < Z M},_ul)(a, b) < e +e/3)(s=1)+Q2e/3)1+2k < e te)ster+2k

aeC\{c}

We also have, for r € Ny and a € C\ {c},

e IR < Kpiy(ea) < 1
Then, we note that

PrlSi>sl= > Y Kpule, QM3; ) (a.b) < |ClelFOTertak

aeC\{c} beC\{c}

and
Pf’w[Sl > S] > |C|e(f—e/3)(s—l)—€t—3k

for all s € N and 1 € N;,. These bounds show that

lim sup sup { 1 log Py, [.S) > s] - ez} <l+e
s

stoo  1eN) s

and

liminf i

. 1 t
2 - >7—¢€/3.
mir tergo{ P log Py, [.S) > S]+€s} >7—¢€/3

The arbitrariness of ¢ proves (1.5). [

2. Constrained LDPs

In this section we prove Proposition 1.3, Theorem 1.4, and Corollary 1.5. Section 2.1 introduces some fundamental limits
by combining supermultiplicativity properties of the constrained pinning model with Kingman’s subadditive ergodic theorem.
Section 2.2 verifies Proposition 1.3. In Section 2.3 we prove the quenched weak LDP for the family of measures {4,,,},cn, identifying
the rate function in Section 2.4. This demonstrates Theorem 1.4. Finally, in Section 2.5 we obtain the quenched full LDP of
Corollary 1.5.

2.1. Supermultiplicativity

Supermuiltiplicativity. The identity in (1.1) leads to a supermultiplicativity property for the random measures @ +~ y,,, defined by
(1.2), as shown in the following lemma. For A, A’ C X and a € R, define aA := {aw : w € A} and A+A’ = {w+w' 1 we A, W' € A’}.
Lemma 2.1. For t,t' € N and A, A" € BX), p 4y (@A + ' A") > p, (A, g (A') with a := t# and o' = I% In particular,
Hep g1 (A) 2 Hp (A p g1 0 (A) If A s convex.

LW,
Proof of Lemma 2.1. Writing 2. = a% +a

w, W, + Wi
t+1 1+ 7
follows that

-W, W, W,
7, we see that — € @A + o’A’ whenever —* € A and —

e A. It

PATN
#(”’H"/(aA tad) = Ew []l { Pyt eaA+a’A’,t+r’eT}

eH w1+ ]
1+

H ’ H 7
> E |1 W —W, e o+t > E (1 W W, e o+t
w[ {@EA,%GA’,H—HGT} @ {#GAJGT,%GA’,H—HGT} ’

where the last bound accounts for the constraint r € 7. This constraint gives

E |1 _ Hw,z+r’ = E |1 Hw.t]l _ ch,H-:”Hm,r
@ {@eA,reT, MEA/J+I/ET}S ] rg\l gN m[ {?GA,T,‘:Y}e {MEN»T»,M’:’“/}B
n

_ H,, Hftm’ ’

=Fo [1{¥€A,rer}e W]Ef’“' [H{QEA’,t’ET}e l]

= ﬂm,z(A)ﬂffmJ/(A,)~
In fact, if 7, =t and T,y = ¢+, then we have W, = Y| X;, H,,, = X_, 01, ,(S), Wipy = W, = Z:’;l X,and H,, —H,, =

/

Z;’=l ufrn+i71w(S,1+[). On the other hand, conditional on T, = ¢, by (1.1) the variables .S, ,,..., S T,.....T,

n+n' > n+n”Xn+1""’Xn+n’ are

9
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independent of S, ...,.S,, X|,..., X, and jointly distributed as S, ..., S,.t +Ty,....t + T,y, X, ..., X,y in the random environment
flo. O

Given ¢t € N, and a linear functional ¢ € X*, consider now the random variable

o Z,(p) = / etw(w}”w,t(dw) =E, [ﬂ{tET)ew(M)+Hw]'
x

Apart from normalisation, Z,, ,(p) is the moment generating function at ¢ of the total reward W, with respect to the constrained
pinning model Q,,,. To develop our theory, we need both Z, ,(¢) and the following truncated version of Z, (), which has the
advantage of involving finite expectations. With r,, ; as in Assumption 1.2, put ¥,,; := X; —r Fliclo,s, for brevity and, for A € B(X),
define the random variable

o &, (A @) =E,|Ly ea.. Yw'N,eA,zeT)ew(W’HH“”’]-

We have &,,(4,9) < Z,,(p) and &, (X, 9) = Z, (@). The identity in (1.1) implies supermultiplicativity also for & ~ &, ,(A, ), as
stated in the next lemma, whose proof is omitted because it is similar to that of Lemma 2.1.

Lemma 2.2. For1,t' € Ny, A€ B(X), and ¢ € X*, £, ,,1(A, ) > Epi(A, 0)Ef10, 0 (A, @). In particular, Z, ./ (9) 2 Z, (@) Z 14, 1 (@)

Fundamental limits. Let tg be an integer larger than the Frobenius number associated with the set G in Assumption 1.1, the latter
being finite since the elements of & are coprime integers. By the definition of Frobenius number, any 7 > 7 can be expressed as
an integer conical combination of the numbers in &. With the points x, € X of Assumption 1.2, let 6p be a number larger than
maxeg {[|x]|}, the latter being finite since & is finite. Together with the above supermultiplicativity properties, the following lemma
sets the basis for the application of Kingman’s subadditive ergodic theorem.

Lemma 2.3. For ¢ € X* the following hold:

() E[min{0,log Z. ,(¢)}]1 > E[min{0, log & ,(By 5, ®)}]1 > —c0 for all t > tg and § > &p.

(ii) sup,ex {E[max{0, 1 log Z. ,(0)}1} < +w.

(iii) sup,exy{E[max{0, % log €. ,(By 5, @)}1} < +oo for all § > 0.

(iv) for each t > tp. there exists a compact set K C X such that E[min(0,log £ ,(K, @)}] > —co.

By (i) and (iii), the random variables w + log Z,, ,(¢) and w + log &, (B, ;. @) are integrable, i.e., their expected value exists as an
extended real number, for all 7 > #z and 6 > 0. Moreover, by (i) the expectation E[log £, ,(By 5, @)] is finite if § > 6. For ¢ > t, even
the random variable w ~ log &, (K, @) with K C X compact is integrable. In fact, we have K C B ; for some é > 0 large enough,
so that E[max{0,log £, (K, 9)}] < E[max{0,log &, (B s, ¢)}] < +o0. Then, by (iv), for each ¢ > #; there exists at least one compact set
K c X such that the expectation E[log £, ,(K, )] exists and is finite.

Proof of Lemma 2.3. By Assumptions 1.1 and 1.2, there exists a real number # > 0 with the property that the expectations
E[supsen max{0,log ¢.(s) — #s}] and E[sup ey max{0, ||r. ;|| — #s}] are finite. Recall that g, :=e’»p, and H,, := Z,~N='1 Ufo—lw(Si)' For
t € N, we have

Z,,00)=E, [ﬂ{tET)eH("’r]

t t
H 0, ()
= zEwI:]l(IETA,Nr:n}e m,r] - ZEw [H(Tﬁt)e i=1 Yot ] =
n=0 n=1

where ¢t :=0and t; := s + -+ +5; for i > 1. Thus,

1 n
{0.1 i1 (s)=ns; }+ns;
RS 19 D TN | et R
i=1

n=1s;eN  s,eN

'
< Z Z Z 1, 7[)62,":1 supsen max(0og q r,_, , (5)-ns)
=

n=1s eN 5,eN

t n
vy, (87)
z o 1, - He slimto™ Priici (i)

n=1seN s,eN i=1

t
_1 _
<ol 2 Z Z 1“”:”322:0 supgen max{0.log 7 ()=s} — pt—1 i+l supsery max{0.log 4774, (s)=ns) 2.1)
n=1seN  s5,eN

Moreover, if Y,,; := X, — T Tig,s, € Bos for i € {1,..., N,} with some 6 > 0, then

Ni

Nr Nt Nr
loW)l = | X 0 s1145)+ D, 0¥ )| < N0l Y MIr iy 11+ 0l Y 1Yl
i=1 i=1 i=1

i=1
N)‘
< lloll 3 supmax{0, 77,y Il =15} + ol Ty, + llglloN,
i=1 %€
-1
<lel Y, SugmaX{O, 7 peosll = ns} + @l + llollst.
€

=09

10
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In this way, for each Borel set A C B 5, we find the bounds

-1 _
£, (A @) = E, [nmmEA’___%ME“E T)ew(W,HHw,,] < ellol Ziy supsen max(Olr oo l-ns) Hlolim+lolét 7 o) (2.2)
and
- -1 z —ns)— -
Eui(Ap) 2 e R A L o []l(yw,leA ,,,,, Ym,N,eA,reT}eHw]' 23)
The latter can be further manipulated by observing that, for positive integers s, ..., s, such that s, + -+ +s, =1, we have

n
E, [l(wilGA,...,Yw»NleA,xeT)eHw't] 2 E, [H(wileA,Slzsl,,..,wi,,eA,S,,:s,l, N,:n}eH‘""] = qu’i—lm(si) ﬂffi_lm(’f'i_lm,si + Alsi)s 2.4
i=1
where t) :=0and t; 1= s + - +s; fori > 1.
(i) Fix an integer ¢ > # and a real number 5 > 6. By the definition of t, 7 can be written as r = Y, s; with some n € {1,...,1}
and certain sy, ..., s, € &. By the definition of &g, there exist positive numbers §,, ..., 8, such that B, ; C B for all i. Then, the
bounds in (2.3) and (2.4) show that !

E [ min{0.10g £,,(Bo5. )} | 2 ol E [supmax{0. Il = 15} ] ~ llplit ~ llolsi
NS
n n

+ Y E[min{0.logq.(s)}] + X E[log 2.(r., + B, 1s))]-

i=1 i=1
This proves that E[min{0,log Z. ,(¢)}] > E[min{0, log £ ,(By 5, ¢)}] > —co thanks to Assumptions 1.1 and 1.2.
(ii) For t € N, the bound in (2.1) implies

E [max{O, % log Z.Y,(O)}] <log2+n+ E[s:g max{O, logq.(s) — ns}] < +00.
s
(iii) For t € N and 6 > 0, the bounds in (2.1) and (2.2) give
E[max{o, Llog 5.,1(30,5a<ﬂ)}] < ol B[sup max{0. I | =15} | + ol + llpls
+log2+n+ E[sugmax{o, log q.(s) — ns}] < 400.
SE

(iv) Fix t > tp. As before, let n € {1,...,1} and s,,...,s, € & be such that r = 3", 5;. By Assumption 1.2, for each i there exists a
compact set K; C X that satisfies E[log .(. ;, + K;|s;)] > —co. Put K := U K;, and let § > 0 be so large that K C By ;. Then, the

bounds in (2.3) and (2.4), together with Assumptions 1.1 and 1.2, show that

E [ min{0.102 £,,(K. )} ]| = ~llgll E[sup max {0, I 1| =5} | = ot ~ ol
SE
n n

E[min{0,log 4.s)}] + D Eflog 4.(r., + K;|s)] > —c0. [

i=1 i=1

+

For ¢ € X*, put

z,(p) = sup{IE [% log Z,A’,((p)] }

12tp

Holder’s inequality shows that the functions that associate ¢ with log Z,, ,(¢) are convex. Hence the function z, that maps ¢ to
z,(¢) is also convex. Actually, it is proper convex since (i) and (ii) of Lemma 2.3 imply z,(¢) > —oo for all ¢ and z,(0) < +oo,
respectively. In Section 2.4 we will prove that z, is also lower semi-continuous, as it is the Legendre transform of a convex function.
With Lemmas 2.2 and 2.3, the following is immediate from (x) with F,(») = —log Z,, ,(¢).

Corollary 2.4. For ¢ € X*, lim;y, } log Z,, () = lim;, IE[% log Z. ,(p)] = z,(p) P-a.e. o.

A similar result holds under truncation and will be used in Section 2.4 to work out some technical steps. With Lemmas 2.2 and
2.3, the following follows from (x) with F,(w) = —log &, (B4, @)

Corollary 2.5. For ¢ € X* and § > &, the supremum e := sup,Z,F{]E[}logé‘_’,(BOﬁ,(p)]} is finite and lim,;, %logé‘w’,(BOﬁ,(p) =e
P-a.e. w.

We now go back to the random measures w +~ p,,,. Although the sequence of term w +~ y,,(C) with C € B(X) convex
enjoys supermultiplicativity according to Lemma 2.1, a result like Corollaries 2.4 and 2.5 cannot be obtained from (x) because
the condition E[min{0,log u.,(C)}] > —oo for all sufficiently large ¢ is not satisfied in general. Such a condition is met under the
additional assumption that E[log 4.(G|s)] > —co for all s € & and G C X open and nonempty. The following lemma is a first step
towards proving the quenched weak LDP for the family {u,,},cy via an approximation argument. For A € B(X), put

L(A) := sup{IE[l log M,,(A)] }
>1p t ’

11
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where the expectation exists thanks to (ii) of Lemma 2.3, since u,,,(4) < u,, (X) = Z,,,(0). We note that L(A) < L(X) = z,(0) for all
A € B(X).

Lemma 2.6. Suppose that E[log 1.(G|s)] > —oo for all s € & and G C X open and nonempty. Then the following hold for every C,C' C X
open and convex:

@) Timyy, + log pr,,,(C) = limyy, B[+ log r. ()] = £(C) P-a.e. o.

(i) L(aC +a'C") > aL(C) + o' L(C") for dll rational numbers «,a’ > 0 such that a + o’ = 1.

Proof of Lemma 2.6. To begin with, given positive integers ¢ and s, ..., s, such that s; + - + s, = 7, observe that the conditions
X; € s,Cforie{l,..,n} imply % Y, X; € C by convexity. It therefore follows that

/"{u,r(c) = Ew [1 { Mec tET} eHw't
7 s

>E [IL , eHw.,]
@ {7 p X,EC,S]=SI,...,SH=S,,,N,=n}

n
2 Em |:ﬂ {X,€5,C,S|=51,....X,€s5,C, S,=s,, N,=n)eHw‘t] = H eUfti?l (’)(Si)pf’i—l w(si) Af’i—l w(S,-ClS,-), (2.5)
i=1
where tp :=0and t; 1= s + - +5; fori > 1.
(i) As this claim is trivially true when C = @, suppose that C # @. Since any ¢ > 7 can be expressed as ¢ = Z;’z , 8; forsomen € {1,....1}
and certain sy, ...,s, € 6, the bound in (2.5) ensures that E[min{0,log u.,(C)}] > —co for all 7 > tg, thanks to the combination of
Assumption 1.1 with the additional assumption that E[log 1.(G|s)] > —co for all s € & and G C X open and nonempty. In view of
Lemma 2.1 and () with F,(w) = —log u,,,(C), we realise that lim,,, % log ptg, (C) = limy;, E[% log p1.,(C)] = L(C) P-a.e. w.
(ii) Given rational numbers a,a’ > 0 such that a+a’ = 1, there exists a # € N with the property that «f and o’ are positive integers.
For n € N, Lemma 2.1 with t = afn and ¢’ = o’ fn shows that p,, ;,(aC + a'C") > ty, 45, (C)H papney g 5, (C')- Taking logarithms and
expectations, dividing by fn, and letting n 1 co, we find L(aC + a/C") > aL(C) + o’ L(C’) by (i) of the lemma. []

2.2. A renewal equation in a random environment

In this section we prove that z, = z, with z the function defined in Section 1.3 by the variational formula z(¢) := inf{{ €
R: Y,(0) <0} with

. ) — ST )—
Y, (@) = Rlen,,g P-esses?;p{bg E, [e‘ﬂ(xl)+b(u(sl) {S1+R(f71 w) R(w)]l(sl<oo)] }
+

To this aim, we resort to the following renewal equation in a random environment: for r € N and ¢ € X*,

t t
W)+H, X S
Zw,t((p) = Z Ew [H{Slzs,teT)ew( o m] = Z Eru [e(p( D0 I)H{S]:s)] ZfA(o,t—s((P)-
s=1 s=1

This equation is due to the fact that, conditional on S| = s, the random variables S,, .S, ..., X,, X3, ... are independent of X, and
jointly distributed as S}, S,,..., X, X,, ... in the environment f*w. The equality z, = z demonstrates Proposition 1.3 thanks to
Corollary 2.4, and the property that z, is proper convex, with z,(0) finite, and lower semi-continuous. Lower semi-continuity of z,,
will be verified in Section 2.4.

Fix ¢ € X*. We first verify that z,(¢) < z(¢). To this aim we assume that z(p) < +o0, otherwise there is nothing to prove. Pick
real numbers ¢ > z(p) and € > 0. Since Y,,({) < 0 as { > z(¢), there exist a random variable R € R, and a set £, € F such that
P[R,1=1and

logE,, [eq»(X]>+u,,,<sl>—§sl+R<f51 “’*R(‘")]l(sl«o}] <e
for every w € Q,. By changing 2, with Ny, /™€, if necessary, we may suppose that ® € 2, implies f'w € @, for any 1 € N,
Below we will prove that Z,, (¢) < e"¢+9+R@) for all w € 2, and ¢ € N,,. This gives z,(¢) < ¢ +¢ since, by Corollary 2.4, there exists
at least one point @ € 2, such that lim,;, % log Z,, ,(¢) = z,(@). The arbitrariness of { and e¢ demonstrates that z,(p) < z(¢).
We prove that Z,, (¢) < e"¢+9TR@) for all w € 2, and 1 € Ny by induction. The bound is true when 1 = 0, as Z,, () = 1 and

R(w) > 0. Suppose that it holds for every w € £, up to r — 1 with a positive 7. Pick @ € £,. Then the renewal equation and the fact
that f*w € @, for s € {1, ...,1} show that

t
Zw,t((p) = Z E, [ew(Xlew(Sl)ﬂ{Sl:S)] fow,r—s((p)
s=1

t t
< Z E, [e(ﬂ(xl)-ww(sl)]l{é'l:s)] eU=EHHR(fT0) = gl(E+e)+R@) z E, [CQ(X' 400, (1)~ S +R(/ 51 a))—R(a))]l(S] =s)] e %€
s=1 s=1

< oC+O+RO | [e¢(X1>+vw(51 )L Sy +R(S1 W-R@7 o )] o€ < o+ +R@)
= ® 1<co = .

12
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Next, let us show the opposite bound z,(p) > z(¢). If z,(p) = +o0, then there is nothing to prove. If instead z,(p) < +oo, then
pick a real number ¢ > z,(p). By Corollary 2.4, the number ¢ makes the series erNO Z,/(®) e¢' convergent P-a.e. . We have
ZreNo Z, (@) e~¢ > 1 P-a.e. o, since Z,0(@)=1and Z, (¢) > 0 for all ¢ > 7 P-a.e. w, the latter being implied by (i) of Lemma 2.3.
Thus, the random variable v — R(w) := log ZtGNO Z,.(@) e™¢' is almost surely finite and positive. Given any » € 2 such that
0 < R(w) < +o0, the renewal equation yields

1> Z Z,y (@) e 1RO = Z Z E, [ew<xl)+vw(sl)1 {SIZS}] Z o) e E1E5-R@)
teN seNreN,
= Z E, [eW‘ DS S1=5)] e (R @)-R@) = | [e¢<x1)+v,,,<sl)—csl+x<f51 m)—R(w)IL(Sl<oo)].
seN

This shows that Y,,(¢) < 0, and consequently z(gp) < {. We get z() < z,() by letting ¢ | z,(@).
2.3. The weak LDP

The quenched weak LDP for the family {4}y is obtained after replacing the probability measure 4,(:|s) by convenient
probability measures Al (:|s), A2(-|s), ... that satisfy the integrability condition of Lemma 2.6. The following lemma introduces such

® ®

probability measures, resulting from a coupling argument that underlies an exponential approximation.

Lemma 2.7. There exist a real number L > 0 and, for s € N, a sequence Aclo(-ls), Ai(-ls), ... of probability measures on B(X X X) such
that the following hold for all k:

(i) Au(Als) = AR (A X|5) and w — iX (A]s) 1= Ak (X x Als) is measurable for s € N and A € B(X).

(i1) [fyxr €N AR (x, x")|5) < el for all s € N,

(iii) E[log A*(G|s)] > —co for dll s € & and G C X open and nonempty.

Proof of Lemma 2.7. Let S := {u,},cy be a countable dense subset of X, which exists by separability, and let

==l
T, = —
T Y el

define a probability mass function on N. We have ¥, el“llz, < +co. Let {e,, ..., e, } be a basis of the subspace ¥ in Assumption 1.2,

and let g be the function that maps ¢ := (¢}, ...,{;) € R to g(¢) := Zle {e; € V. With g, construct on B(V) the probability measure
) /Rd ]1(g(g>€. }e*ZIIg(C)IIdg
'_ Ja €280l dg

where d¢ is the Lebesgue measure. We have /v ell?ll p(dv) < +00 and p(v+ A) > e2Il y(A) for all v € V and A € B(V), the latter being
a consequence of the translation invariance of the Lebesgue measure. We claim that the lemma holds with the number

’

L :=log Z el + log/ ell’ll p(dv)
%

neN

and the probability measures Af; (+|s) defined for s,k € N and A € B(X x X) by

Ag(Als) = 2 n”A[/X1{(x,u,,/k+x—u/k)EA}Aw(dxls)] p(dv).

neN

For A € B(X), we have

K (Als) == AL @ x Als) = Z;r,,/Aw(u/k+A—un/k‘s)p(dv).
v

neN

(i) and (ii) Fix s and k in N. It is manifest that A’;,(A x X|s) = 4,(Als) for all A € B(X), and that

/ I Ak (K ls) = 3 n,,/e”“n—””p(du) <y enu,,u,,n/euvu,,(dv) oL
XXX v v

neN neN

(iii) Fix s € & and k € N and pick a set G C X open and nonempty, x € G, and é > 0 such that B, ;; C G. Recalling that S is dense
in &, let m € N be such that ||x —u,,/k|| < 6. Note thatif y € B, . sand v € By, i ks With r, and x; as in Assumption 1.2,
then s+, s X,

ly = 07k = x 4t K[| < |9 = P = ]| + s + 0 = 07K| + e = k|| < 36

so that r,,; + B, ;=B 6 € By jictx—u,, /k,36- 1t follows that

Fo,stXs

H(Gs) > 35 (B, ayls) > 7, /

j'cu(Bu/k+x—um/k.3§‘s)p(dv) 2 7y, j'm(rm,s + BxS,5 [9)p(¥V N Bkrmyx-#kxs,k&)'
V0 By, +kaxg ks

13
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In this way, since p(V N By, yix ks) = (KT + V0 By 5) 2 e sl (v ( By, 45) because r,,; € V, we find

E[log #(Gls)] > log ,, + E[log A.(r., + B, s1)] - 2kE[§2£ max {0, ||r., |l - nt}] —2kn +1og p(V N Byy_yg) > —00
by Assumption 1.2. []

Thanks to (iii) of Lemma 2.7, Lemma 2.6 applies to the random measures w M,’f, , associated with Aif)(~|s): for each open convex
set C

im 1 log u* (€)= £*(C) = sup{lE[l log Mf‘,(C)] } P-a.e. o.
ttoo @, t E

1>1p

The function J, that maps w € X in
NIRRT Ty
J,(w) = él;%{lll"([}glfﬁ (Bw,&)}

turns out to be the rate function in a quenched weak LDP for the family {,,,},cy, as we will show below. The following lemma
provides two general properties of J,. We note that J,(w) > —z,(0) > —oco.

Lemma 2.8. The function J, is lower semi-continuous and convex.

Proof of Lemma 2.8. Pick w € X and a sequence {w;},cy in X that converges to w. Given § > 0, the monotonicity of £¥
inherited from the measures ¥, entails that —J,(w;) < liminf o, Ek(Bw,.,(s /2) < liminf o £*(B,, s) for all sufficiently large i satisfying
B,,.5/2 € By This implies the bound lim inf
arbitrariness of 6.

iteo Jo(w;) > —liminf,, £¥(B,, 5) and proves the lower semi-continuity of J, by the

As far as the convexity of J, is concerned, due to lower semi-continuity it suffices to verify that J (aw+a'w') < aJ, (w)+a'J,(w')
for every fixed w,uw’ € X and rational numbers a,a’ > 0 such that a + @' = 1. Given 6 > 0 and observing that B, 4,/ ; 2
aB,s+a B,y s, (ii) of Lemma 2.6 shows that £%(By,,41,.5) = LB, 5+ B,y 5) > aL*(B,, 5)+a' LX(B,, 5) for all k € N. From here,
letting k 1 o0, we get —J, (aw + a'w') > —aJ,(w) — o' J,(w') because § is arbitrary. []

We next show that P-a.e. w the family {4, },y satisfies a weak LDP with rate function J, by resorting to a coupling with
new rewards distributed according to A’U‘) (¢|s). In fact, with the sequence of probability measures A;(-ls), Ai(-ls), ... introduced by
Lemma 2.7, we consider waiting times .S}, S,, ... and pairs of rewards (X, X ;), (Xp, X é), ... distributed according to the joint law

n
pk [Sl =51 Sy = 5 (X, X)) €A, o, (X, X)) € A,,] =TT a0 A, A5
i=1
forneN,s;,....s, €N, and A,,...,A, € B(X x X), where 1, := 0 and t, := s, + -+, for i > 1. Let w/ = Z:VZ’I X] be the total
reward associated with the new rewards X {Xé ... and denote by Eij, expectation under PL‘,. Since 4,(+|s) and Af}(-ls) are marginals
of Ak(-|s), we have

k H k k H
u =Ef |1 et |, U =E*|1 ! S
w,t w[ {?e.,zeT} ] w;t @ {%e-,zeT}

Importantly, the properties of A¥(-|s) make W, an exponential approximation of W;, in the sense that, for 1 € Ny, k € N, and 5 > 0,

Es [ﬂ{||m—m’||>5z,xer)eH”"’] <eM 7,0 (2.6)

with L as in Lemma 2.7. Indeed, a Chernoff-type bound, in combination with (ii) of Lemma 2.7, gives

N, ’
k H, —két =k k||W, =W/ ||+H, —két pk X kX=X I+ H,,,
Ew[ﬂnw—m’n»z,zeﬂe ””] se Ew[ﬂ(reﬂe e e | Lyeryetimt T

t n
— kb kllx=x"|| gk
DI 1(,,,=,}_]1q,r,»_la,<s,~> /X I ARCCERIEN
=

n=1seN s5,eN

n

t
<e NN 3 Ay, et ] a1 060 < €M7 2,000,

n=1s51eN  5,eN i=1
where g, = e’»p,. The bound in (2.6) is the basis of the following proposition, which states the desired LDP.
Proposition 2.9. The following bounds hold P-a.e. w:
(i) liminf o, 1 log 1, (B,5) > —J,(w) for all w € X and § > 0.

(1) inf 50 {lim sup,;, %log Uepi (B 5)} < =J,(w) for all w € X.
Consequently, P-a.e. w the family {u,,,},cy satisfies the weak LDP with rate function J,.

14
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Proof of Proposition 2.9. Suppose for the moment that (i) and (ii) hold for a certain w € Q. Then, the family {4, ,},cy is shown
to satisfy the weak LDP with rate function J, as follows. Given an open set G C X, a point w € G, and a real number § > 0
such that B, ; C G, (i) implies liminf,;, % log p,,(G) 2 liminf,; %log Hepi(Byy5) = —J,(w). The arbitrariness of w yields the large
deviation lower bound liminf,;, %log Hepy(G) > —inf,cq J,(w). At the same time, given a compact set K C X and a real number
a < inf ,cx J,(w), by (ii) for each w € K there exists §,, > 0 with the property lim sup,;, % log 4y, 1(By5,) < —a. As {B,,5 }uek is an
open cover of K, there exist finitely many points w;, ..., w, in K such that K C U}, Bwuéw,' Thus, u,, (K) < X7, ”wﬁt(Bw,-«Sw,‘) for all
t € N, giving lim sup;;, %log Moy (K) < —a. The arbitrariness of a implies the large deviation upper bound lim sup;;, %log Hepy(K) <
—inf e J,(w).

Let us next verify (i) and (ii). By separability, X contains a countable dense subset S. Denote by Q, the set of positive rational
numbers. Thanks to (iif) of Lemma 2.7, Lemma 2.6 ensures that there exists 2, € 7 with P[2,] = | such that lim,;, % log M(IL,,(BM,a) =

£"(B,w) forall keN,ue S, a € Q,, and w € Q,. By Corollary 2.4, we may also suppose that lim,;, } log Z,,,(0) = z,(0) < +co for
every o € £2,. We prove that (i) and (ii) hold for any given w € £,. To this aim, we make use of the bound in (2.6) to state that,
for w e X and 6 > 0,

— Ek H,
Ho(Buos) = B, [ﬂ{ﬁeswym,zeT}e !]

>E, [H{WT'/EBW ||m—W/||sﬁr.reT}6Hw]
z Efu [B{WT/EB“,@reT}eHmJ] - E’; []l{llWx—W,’II>5r,reT}eHm z ”(lf],z(Bwﬁ) - euikérzw.r(o)' @27
Exchanging W; and W/, we also have
Hart(Bug) < 1l (Byog) + €M7 Z,, (0). (2.8)
(i) Fix w € X such that J (w) < +o0, otherwise there is nothing to prove, and 6 > 0. Pick ¢ > 0. We show that
lirfrTloionf % log p1, (B 5) 2 —J,(w) — 2e, (2.9)

which yields (i) by the arbitrariness of . Let « € Q, and u € S have the properties 5S¢ < 6 and ||u — w|| < @, so that B,,, C B, 5, €
B4 € Bys, € B,s. By construction, J,(w) satisfies liminf, £*(B,,,) > —J,(w), which allows us to find k € N so large that
L£X(B,, ) > —J,(w)—e and z,(0) < 2ka—L—J,(w)—4e with L as in Lemma 2.7. Thus, since lim,; % In ¥ (B, 2q) = L¥(B,2q) = L¥(B, )
and lim,;, + In Z,,(0) = z,(0), we can state that > In g (B, ,) > —J,(w)—2¢ and 1 In Z,,,(0) < 2ka — L—J,(w) - 3¢ for all sufficiently
large 7. For such ¢, the bound in (2.7) gives

/"{u,r(Bw,ﬁ) > ﬂm,x(BuAa) > ﬂg,,,(Bu,Za) _ eL'_Zk‘"ZwJ(O) > e_J”(w)’_Z“(l _ e—et)’

which demonstrates (2.9).
(ii) Pick w € X and a real number a < J,(w). We prove that

inf{lim sup 1 log 4, ,(ng)} < —a, (2.10)
>0 oo ! e
which demonstrates (ii) thanks to the arbitrariness of a. As J,(w) := —infs.q{liminf, £*(B,, )}, there exists an « € Q, such that

liminf, ., £%(B,,4,) < —a. Hence there exists a k € N so large that £*(B,, ,,) < —a and z,(0) < ka — L — a. Finally, there existsau € S
with the property ||w — ul| < a. We have B, 5, C B, 3, € B,,4,- The bound in (2.8) gives y,, (B, ,) < pt* (B0, + X4 Z,, (0) <
HE (B, 3q) + X7k Z  (0) for all 1 € N, so that

lim sup % 102 1,y (Byy o) < max{ﬁkwm), L—ka+ 20(0)} < max{ﬁk(BwAa), L—ka+ zo(O)} <-a.
ttoo
This proves (2.10). [J
2.4. Legendre transform of the free energy

In this section we show that J, is the Legendre transform z of z, defined, for w € &, by z}(w) := supgex+ {@(w) — z,(p)}. Since
z, = z, this proves that J, is the rate function J introduced in Section 1.3 as the Legendre transform of z. Thus, Proposition 2.9
demonstrates Theorem 1.4.

In order to show that J, = z¥, it suffices to verify that J* = z, with J* the Legendre transform of J, defined, for ¢ € X*, by
JF (@) :=sup, ey {@w) — J,(w)}. In fact, a general result from convex analysis states that J,(w) = J)*(w) := SUppexx { P(W) — JX (@)}
if J, is proper convex and lower semi-continuous (see [62], Theorem 2.3.3). We already know from Lemma 2.8 that J, is convex
and lower semi-continuous. If J* = z,, then J, is proper convex because inf ¢y J,(w) = —J*(0) = —z,(0) with z,(0) finite implies
that J,(w) > —oo for all w € & and J,(w) < +oo for some w € X. We note that the identity J* = z, also proves that z, is lower
semi-continuous, as claimed in Section 2.1.

To verify that J *(p) = z,(¢) for ¢ € X*, we first demonstrate that J*(¢) < z,(¢), and afterwards that J (@) > z,(p). The latter
is harder to obtain than the former and relies on an inner approximation by a compact convex set, as was done in [34] and [58]
for proving the Cramér theorem and the LDPs for homogeneous pinning models, respectively.
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Lower bound. Fix ¢ € X*, w € X, and § > 0. Note that if % € B, 5, then (W) — to(w) = (W, — tw) > —|l@|l|W, — tw|| > -] ¢l|5t,
namely @(W,) > tp(w) —t||¢||6. It follows that

E, []l(reT]eW(mHH“”] >E,

1 ePW+Hy | > olow)—tllells g (1 eHor| = glow)-tllolls B
{@eBw_&,teT} = @ {#eBwﬁ,teT} M“’v’( w,5)

for all 7 € N. Taking logarithms, dividing by 7, and letting ¢ 1 o0, we get z,(¢) > p(w) — J,(w) — ||¢||5 thanks to Corollary 2.4 and (i)
of Proposition 2.9. Thus, appealing to the arbitrariness of w and &, we find the bound z,(¢) > sup,cy{@(w) — J,(w)} =: J(@).

Upper bound. Pick ¢ € X* and real numbers ¢ < z,(¢) and € > 0. The goal is to show that { < J*(¢) + 3e. This gives J (@) > z,(®)
by the arbitrariness of { and ¢. The random variables w - &, (A, ¢) defined in Section 2.1 come into play here.
As ¢ < z,(p), Corollary 2.4 implies that there exists an integer = > f; such that

¢ < E[l log Z-r(‘l’)] +e€.
T X

The monotone converge theorem shows that lims, £, .(Bys. @) = Z, . (@). Since E[logé, (B, ®)] exists and is finite for all
6 > 6p by Lemma 2.3, a second application of the monotone converge theorem to the non-negative random variables v —
log &, .(Bys, @) —log &, (By s, @) entails existence of a number § > 6 such that

¢ S]E[llog&r(BOé,(p)] + 2e. (2.11)
z 3 !

The crucial point is that we can replace the open ball B, ; by a compact set, according to the following lemma.

Lemma 2.10. For every t > ty, 6 > 6, ¢ € X*, and ¢ > 0, there exists a compact set K C X such that E[log €. (B ;. ¢)] <
Eflog €. (K, @)] +e.

Proof of Lemma 2.10. Fix 7 > tg, 6 > 6, ¢ € X*, and € > 0. Recall that there exists a K, C X compact such that E[log £, ,(K,, 9)]
exists and is finite, as seen in Section 2.1. Let §, > & be a number that satisfies By; > K, and denote by F, the closure of
By, for brevity. Clearly, By; C Bys, C F, C Byy;, and K, C F,. Since min{0,log&, .(F,, @)} > min{0,log&, (By,s, )} and

max{0,log &, .(F,, )} < max{0,log gw,r(BO,Zéa’(p)}’ the expectation E[log &, (F,, @)] exists and is finite by Lemma 2.3. The present
lemma is demonstrated once we show that

Ellog . .(F,.¢)| <E[log&. (K. )] +¢ (2.12)

for some compact set K C X.
For A€ B(X) and i € {1,...,7}, put

Am,i(A) = Em []l(Y

[z

(W )+H,
1 €F oo Yoy N, E€F, Y, €A N, 2i,7€T)ET ‘“]ng,r(Fos(ﬂ)-

We note that the measure that associates A € B(X) with
E..(F,,0) } A,4) | £.(F, )
E Ky @) ) EL(F, </J)_ E. (K @)

is finite. Therefore, due to the separability of X, such a measure is tight (see [11], Theorem 7.1.7), so that there exists a K; C ¥
compact with the property that

[ E(Fpp) ) AKS) ]
E[{ 1+]log <
&Ko 9) ] E(Fpo 9) |

Define K := (K, U K, U --- U K;) n F,. We claim that K is the desired compact set. In fact, we resort to the bound log(l + ¢) <
{1+log(1+ C)}& valid for ¢ > 0 to write down

Eoo(Fp0) = &, (K, ) }

E {l+10g

SE[] + log

. (2.13)

LKy

log &, (F,, @) =logé&, (K, @) + log{ 1+

Ep (K, @)
& (Fo’(p) ng(Fa,(p)—ng(K,(p)
<logé& (K,(p)+{1+10 o7 } d :
& fos e K9 g, . (Fy)

Since &, ,

(F,,9) 2 &, (K,p) > &, .(K,, @), we can even replace &, (K, ) by &, ,(K,, ) in the second logarithm to obtain
gw,r(Fo’ ) } ‘Elm,r(Foa Q) — ga;,r(Ka )
Sw,r(Km (ﬂ) S(U,T(Fo’ (P)

Next, we observe that either Y,,; € K for i € {l,...,N,} or there exists a i < N, such that Y,,; € K°. We also observe that
4,,(K) =4, (K°NF)<A4,,(K),as 4,,(A) =4, ,(ANF,) for any A € B(X). These arguments give

log &, (F,, @) <logé&, (K, )+ { 1+ log (2.14)

T

T
0 r(Fp0) S E, (K@) + D Ay (KO S E, (K. @)+ 3 Ay, (KE).
i=1 i=1
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Combining this inequality with (2.14), we get the bound
8&),T(F0’ (P) } Aw,i(Kic)
€m<T(KO’ qo) . T(FO’ w) ’

After taking expectation, this bound becomes (2.12) thanks to (2.13). []

T
10g &, . (F, @) <log&,, (K, ) + ) { 1+ log
i=1

By the bound in (2.11) and Lemma 2.10, there exists a compact set K C X such that

C<E [l log €. (K, (p)] +3e.
T

Replacing K by the closed convex hull of {0} U K if necessary, we can treat K as a compact convex set that contains 0 (see [45],
Theorem 3.20). For every n € N, Lemma 2.2 implies that IE[% logé€. (K, )] < IE[% log €. ,.(K, @)], so that

(<E [% log€. .. (K, )| + 3e.

If p > 6p is a number such that K C B ,, then, defining e := SUPg>p {E[} log €. ,(By ,» ®)1}, we can even conclude that

¢<E [% log €., (K, @) — nir log &.,.(By,, <p)] +e+3e.

In this way, as the random variables @ ~ log&,, ,.(By ,, ) — log &, ,.(K, @) are non-negative, Fatou’s lemma gives
¢ <lim supE[— logé€. . (K,p)— — logS 1r(Bo s q;)] +e+3e< E[llm sup{ =logé& (K, ) - logS +(Bo s (p)}] +e+3e.
ntoo ttoo

Since lim,;, ; log&,,(By 5. @) = e P-a.e. @ by Corollary 2.5, from here we get the desired bound ¢ < J*(¢) + 3¢ once we prove that

lim sup 1 log&, (K. @) < J) () P-a.e. w. (2.15)

tToo
To this aim, we note that the conditions Y,,; € K,...,Y,, y, € K entail - ! Z Y,; =0~ N’ =)0+ - Z \ Yo, € K, since K is convex
with 0 € K. It follows that, for r € N,

. W)+H, W)+H,
Epi(K, @) 1= Ew[]l{YwJGK ,,,,, Yo, ek.ier €20 ,] <E, [n{lzN, - ter}e““ Do (2.16)
: y

The following lemma concludes the proof because it yields (2.15) through (2.16).

Lemma 2.11. For any compact set K € X and ¢ € X*,

lim sup ! log Em[ { Z YoseK Ier}ew(WxHHw,x] < Jo*((/’) P-ae. .

oo

Proof of Lemma 2.11. Fix K C X compact and ¢ € X*. Denote by F the closed ball of center 0 and radius 2 E[supcy max{0, ||, ;|| -
ns}] +2n < +oo, with 5 the number in Assumption 1.2. We will prove that P-a.e. w

oW)+H,,, *
llrgiup t lOgE [ {@eVnFJrK,reT}e ' Y] < Jo ((p), (2'17)
where V is the finite-dimensional subspace in Assumption 1.2. This bound gives us the lemma as follows. Since Zf\f:’l FTitgs €V
and

N; t—1
< Zmax{O, ||rf s [| =#nS; } +nTy, < Zsupmax{o 17 pesll = ns} + nt,
i=1

7=0S€EN

N!
H 2 FiTictw,s;
i=1

Birkhoff’s ergodic theorem entails that P-a.e.  the vector % Zfi’l r belongs to VN F for all sufficiently large ¢. Thus, P-a.e. @

fTi-tw,s;
the condition % — 1 Z‘ LT T, 1 Z!V:’] Y, ; € K implies that % €V N F + K for all sufficiently large .

The bound in (2.17) relies on the compactness of VN F + K, for which the dimension of V must be finite. In order to demonstrate
this bound, recall that, by (ii) of Proposition 2.9, there exists an 2, € F with P[£,] = 1 such that
inf 4 lim sup ! log py, (Bys) ¢ < —J,(w)
6>0 oo 1 ’ ’

forallw € X and w € Q,. Fix @ € 2, and ¢ > 0. Then, for each w there exists §,, > 0 such that lim sup,;,, % log g, (B 5,) < —J,(w)+e.
The number §,, can be chosen so small that ||¢||§,, < ¢. By compactness, there exist finitely many points w,,...,w, in VN F + K
such that VN F+ K CU!_ B, 5 . This gives

n
E [1 W e(p(Wx)Jer,x] < E [1 W e®Wi)+H,
@ {TIEVHF+K,IGT} Z] @ { T’GB,L.,A,SW‘» ,reT}
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+tll@ll6 i
< z to(w;)+l| || it (B, 5 5, )< Z to(w;)+e w1 Bu, 5, )

wi
i=1 i=1

and it therefore follows that

lim sup % logE, |1

o

{¥6v0F+K.,er}e‘ﬂ(M)+H‘”'t] < max{ @) = J,@00), . @(w,) = T, (a0,) | +26 < I X (@) + 2e.

The arbitrariness of ¢ demonstrates (2.17). []
2.5. The full LDP

It is well known that a weak LDP gives a full LDP with good rate function when it is combined with exponential tightness
(see [17], Lemma 1.2.18). Hence Corollary 1.5 is a consequence of the following lemma.

Lemma 2.12. Under the hypotheses of Corollary 1.5, P-a.e. w the family of measures {,,,},cy is exponentially tight, i.e., for each number
k > 0 there exists a compact set K C X such that

lim sup ! log p,, (K¢) < —k.
t1oo :

Proof of Lemma 2.12. Since X is finite-dimensional, it suffices to consider compact sets K that are closed balls centered at the
origin. To this aim, pick a number p > 0, and let ¢ > 0 be as in Corollary 1.5. For 7 € N, a Chernoff-type bound gives

N,
oy . H —&pt EX X l+Hy,
”wJ(BO,p) =E, [ﬂ{geB teT}e m] < E"’[H(Z,-N:’l ||XiHZﬂI‘,tET}e w] se E’”[n(’eﬂe = e (2.18)

At the same time, with M as in Corollary 1.5, we have

)
Em[]l(t 7)€ 52 Wi lHer] Z 2 z 1, - He =100 Pytizi (s,-)./Xe‘ﬂlx”/lfx,,lw(dﬂsi)

n=1 SIEN sp,€EN

M’Z DI IS qu, e /X efII=Msig | (dxls)

n=1s;eN  s5,eN
oM supsen maxq 0,log /. €lixli- M“l, ,(dx]s)
DI T qumwme renmas{o2osfo 1ol010)
n=1s5eN 5,eN
. ’ o [ eEllxll-M
< M Ey e man{0log [y NG e, @i} 7 () (2.19)

where # :=0and t;, 1= 5, + -+ +5; for i > 1. Since E[sup,ey max{0, log [, efI¥I=M5 4 (dx|s)}] < +co by hypothesis and z,(0) is finite,
combining (2.18) with (2.19), taking logarithm, dividing by ¢, and letting 7 1 oo, we find

lim sup 1 10g 1, (BS )< M —Ep+2,00)+E [sup max{O, log/ e5||X“—MS,1,(dx|s)}] P-a.e. o,
ttoo t ’ k4 seEN X

thanks to Birkhoff’s ergodic theorem and Corollary 2.4. In this way, given « > 0, the lemma is proved by choosing p so large that
the r.h.s. is smaller than x and K equal to the closure of By ,. []

3. Non-constrained LDPs

In this section we deduce Theorem 1.7 and Corollary 1.8 from our results on the constrained pinning model. To this aim, we note
that, forr € Ny, theevents {T), =7, T,,,, >t} ={T, =7, S, >t—r} withO<n <7 <tforma partition of the space of configurations.
According to (1.1), the conditions 7, = r and S,,, > ¢ — 7 entail that H,, = }_| Vst ,(S) = H,, and W, = i X, =W, are
independent of S, , which in turn is distributed as .S; in the environment f”w. In this way, we find the identity of measures

_E”’[]l{¥ © W:| ZZE [ {%E.,Tn=r,Sn+1>t—r}eHwJ]

=0 n=0

t T
=Y YE, [n{&euhr}e%,f]pﬁw[s] >1—1]
TenT,

=0 n=0
t
-YE, [1{&6. TGT}cHU,.,]pf,w[sl >1—1]. @1
7= ! ’
Similarly, for ¢ € X*, we have
t t
/ Wy (dw) = E,, [e“’(W’HH“”] =Yk, [1 (,er,e¢<wr)+ﬂw] PreglS) > 1=71= Y Z, (@) Py, [S) > 1~ 7. (3.2)
X =0 =0
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These formulas connect the non-constrained setting with the constrained one, and represent the starting point to prove Theorem 1.7
and Corollary 1.8.

From now on we assume that (1.5) holds. We define the rate function I, as the Legendre transform of z, := max{z,¢}. Recall
that z is proper convex and lower semi-continuous by Proposition 1.3. The identity in (3.2) immediately gives (i) of Theorem 1.7
according to the following lemma.

Lemma 3.1. For ¢ € X%, lim;, % log [, €@y, (dw) = z,(¢p) P-a.e. w.

Proof of Lemma 3.1. Fix ¢ € X*. Proposition 1.3 states that there exists a set Q, € F with P[2,] = 1 such that lim,;, % log Z,,,(p) =
lim,q, % log [, €@y, (dw) = z(p) for all ® € 2,. We can choose £, so that also (1.5) is satisfied for all ® € ,. Pick » € 2, Since
[ €@y, (dw) > max{Z, (@), P,[S; > 1]} by (3.2) and liminf % log P,[S| > s] > ¢ by the second inequality of (1.5), we can
conclude that

timinf L log / POy (dw) > max{z(@), £} = z,(e).
ttoo X ’

This settles the first half of the proof and already proves the lemma when z,(¢) = +. If z,(¢) < +0, then, given real numbers
¢ > z,(p) and € > 0, there exists a positive constant C such that Z,, (@) < Cef” and Pre,[S) > 51 < Ces*7 for all s, 7 € N, the latter
being a consequence of the first inequality of (1.5). Combining (3.2) with these bounds, we find lim sup,;, %log Jv ey (dw) <
¢ + €. The arbitrariness of ¢ and e shows that

lim sup 1 log/ Wy (dw) < z,(p). O
1o t X '

The proof that the family (v,,,},y satisfies a quenched weak LDP with the rate function I, is given in Section 3.1 for the case

¢ = —oo and in Section 3.2 for the case # > —co. This verifies (ii) of Theorem 1.7. Section 3.3 addresses the quenched full LDP of
Corollary 1.8.

3.1. The weak LDP for infinite exponential tail constant

When # = —o0, we have z, = z and I, = J. Thus, (ii) of Theorem 1.7 for # = — follows from the following proposition.
Proposition 3.2. If £ = —oo, then P-a.e. w the family {v,,,},cy satisfies the weak LDP with rate function J.

Proof of Proposition 3.2. The large deviation lower bound for open sets is immediate from Theorem 1.4, as v,,,(4) > u,,,(A) for
all r € N and A € B(X). We verify the large deviation upper bound for compact sets.

According to Proposition 1.3, (ii) of Proposition 2.9, and the first inequality of (1.5) with # = —oo, there exists a set 2, € F
with P[22,] = 1 such that, for every @ € 2,, we have lim,;, 1 log Z,,,(0) = z(0) with z(0) finite, inf s {limsup,, + log ,,(By5)} <
—J,(w) = —=J(w) for w € X, and

lim sup sup { % log Py:,,[.S) > s] = %} = —0c0. 3.3)

stoo  7€N)

We will show that, for all w € 2, and w € &,

inf 4 lim sup 1 logv,,(Bys) ¢ < =J(w). 3.4
>0 oot e
This gives the quenched large deviation upper bound for compact sets with rate function J, as in the proof of Proposition 2.9.
Pick w € ,, w € &, and a real number @ < J(w). Then there exists an # > 0 such that lim sup,;, %log He(Bpay) < —a.
In turn, there exists a positive constant C that provides the inequalities s, (B, 4,) < Ce™ and Z,,(0) < Ce*O™ for all
7 € Ny. Given ¢ € (0,1/2) such that e||w|| < 5, the conditions /2 < (1 —¢)t < 7 < t and % € B,,, imply % € B
W, —wz|| < |W, —wt|| + (¢t — 0)|lw|| < nt+ellwl|lt < 2nt < 4nz. Hence it follows from (3.1) that

, wans SINCE

t
H
=0 1 M
t t

< Z ]l(rs(l—e)t)Zw,r(O)PfTw[Sl >r—1]+ z IL(r>(1—e)t)l”w,r(BwA}'])
=0 =0

< rCel?Ol+2 sup {PreylS) > etle™ } + tCemar+elalr,
S}

Taking the logarithm, dividing by ¢, letting ¢ 1 oo, and invoking (3.3), we get lim sup;, % logv,,,(B,,,) < —a+elal. Letting € | 0, this
gives inf ;.o {lim sup;; o, % logv,, (B, )} < —a, which proves (3.4) thanks to the arbitrariness of a. []
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3.2. The weak LDP for finite exponential tail constant

The following lemma shows that the family (v, },cy satisfies the quenched large deviation lower bound for open sets with rate
function I, even when ¢ > —co.

Lemma 3.3. Assume that £ > —co. Then P-a.e. w the family {v,,,},cy satisfies the large deviation lower bound with rate function I,
ie., liminf,; % log v, (G) > —inf ¢ I,(w) for all G C X open.

Proof of Lemma 3.3. According to (i) of Proposition 2.9, there exists an event £, € F with P[£2,] = 1 such that the bound
liminf ;o %log Uep (B 5) = —J,(w) = —J (w) holds for all € 2,, w € X, and 6 > 0. By the second inequality of (1.5), we can even
suppose that ©Q, satisfies liminf infreNo{lv log Pre,[S) > s1+ ef} > ¢ for all w € Q, with any number ¢ > 0. Pick w € 2,. We
verify that l ’

lim inf 1 log vy, (B,s) = —1,(w) (3.5)
tteo ’ ’

for all w € X and § > 0, which implies the quenched large deviation lower bound for open sets, as we have seen in the proof of
Proposition 2.9.
Fix w € X and 6 > 0. We will prove that

|
liminf = log v, (B,s) > — sup {(p(w) — pa(@) - (1 - ﬂ)f} (3.6)
oo f pedom z
for all § € [0,1], where domz := {p € X* : z(p) < +oo} is the effective domain of the proper convex lower semi-continuous

function z. This gives (3.5) as follows. The function that maps (8, ¢) € [0, 1] X dom z to the real number ¢(w) — fz(p) — (1 — f)Z is
concave and upper semi-continuous with respect to ¢ for each fixed g € [0, 1], and is convex and continuous with respect to f for
each fixed ¢ € dom z. Due to compactness of the closed interval [0, 1], Sion’s minimax theorem allows us to exchange the infimum
over B € [0, 1] and the supremum over ¢ € dom z, to conclude that

1w = sup {ow)=z,9) | = sup inf {pw)~pz(p)=(1=p¢ | = inf swp {pw)~pz(p) = (1= p)F |.

peX* pedom z PEIO.1] €[0.1] pedom z
In this way, (3.6) demonstrates (3.5) after we take the supremum over f.
We prove (3.6), considering the case g > 0 first. Pick g € (0, 1] and denote by 7, the largest integer less than or equal to pt. Focus
W, W,
on the sufficiently large integers ¢ satisfying 7, > 0 and |lw|| < §5t/2. Then, the condition —* € B, /4 5,> implies T” € B, 5. Indeed,
7 , .

observing that 0 < 7 —1,/f < 1/, if |W, — 7w/l < 67,/2, then |W, —tw|| < |W, —7w/pll +t —7,/Pllwll < 57,/2+ ||lwll/ < 6t as
7, <t and |lwl|| < pét/2. Thus, keeping only the term corresponding to = = 7, > 0 in the r.h.s. of (3.1), we obtain

Vm,t(Bw,é) > Em [1{ Wr,

t

eB,,,ﬁ(;,r,eT}eHw‘q ] Pfrxm [S1 >t — T;]

> Ew[ eH“’-Tr] Ppogy[S1 > 1= 7] = oo (Bujpsp) Praw[Si > 1= 1. 3.7)

1{ Wf—:’eBw/,}"g/z,qu}
Since lim;o, 7,/t = i, we have liminf,;o 1 10g #t,,, (Buy/p.5/2) = —BJ (w/B) and
N |
lnrrrlgonf n log Pfr,w[Sl >1— r,] > (1-p)Y.
The latter limit is trivial for p = 1 because P, [.S; > 0] = 1, whereas for § < 1 it follows from the fact that, for any ¢ > 0,
| C 1 T
- . -7l >0- - . —rt—ex>(- —e.
hrg;nf . log Py« [S > 1—7,] > (1 ﬂ)ll[sl%éonfrgleo{ ~ log P olS1 > 5] +€S} e>(1-p¢—e¢
These arguments, in combination with (3.7) and the fact that J is the Legendre transform of z, show that
e |
1lItTTloloﬂf 7 log v, (B, 5) = =BJ(w/p) + (1 = )¢ = — sup {(ﬂ(w) - ﬂZ(QJ)} +(=p)¢=- sup {(ﬂ(w) = pz(p) — (1 - ﬂ)f}7

PEX* pedom z

which is (3.6) under the hypothesis g > 0.

In order to settle the case # = 0, we observe that, as z is proper convex and lower semi-continuous, there exist a point u € X
and a real number ¢ such that z(¢) > ¢(u) — ¢ for every ¢ € X* (see [62], Theorem 2.2.6). For all ¢ € (0, 1) such that e|ju|| < §/2 we
have B, c,5/> € By s- Thus, the bound (3.6) with ¢ in place of # and w + eu in place of w gives

| |
lntITlgonf n logv,,,(B,,s) > hrtrTlc}onf n log vm’,(BwHMﬁ)
>~ sup {(p(w +eu)— ez(@)— (1 — e)f} >— sup {pw)— £} —elc+2).
pedom z pedom z

From here we obtain (3.6) corresponding to f = 0 by letting ¢ | 0. []
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In the case £ > —oo, our derivation of the large deviation upper bound for compact sets requires that X* is separable. In fact,

due to the difficulty to deal with the measure E,, [1 Wee. re T)eHw,f] in (3.1) when 7z grows slower than ¢, we resort to an estimate
e

based on the cumulant generating function. The latter needs that X* is not too large in order to ensure uniformity with respect to
the disorder. The following lemma shows what the separability of X* is needed for.

Lemma 3.4. If X* is separable, then there exists a countable subset G C X* such that, for w € X,

I,(w) = sup{p(w) — z,(p) }.
PEC

Proof of Lemma 3.4. By hypothesis, there exists a countable dense subset S* of X*. Denote by Q the collection of rational numbers
and, for 9 € S* and « € Q, define

byo 1= _inf  max{119 = oll.le— (0] .

@edom z,

where domz, := {¢ € X* : z,(p) < +}. For n € N, pick g,,, € domz, in such a way that max{[|9 — gg,,II. l@ = z,(g9 )} <
894+ i The countable family G := {gy , ,} 9es* aconen has the following useful property: for any ¢ € dom z, and ¢ > 0 there exists
a g € G such that

max{|lg — gll, [z,(®) — z,(g)|} < 3e.
In fact, given ¢ € domz, and e > 0, there exists a 9 € S* such that ||¢p — 9|| < € and a € Q such that |z,(¢p) — a| < €. It follows that
894 < €. Then, for n € N satisfying % < e, we find

max{ 19 = ga.anll 126(0) = ¢ @pan)l | < max{ g = 81l [Gzo ) = ) | + max{ 19 = gyaall & = 2 8p,0,)1 }
1
< max{ g = 81l [Gz¢ (@) = ) | + 65+ - < 3e.
The family ¢ is the desired countable subset of X*. Indeed, for w € X,

I(w)y= sup {@w)—z,(p)} < sup{pw)—z,(p)}, (3.8)
pedom z, (259

and hence I,(w) = sup,eq{@(w) — z,(p)}. To prove (3.8), we note that, given w € X and real numbers a < I,(w) and € > 0, there
exists a ¢ € dom z, such that a < p(w) — z,(¢) + €. Hence there exists a g € G such that max{|l¢ — g||, |z,(p) — z,(g)|} < 3¢, as seen
above. It follows that

a< o(w)—z,(p) + € < gw) — zp(8) + llo — gllllwll + |z,(@) — z,(8)| + €
< g(w) — z,(g) + 3e||lwl|| + 4e < sug{(p(w) = z,(p)} + 3ellwl| + 4e.
PE!
The arbitrariness of a and e demonstrates (3.8). [

We are now in a position to deduce the large deviation upper bound for compact sets, obtaining the following proposition, which
is (ii) of Theorem 1.7 for # > —oco.

Proposition 3.5. Suppose that £ > —co and X* is separable. Then P-a.e. w the family {v,,  },cy satisfies the weak LDP with rate function
I,.

Proof of Proposition 3.5. In view of Lemma 3.3, it remains to verify the quenched large deviation upper bound for compact
sets. Let ¢ C X* be the countable set in Lemma 3.4. By Lemma 3.1, there exists a set 2, € F with P[©,] = 1 such that
lim,; o, } log [, €Wy, (dv) = z,(g) for all w € 2, and g € C. Pick w € 2,. Below we show that

inf{lim sup 1 log v, (B, 5)} < z,(g) — g(w) (3.9
6>0 Moo 1 ’ ’

for all w € X and g € G. This gives inf;.({lim sup;;, % logv,,,(B,,5)} < —I,(w) for every w by Lemma 3.4, which in turn demonstrates
the large deviation upper bound for compact sets as in the proof of Proposition 2.9.
Given w € X, g € G, and 6 > 0, the bound g(v) — g(w) > —||gll|lv — w|| > —||g||6 for v € B, ; implies, for t €N,

Vi (B s) = / Vg (dv) < / efg(v)*fg(W)JrfllgHévwt(dv).
’ ’ BLL',S ' X ’
Taking logarithm, dividing by 1, letting first  t co and afterwards 6 | 0, we find (3.9). [
3.3. The full LDP
One of the hypothesis of Corollary 1.8 is that X is finite-dimensional. In particular, this implies that X* is separable, so that
P-a.e. w the family of measures {v,,, },c\ satisfies the weak LDP with rate function I, when either # = —co or £ > —co. Thus, similarly

to Corollary 1.5, the full LDP stated by Corollary 1.8 is a consequence of the following quenched exponential tightness.
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Lemma 3.6. Under the hypotheses of Corollary 1.5, P-a.e. w the family of measures {v,,,},cy is exponentially tight.

Proof of Lemma 3.6. The proof follows the proof of Lemma 2.12. Let £ > 0 be as in Corollary 1.5. For any number p > 0 and 7 € N,
a Chernoff-type bound, together with the identity in (3.1), gives

t
- Hyp _
Vo (BS ) = Y E, [n{&EBc erye™ ]Pf,w[s1 >t—1]
=0 ! 0.p

t t
Hoo| < oot ESNT X I+ Hy o
< ZE‘”[]I(ET] IXil2pr,rem) € " ] Lo ZEw[]l‘feﬂe 1 ] (3.10)
7=0 = 7=0
On the other hand, with M as in Corollary 1.5, (2.19) implies
d Nz -1 Ellxll-Ms d

Z E, [1(767)65 2i=1 ||X,-||] < eMz‘+Z:t:0 SUpseny max{O,log/Xe Afrm(dXIS)} Z Zw,r(o)' (3.11)

=0 =0
Thus, combining (3.10) with (3.11), taking the logarithm, dividing by 7, and letting 7 1 oo, we find

lim sup 1 logv,,(By ) < M —&p+max{0,z,(0)} + E [sup max{O, log/ efIMI=Ms 5 (dx|s) }] P-a.e. o,
Moo I o seN x

thanks to Birkhoff’s ergodic theorem and Corollary 2.4. This bound entails exponential tightness as in Lemma 2.12. []
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