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A B S T R A C T

In this paper we introduce and study renewal–reward processes in random environments where
each renewal involves a reward taking values in a Banach space. We derive quenched large
deviation principles and identify the associated rate functions in terms of variational formulas
involving correctors. We illustrate the theory with three examples: compound Poisson processes
in random environments, pinning of polymers at interfaces with disorder, and returns of Markov
chains in dynamic random environments.

1. Introduction

1.1. Background

Random walks in random environments [60] have been in the focus of attention since the 1970’s, exhibiting rich behaviour that
is associated with slow-down phenomena and anomalous large deviations [7–9,14–16,21,27,32,33,35–38,44,48,51–55,61]. Large
deviations have also been investigated for random polymers and random walks in random potentials [13,22,39,40,42], and more
recently for random walks in dynamic random environments [2,3,5,41,50]. Surprisingly, in spite of the great theoretical importance
and the wide applicability of renewal processes, much less attention has been paid to renewal processes in random environments. To the
best of our knowledge, the only attempt in this direction was made in [6], in which the waiting times depend on a latent stochastic
process and some of the standard limit theorems of renewal theory are generalised, including the renewal theorem and Blackwell’s
theorem. Viewed from a different perspective, renewal processes in random environments appear in the study of random polymers
pinned at an interface with disorder [19,23], and of large deviations for words cut out from a random letter sequence [10,20].

The purpose of the present paper is to develop large deviation principles (LDPs) for renewal processes in random environments.
Specifically, we assume that each renewal involves a reward taking a value in a real separable Banach space, and we characterise
the quenched fluctuations of the total reward over time, i.e., fluctuations conditional on a typical realisation of the environment.
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In the absence of disorder, the total reward over time defines a so-called renewal–reward process [31], so that in fact we deal with
renewal–reward processes in random environments. Our approach exploits subadditivity properties of renewal models, which in
the absence of disorder lead to LDPs for the total reward under optimal hypotheses [58,59]. Subadditivity arguments for proving
the existence of thermodynamic limits in statistical mechanics and ergodic limits in probability theory trace back to Ruelle [46],
Lanford [30], and Kingman [29].

The problem we address fits naturally into the context of large deviations for random walks in random environments and
random potentials, but it differs from the mainstream literature in two respects. First, the renewal processes we consider allow for
renewal times with possibly unbounded and heavy-tailed increments, in contrast to the random walks in random environments and
random potentials with bounded increments that are typically considered in the literature. Second, motivated by queuing theory [1],
insurance and finance [43], and statistical mechanics [56], which consider rewards of various types, we investigate large deviations
for random variables that span vector spaces, rather than process-level large deviations. LDPs for the total reward cannot be deduced
from process-level LDPs, except for special cases where a contraction principle [17,18] can be employed and exponential moments
are finite [47].

In order to identify rate functions, we consider a class of models where the rate function in the quenched LDP can be related
via convex conjugation to a cumulant generating function, which itself is traced back to a quenched free energy. Since the latter in
general is known only as a subadditive limit, we also provide a variational formula for the quenched free energy, which involves
correctors (gradients of sorts) and is deduced as a variational solution for the growth rate of a renewal equation in a random
environment. This variational formula applies, in particular, to the free energy of the random pinning model and appears to be new
in that context. Similar variational formulas have been obtained previously for random walks in random environments and random
potentials [13,22,40,42,44,51].

The paper is organised as follows. Section 1.2 introduces the class of models considered, identified as generalised pinning models
with general rewards, as well as some basic tools needed for the study of their large deviations, including Kingman’s subadditive
ergodic theorem. Section 1.3 states our main assumptions and formulates our main results in the form of LDPs. Section 1.4 offers a
brief discussion, while Section 1.5 describes three examples to which the main results can be applied. Proofs are given in Sections 2
and 3.

1.2. Basic ingredients

Random environment. The random environment, also called disorder, is sampled from a probability space (𝛺, ,P) endowed with an
ergodic measure-preserving transformation 𝑓 . Expectation under P is denoted by E.

enewals and rewards. Put N ∶= {1, 2,…}, N0 ∶= {0}∪N, and N ∶= N∪{∞}. Let 𝑝𝜔 be a probability mass function on N parametrised
by 𝜔 ∈ 𝛺 in such a way that 𝜔 ↦ 𝑝𝜔(𝑠) is a measurable function for all 𝑠. In addition, let ( , ‖⋅‖) be a real separable Banach space
equipped with the Borel 𝜎-field () and, for 𝑠 ∈ N, let 𝜆𝜔(⋅|𝑠) be a probability measure on () parametrised by 𝜔 in such a way
hat 𝜔 ↦ 𝜆𝜔(𝐴|𝑠) is measurable for all 𝐴 ∈ (). We call 𝑝𝜔 the waiting-time distribution and 𝜆𝜔(⋅|𝑠) the reward probability measure.
n fact, for a given disorder 𝜔, we consider a sequence 𝑆1, 𝑆2,… of waiting times taking values in N and a sequence 𝑋1, 𝑋2,… of

rewards taking values in  whose joint law 𝑃𝜔 satisfies

𝑃𝜔

[

𝑆1 = 𝑠1,… , 𝑆𝑛 = 𝑠𝑛, 𝑋1 ∈ 𝐴1,… , 𝑋𝑛 = 𝐴𝑛

]

=
𝑛
∏

𝑖=1
𝑝𝑓 𝑡𝑖−1𝜔(𝑠𝑖) 𝜆𝑓 𝑡𝑖−1𝜔(𝐴𝑖|𝑠𝑖)

or 𝑛 ∈ N, 𝑠1,… , 𝑠𝑛 ∈ N, and 𝐴1,… , 𝐴𝑛 ∈ (), where 𝑡0 ∶= 0 and 𝑡𝑖 ∶= 𝑠1 + ⋯ + 𝑠𝑖 for 𝑖 ≥ 1. This law describes some
henomenon that occurs at the renewal times 𝑇𝑖 ∶= 𝑆1 +⋯ + 𝑆𝑖, with 𝑇0 ∶= 0, while an initial environment 𝜔 evolves over time by
uccessive applications of the transformation 𝑓 . The 𝑖th renewal involves the reward 𝑋𝑖, which can depend on 𝑆𝑖 (other than the
revious waiting times through the environment) with the reward probability measure playing the role of conditional probability:
𝜔[𝑋𝑖 ∈ ⋅ |𝑆1 = 𝑠1,… , 𝑆𝑖 = 𝑠𝑖] = 𝜆𝑓 𝑡𝑖−1𝜔(⋅|𝑠𝑖). Expectation under 𝑃𝜔 is denoted by 𝐸𝜔.

The number of renewals up to time 𝑡 ∈ N0 is the largest non-negative integer 𝑁𝑡 such that 𝑇𝑁𝑡
≤ 𝑡, and the total reward up to

ime 𝑡 is

𝑊𝑡 ∶=
𝑁𝑡
∑

𝑖=1
𝑋𝑖

empty sums are equal to zero). The process {𝑊𝑡}𝑡∈N0
is a renewal–reward process in a random environment, which turns out to be

he classical renewal–reward process in the absence of disorder [31]. We emphasise that 𝑊𝑡 is a random variable, i.e., a measurable
unction, with respect to any probability space associated with the law of waiting times and rewards. In fact, for each 𝑛 ∈ N,

the product 𝜎-field ⊗𝑛() coincides with (𝑛) because  is separable (see [28], Lemma 1.2), so that the sum of 𝑛 rewards is
easurable.

inning models. Let 𝑣𝜔 be a real function on N, which we call the potential, parametrised by 𝜔 ∈ 𝛺 in such a way that 𝜔 ↦ 𝑣𝜔(𝑠) is
easurable for all 𝑠. For 𝑡 ∈ N0, we define the pinning model as the law 𝑃𝜔,𝑡 determined by the Gibbs change of measure

d𝑃𝜔,𝑡 ∶= e𝐻𝜔,𝑡

𝐻 ,
2

d𝑃𝜔 𝐸𝜔[e 𝜔,𝑡 ]
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where 𝐻𝜔,𝑡 ∶=
∑𝑁𝑡

𝑖=1 𝑣𝑓𝑇𝑖−1𝜔(𝑆𝑖) is the Hamiltonian. This definition generalises the standard pinning model [19,23], which will be
recalled in Section 1.5, and contains as the special case 𝑣𝜔 = 0 the above renewal–reward system in a random environment.

Denote by  the random set {𝑇𝑖}𝑖∈N0
. Together with the pinning model, we consider the constrained pinning model corresponding

o the law 𝑄𝜔,𝑡 obtained via the change of measure

d𝑄𝜔,𝑡

d𝑃𝜔
∶=

1{𝑡∈ }e𝐻𝜔,𝑡

𝐸𝜔[1{𝑡∈ }e𝐻𝜔,𝑡 ]
.

The constrained pinning model turns out to be a useful tool to investigate the pinning model. One of its interesting features is that
the measure 𝑄𝜔,𝑡 depends on the waiting-time distribution 𝑝𝜔 and the potential 𝑣𝜔 only through the combination 𝑞𝜔 ∶= e𝑣𝜔𝑝𝜔, so
hat they are convertible one into another in a sense. In a nutshell, this is due to the fact that within the constrained model there
s no residual lifetime after time 𝑡, to which no potential is associated, as it happens in the non-constrained setting. We generically
efer to 𝑃𝜔,𝑡 or 𝑄𝜔,𝑡 as pinning models.

onditional independence. We aim to analyse the quenched large deviations of the renewal–reward process {𝑊𝑡}𝑡∈N0
, taking

dvantage of the fact that a renewal process at every renewal starts afresh in the current environment. This fact is formalised
y the identity

𝑃𝜔

[

𝑆1 = 𝑠1,… , 𝑆𝑛+𝑛′ = 𝑠𝑛+𝑛′ , 𝑋1 ∈ 𝐴1,… , 𝑋𝑛+𝑛′ ∈ 𝐴𝑛+𝑛′
|

|

|

𝑇𝑛 = 𝑡
]

= 𝑃𝜔

[

𝑆1 = 𝑠1,… , 𝑆𝑛 = 𝑠𝑛, 𝑋1 ∈ 𝐴1,… , 𝑋𝑛 ∈ 𝐴𝑛
|

|

|

𝑇𝑛 = 𝑡
]

𝑃𝑓 𝑡𝜔

[

𝑆1 = 𝑠𝑛+1,… , 𝑆𝑛′ = 𝑠𝑛+𝑛′ , 𝑋1 ∈ 𝐴𝑛+1,… , 𝑋𝑛′ ∈ 𝐴𝑛+𝑛′
]

(1.1)

or 𝑛, 𝑛′ ∈ N, 𝑠1,… , 𝑠𝑛+𝑛′ ∈ N, and 𝐴1,… , 𝐴𝑛+𝑛′ ∈ () (with the convention 0
0 ∶= 0).

Subadditive ergodic theorem. To describe the asymptotic behaviour of probabilities, we use Kingman’s subadditive ergodic theo-
rem [49]:

(⋆) Let {𝐹𝑡}𝑡∈N be a sequence of measurable functions on 𝛺 such that E[max{0, 𝐹1}] < +∞ and 𝐹𝑡+𝑡′ ≤ 𝐹𝑡 + 𝐹𝑡′◦𝑓 𝑡 for all 𝑡, 𝑡′ ∈ N.
Set  ∶= inf 𝑡∈N{E[

𝐹𝑡
𝑡 ]} < +∞. The following hold:

(𝑖) lim𝑡↑∞ E[ 𝐹𝑡𝑡 ] = .
(𝑖𝑖) lim𝑡↑∞

𝐹𝑡(𝜔)
𝑡 =  P-a.e. 𝜔.

ote that the condition E[max{0, 𝐹1}] < +∞ can be replaced by the condition E[max{0, 𝐹𝑡}] < +∞ for all 𝑡 ≥ 𝑡𝑜 for some 𝑡𝑜 ∈ N. In
hat case  ∶= inf 𝑡≥𝑡𝑜{E[

𝐹𝑡
𝑡 ]}.

.3. Main results

We investigate quenched large deviations for the process {𝑊𝑡}𝑡∈N0
under the following assumptions about the waiting-time

istribution 𝑝𝜔 and the potential 𝑣𝜔, through their combination 𝑞𝜔 ∶= e𝑣𝜔𝑝𝜔, and the reward probability measures 𝜆𝜔(⋅|𝑠) for 𝑠 ∈ N
which are assumed to be in force throughout the paper). Recall that a finite set S ⊂ N is coprime if the greatest common divisor
f all its elements is 1. Denote by 𝐵𝑤,𝛿 the open ball of radius 𝛿 > 0 centred at 𝑤 ∈  . For 𝑟 ∈  and 𝐴 ⊆  , let 𝑟 + 𝐴 be the set of
oints 𝑟 +𝑤 with 𝑤 ∈ 𝐴.

ssumption 1.1. There exists a coprime set S ⊂ N such that E[min{0, log 𝑞⋅(𝑠)}] > −∞ for all 𝑠 ∈ S. Moreover, E[sup𝑠∈N max{0,
og 𝑞⋅(𝑠) − 𝜂𝑠}] < +∞ for some real number 𝜂 ≥ 0 (with the convention log 0 ∶= −∞). ♠

Let S be as in Assumption 1.1.

ssumption 1.2. There exist a finite-dimensional subspace  ⊆  and, for 𝑠 ∈ N, measurable functions 𝜔 ↦ 𝑟𝜔,𝑠 valued in  and
oints 𝑥𝑠 ∈  such that E[log 𝜆⋅(𝑟⋅,𝑠 + 𝐵𝑥𝑠 ,𝛿|𝑠)] > −∞ for all 𝑠 ∈ S and 𝛿 > 0 and E[sup𝑠∈N max{0, ‖𝑟⋅,𝑠‖ − 𝜂𝑠}] < +∞ for some 𝜂 ≥ 0.
oreover, for each 𝑠 ∈ S there exists a compact set 𝐾𝑠 ⊂  such that E[log 𝜆⋅(𝑟⋅,𝑠 +𝐾𝑠|𝑠)] > −∞. ♠

Our first main result concerns the large deviations of the total reward 𝑊𝑡 with respect to the constrained pinning model 𝑄𝜔,𝑡 for
typical disorder 𝜔. For convenience, we leave out normalisation and consider the random measure 𝜔 ↦ 𝜇𝜔,𝑡 on () defined, for
∈ N, by

𝜇𝜔,𝑡 ∶= 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈ ⋅ , 𝑡∈

}e𝐻𝜔,𝑡

]

. (1.2)

he following result about the cumulant generating function associated with 𝜇𝜔,𝑡 comes before an LDP. Let ⋆ be the topological
ual of  , and let + be the set of positive random variables on 𝛺 that are almost surely finite. For 𝜑 ∈ ⋆ and 𝜁 ∈ R, consider
he extended real number, i.e., a number that might be infinite,

𝛶𝜑(𝜁 ) ∶= inf
𝑅∈+

P -ess sup
𝜔∈𝛺

{

log𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)−𝜁𝑆1+𝑅(𝑓𝑆1𝜔)−𝑅(𝜔)1{𝑆1<∞}

]

}

. (1.3)

⋆

3

inally, denote by 𝑧 the function that maps 𝜑 ∈  to 𝑧(𝜑) ∶= inf{𝜁 ∈ R∶ 𝛶𝜑(𝜁 ) ≤ 0}.
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Proposition 1.3. The following hold:
(i) 𝑧 is proper convex, with 𝑧(0) finite, and is lower semi-continuous.
(ii) lim𝑡↑∞

1
𝑡 log ∫ e𝑡𝜑(𝑤)𝜇𝜔,𝑡(d𝑤) = 𝑧(𝜑) P-a.e. 𝜔 for every 𝜑 ∈ ⋆.

The variational definition of the function 𝑧, which in (1.3) involves the gradient 𝑅◦𝑓𝑆1 −𝑅 of auxiliary random variables 𝑅 ∈ +
as a corrector, is our variational formula for the quenched free energy. The number 𝜁 is reminiscent of a renewal equation, and
accommodates for a Cramér–Lundberg parameter to describe its growth rate [31]. We will comment further on this formula below.
For now, we note that Proposition 1.3 suggests as a putative rate function the Legendre transform of 𝑧, which is the convex lower
semi-continuous function 𝐽 that maps 𝑤 ∈  to

𝐽 (𝑤) ∶= sup
𝜑∈⋆

{

𝜑(𝑤) − 𝑧(𝜑)
}

.

Formula (1.3) makes evident that 𝑧, and hence 𝐽 , depends on the waiting-time distribution 𝑝𝜔 and the potential 𝑣𝜔 only through
the combination 𝑞𝜔 = e𝑣𝜔𝑝𝜔. The following theorem states a quenched LDP for the family of measures {𝜇𝜔,𝑡}𝑡∈N.

Theorem 1.4. P-a.e. 𝜔 the family {𝜇𝜔,𝑡}𝑡∈N satisfies the weak LDP with rate function 𝐽 , i.e.,
(𝑖) lim inf 𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐺) ≥ − inf𝑤∈𝐺 𝐽 (𝑤) for all 𝐺 ⊆  open.

(𝑖𝑖) lim sup𝑡↑∞
1
𝑡 log𝜇𝜔,𝑡(𝐾) ≤ − inf𝑤∈𝐾 𝐽 (𝑤) for all 𝐾 ⊂  compact.

It is desirable (for example, in order to be able to apply Varadhan’s lemma [17,18]) that P-a.e. 𝜔 the family {𝜇𝜔,𝑡}𝑡∈N satisfies
a full LDP with a good rate function. This means that the large deviation upper bound (𝑖𝑖) in Theorem 1.4 holds for all closed sets,
and not only for compact sets, and that 𝐽 has compact sublevel sets, i.e., the sets {𝑤 ∈  ∶ 𝐽 (𝑤) ≤ 𝑎} are compact for all 𝑎 ∈ R.
The following corollary of Theorem 1.4 addresses this issue when the dimension of  is finite in the wake of Corollary 6.4 in [4].

Corollary 1.5. If  is finite-dimensional and there exist real numbers 𝜉 > 0 and 𝑀 ≥ 0 such that

E
[

sup
𝑠∈N

max
{

0, log∫
e𝜉‖𝑥‖−𝑀𝑠𝜆⋅(d𝑥|𝑠)

}]

< +∞,

then P-a.e. 𝜔 the family {𝜇𝜔,𝑡}𝑡∈N satisfies the full LDP with good rate function 𝐽 .

Remark 1.6. Since lim𝑡↑∞
1
𝑡 log𝜇𝜔,𝑡() = 𝑧(0) P-a.e. 𝜔 with 𝑧(0) finite by Proposition 1.3, Theorem 1.4 and Corollary 1.5 establish

quenched LDPs with rate function 𝐽 + 𝑧(0) for the total reward with respect to the constrained pinning model.

Our second main result describes the large deviations of 𝑊𝑡 with respect to the pinning model 𝑃𝜔,𝑡 by exploiting the large
deviation bounds for the constrained model. As before, we leave normalisation aside and focus on the random measure 𝜔 ↦ 𝜈𝜔,𝑡 on
() defined, for 𝑡 ∈ N, by

𝜈𝜔,𝑡 ∶= 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈ ⋅

}e𝐻𝜔,𝑡

]

. (1.4)

iven an extended real number 𝓁 ∈ [−∞, 0], denote by 𝐼𝓁 the Legendre transform of 𝑧𝓁 ∶= max{𝑧,𝓁}, which associates 𝑤 ∈  with

𝐼𝓁(𝑤) ∶= sup
𝜑∈⋆

{

𝜑(𝑤) − 𝑧𝓁(𝜑)
}

.

Note that 𝑧𝓁 = 𝑧 and 𝐼𝓁 = 𝐽 if 𝓁 = −∞.

Theorem 1.7. Suppose that there exists an 𝓁 ∈ [−∞, 0] such that P-a.e. 𝜔

lim
𝜖↓0

lim sup
𝑠↑∞

sup
𝑡∈N0

{

1
𝑠
log𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] − 𝜖 𝑡

𝑠

}

≤ 𝓁, lim
𝜖↓0

lim inf
𝑠↑∞

inf
𝑡∈N0

{

1
𝑠
log𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] + 𝜖 𝑡

𝑠

}

≥ 𝓁. (1.5)

Then the following hold:
(𝑖) lim𝑡↑∞

1
𝑡 log ∫ e𝑡𝜑(𝑤)𝜈𝜔,𝑡(d𝑤) = 𝑧𝓁(𝜑) P-a.e. 𝜔 for every 𝜑 ∈ ⋆.

(𝑖𝑖) If either 𝓁 = −∞ or 𝓁 > −∞ and ⋆ is separable, then P-a.e. 𝜔 the family {𝜈𝜔,𝑡}𝑡∈N satisfies the weak LDP with rate function 𝐼𝓁 .

The parameter 𝓁 in Theorem 1.7 plays the role of an exponential tail constant for the waiting-time distribution. The combination
𝜔 = e𝑣𝜔𝑝𝜔 of the waiting-time distribution 𝑝𝜔 and the potential 𝑣𝜔 does not suffice to uniquely identify the non-constrained pinning
odel and, at the level of LDPs, the necessary additional data are condensed in the number 𝓁. When 𝓁 > −∞, we need separability

f ⋆ to prove that the large deviation upper bound for compact sets holds uniformly P-a.e. 𝜔. The large deviation lower bound
for open sets holds uniformly P-a.e. 𝜔 even without separability of ⋆. If  is finite-dimensional, then the weak LDP can be easily
promoted to a full LDP according to the following corollary of Theorem 1.7.

Corollary 1.8. Suppose that (1.5) holds. Then, under the hypotheses of Corollary 1.5, P-a.e. 𝜔 the family {𝜈𝜔,𝑡}𝑡∈N satisfies the full LDP
with good rate function 𝐼𝓁 .

Remark 1.9. Since lim𝑡↑∞
1
𝑡 log 𝜈𝜔,𝑡() = 𝑧𝓁(0) P-a.e. 𝜔 with 𝑧𝓁(0) finite, Theorem 1.7 and Corollary 1.8 establish quenched LDPs

with rate function 𝐼 + 𝑧 (0) for the total reward with respect to the pinning model.
4
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1.4. Discussion

Variational free energy. Assumption 1.1, through the requirement E[min{0, log 𝑞⋅(𝑠)}] > −∞ for all 𝑠 ∈ S, formulates a notion of
aperiodic probability mass function in a context with disorder that is suitable for the exponential scale of LDPs. The requirement
E[sup𝑠∈N max{0, log 𝑞⋅(𝑠)−𝜂𝑠}] < +∞ for some 𝜂 ≥ 0, which basically is a hypothesis on the potential, is motivated by and applies to the
polymer pinning model, discussed below in more detail, and its generalisations, such as the spatially extended pinning model [12].
We note that a homogeneous version, i.e., without disorder, of these assumptions is already present in [58], where LDPs for the
total reward are established within the framework of homogeneous pinning models.

According to (𝑖𝑖) of Proposition 1.3 with 𝜑 = 0, Assumption 1.1 suffices to obtain the following limit, which shows that 𝑧(0) is
the quenched free energy of the (constrained) pinning model:

lim
𝑡↑∞

1
𝑡
log𝜇𝜔,𝑡() = lim

𝑡↑∞
1
𝑡
log𝐸𝜔

[

1{𝑡∈ }e𝐻𝜔,𝑡
]

= 𝑧(0) P-a.e. 𝜔.

We stress that the instance 𝜑 = 0 puts the reward probability measures 𝜆𝜔(⋅|𝑠) out of the picture. The role of the assumption
E[sup𝑠∈N max{0, log 𝑞⋅(𝑠) − 𝜂𝑠}] < +∞ for some 𝜂 ≥ 0 is to ensure that 𝑧(0) is finite.

Our variational definition of the function 𝑧 based on (1.3) turns out to be a variational formula for the quenched free energy:
(0) = inf{𝜁 ∈ R∶ 𝛶0(𝜁 ) ≤ 0} with

𝛶0(𝜁 ) ∶= inf
𝑅∈+

P -ess sup
𝜔∈𝛺

{

log𝐸𝜔

[

e𝑣𝜔(𝑆1)−𝜁𝑆1+𝑅(𝑓𝑆1𝜔)−𝑅(𝜔)1{𝑆1<∞}

]

}

.

It is interesting to note that the quantity 𝛶0(𝜁 ) can itself be interpreted as the quenched free energy of a random walk in a
random potential. To make contact with the existing literature, suppose for a moment that the distribution 𝑝𝜔 has a bounded
and 𝜔-independent support, and let 𝑝 be an arbitrary homogeneous distribution over N with the same support as 𝑝𝜔. Since the
waiting-time distribution 𝑝𝜔 and the potential 𝑣𝜔 enter 𝛶0(𝜁 ) only through the combination 𝑞𝜔 = e𝑣𝜔𝑝𝜔, we can replace 𝑝𝜔 by 𝑝
and 𝑣𝜔 by 𝑣𝜔 + log 𝑝𝜔 − log 𝑝. Then 𝛶0(𝜁 ) becomes the quenched free energy for the random walk {𝑇𝑖}𝑖∈N0

of renewal times in the
andom potential 𝜔 ↦ 𝑣𝜔 + log 𝑝𝜔 − log 𝑝 − 𝜁 id [13,22,40,42]. These connections, together with the findings of [42], suggest that
he formula for 𝛶0(𝜁 ) does not always have a minimiser over +. Recasting this expression in terms of centered cocycles could lead
o a minimiser, as shown for a class of random walks in random potentials [13,22,42]. This issue, which we leave for future work,
ay open a new perspective in the study of the random pinning model.

eward laws with disorder. Assumption 1.2 on the distribution of rewards raises a new problem, namely, that of incorporating
eneric rewards into a renewal model with disorder. We are not aware of seeing this in similar or other contexts. The assumption
s always verified by probability measures 𝜆𝜔(⋅|𝑠) that do not depend on the disorder 𝜔. In this case we can take 𝑟𝜔,𝑠 = 0. In fact, for
ny probability measure 𝜆 on () there exists a point 𝑥 ∈  such that 𝜆(𝐵𝑥,𝛿) > 0 for all 𝛿 > 0. On the contrary, if for every 𝑦 ∈ 
t were possible to find a number 𝛿𝑦 > 0 such that 𝜆(𝐵𝑦,𝛿𝑦 ) = 0, then the open covering {𝐵𝑦,𝛿𝑦}𝑦∈ of  would contain a countable
ubcollection covering  by Lindelöf’s lemma, with the consequence that 𝜆() = 0 instead of 𝜆() = 1. Furthermore, there exists a
ompact set 𝐾 ⊂  such that 𝜆(𝐾) > 0, because 𝜆 is tight as  is separable (see [11], Theorem 7.1.7).

In the presence of disorder, what Assumption 1.2 requires is basically that the random probability measures 𝜔 ↦ 𝜆𝜔(⋅|𝑠) satisfy
he properties of homogeneous laws, in mean and on the exponential scale of LDPs, under possibly a shift by the vectors 𝑟𝜔,𝑠. The
oints 𝑟𝜔,𝑠 are incorporated in the theory to account for a disorder-dependent deterministic component of rewards, which becomes
ominant in the limiting case 𝜆𝜔(⋅|𝑠) = 𝛿𝑟𝜔,𝑠 , with 𝛿𝑥 the Dirac measure centered at 𝑥. This limiting case allows, for instance, to study

the large deviations of the Hamiltonian 𝐻𝜔,𝑡, which is the total reward 𝑊𝑡 in a model where 𝜆𝜔(⋅|𝑠) = 𝛿𝑣𝜔(𝑠). The vectors 𝑟𝜔,𝑠 are
equired not to vary too much, in particular, to lie in a common finite-dimensional subspace  . We make use of this assumption,
ogether with the hypothesis E[sup𝑠∈N max{0, ‖𝑟⋅,𝑠‖− 𝜂𝑠}] < +∞ for some 𝜂 ≥ 0, to ensure that the disorder-dependent deterministic
omponent 1

𝑡
∑𝑁𝑡

𝑖=1 𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖
of the scaled total reward is in a compact set P-a.e. 𝜔. We stress that Assumption 1.2 simplifies when

the reward space  is finite-dimensional, as in this case  can be taken equal to  and the compact sets 𝐾𝑠 can be taken equal to
the closure of an open ball.

Difficulties and open problems. Since Assumption 1.2 allows for any homogeneous reward law, our LDPs contain as a particular
case the LDPs established in [58] under optimal hypotheses for homogeneous pinning models. Our variational definition of the
function 𝑧 generalises to a setting with disorder the variational definition given in [58] for the same function. We note that, in the
homogeneous setting, the subadditivity properties of renewal models allow among others to extend the large deviation upper bounds
from compact sets to open and closed convex sets under the same assumptions as the weak LDPs [58]. In the presence of disorder,
our main assumptions and methods appear to be unable to reach the same result, because we exploit subadditivity properties after
an approximation argument, as explained in Section 2.3. We also note that, in the homogeneous setting, conditions for the full
LDP to hold for infinite-dimensional rewards are known [59]. Such conditions come from large deviation theory of sums of i.i.d.
random variables and are formulated in terms of exponential moments. We leave the investigation of these conditions to models
with disorder as an open problem.
5
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1.5. Examples

Compound Poisson processes in random environments. Suppose that, in an economic scenario 𝜔 ∈ 𝛺, a customer can arrive in a
shop with probability 𝜌𝜔, and can spend an amount of money smaller than or equal to 𝑥 ∈ R with probability 𝐹𝜔(𝑥). If the
conomic scenario evolves according to an ergodic measure-preserving transformation 𝑓 , then the customer arrives at time 𝑠 ∈ N
ith probability

𝑝𝜔(𝑠) ∶=
𝑠−1
∏

𝑡=1
(1 − 𝜌𝑓 𝑡𝜔)𝜌𝑓 𝑠𝜔

empty products are equal to one), and spends an amount of money with probability distribution 𝜆𝜔(⋅|𝑠) over (R) defined, for
𝑥 ∈ R, by

𝜆𝜔((−∞, 𝑥]|𝑠) ∶= 𝐹𝑓 𝑠𝜔(𝑥).

Note that we are implicitly assuming that 𝐹𝜔(𝑥) is non-decreasing and right-continuous with respect to 𝑥. We also assume that
𝜔 ↦ 𝜌𝜔 and 𝜔 ↦ 𝐹𝜔(𝑥) are measurable. In this way, when other customers arrive progressively after the first customer, all of
them are described by the law 𝑃𝜔 associated with the waiting time distribution 𝑝𝜔 and the reward probability measures 𝜆𝜔(⋅|𝑠) over
 ∶= R. The total reward 𝑊𝑡 turns out to be the amount of money earned by the shop up to time 𝑡.

We are able to characterise the large deviations of 𝑊𝑡 via our theory for a pinning model with potential 𝑣𝜔 equal to zero.
ssumption 1.1 is met with S = {1} if E[log 𝑝⋅(1)] > −∞, i.e., E[log 𝜌⋅] > −∞. Since the reward probability measures 𝜆𝜔(⋅|𝑠) depend
n 𝑠 and 𝜔 only through 𝑓 𝑠𝜔, Assumption 1.2 is satisfied if there exists a measurable function 𝜔 ↦ 𝑟𝜔 taking values in R such that
[|𝑟⋅|] < +∞ and E[log{𝐹⋅(𝑟⋅ + 𝛿) −𝐹⋅(𝑟⋅ − 𝛿)}] > −∞ for all 𝛿 > 0. The hypothesis of Corollary 1.5 becomes E[log ∫R e𝜉|𝑥|d𝐹⋅(𝑥)] < +∞

or some real number 𝜉 > 0. Thus, Theorem 1.7 and Corollary 1.8 give the following result after we show that the condition (1.5)
s verified with 𝓁 = E[log(1 − 𝜌⋅)].

orollary 1.10. Suppose that E[log 𝜌⋅] > −∞ and that there exists a real measurable function 𝜔 ↦ 𝑟𝜔 such that E[|𝑟⋅|] < +∞ and
[log{𝐹⋅(𝑟⋅ + 𝛿) − 𝐹⋅(𝑟⋅ − 𝛿)}] > −∞ for all 𝛿 > 0. Then the following hold:
𝑖) P-a.e. 𝜔 the family {𝜈𝜔,𝑡}𝑡∈N, associated with the total profit, satisfies the weak LDP with rate function 𝐼𝓁 , where 𝓁 ∶= E[log(1 − 𝜌⋅)] ∈
−∞, 0].
𝑖𝑖) If, moreover, E[log ∫R e𝜉|𝑥|d𝐹⋅(𝑥)] < +∞ for some number 𝜉 > 0, then P-a.e. 𝜔 the family {𝜈𝜔,𝑡}𝑡∈N satisfies the full LDP with good rate
unction 𝐼𝓁 .

roof of Corollary 1.10. It remains to verify that the condition (1.5) holds with 𝓁 ∶= E[log(1−𝜌⋅)]. The waiting-time tail probability
s now, for 𝑠 ∈ N0,

𝑃𝜔[𝑆1 > 𝑠] =
𝑠

∏

𝑖=1
(1 − 𝜌𝑓 𝑖𝜔).

First we prove that (1.5) is fulfilled with the above 𝓁 when E[log(1 − 𝜌⋅)] > −∞. To this aim, we note that Birkhoff’s ergodic
heorem allows us to find a set 𝛺𝑜 ∈  with P[𝛺𝑜] = 1 such that, for 𝜔 ∈ 𝛺𝑜, lim𝑠↑∞

1
𝑠 log𝑃𝜔[𝑆1 > 𝑠] = 𝓁. Thus, for a given 𝜔 ∈ 𝛺𝑜

nd for each 𝜖 > 0, there exists a constant 𝑘 such that the bounds −𝑘 + (𝓁 − 𝜖∕2)𝑠 ≤ log𝑃𝜔[𝑆1 > 𝑠] ≤ 𝑘 + (𝓁 + 𝜖∕2)𝑠 are valid for all
∈ N0. These bounds imply

log𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] = log𝑃𝜔[𝑆1 > 𝑡 + 𝑠] − log𝑃𝜔[𝑆1 > 𝑡] ≤ 2𝑘 + (𝓁 + 𝜖∕2)(𝑡 + 𝑠) − (𝓁 − 𝜖∕2)𝑡 ≤ 2𝑘 + (𝓁 + 𝜖)𝑠 + 𝜖𝑡,

hich shows that the first inequality of (1.5) holds. A similar argument proves the second inequality.
In the case 𝓁 ∶= E[log(1 − 𝜌⋅)] = −∞, the second inequality of (1.5) is trivial. Regarding the first, put 𝜌𝑘𝜔 ∶= min{𝜌𝜔, 1 − 1∕𝑘} for

∈ N. Since 𝑃𝜔[𝑆1 > 𝑠] ≤
∏𝑠

𝑖=1(1−𝜌𝑘
𝑓 𝑖𝜔

) for all 𝑠 and 𝑘, and E[log(1−𝜌𝑘⋅ )] > −∞, we can conclude as before that there exists 𝛺𝑜 ∈ 
ith P[𝛺𝑜] = 1 such that

lim
𝜖↓0

lim sup
𝑠↑∞

sup
𝑡∈N0

{

1
𝑠
log𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] − 𝜖 𝑡

𝑠

}

≤ E
[

log(1 − 𝜌𝑘⋅ )
]

or all 𝜔 ∈ 𝛺𝑜 and 𝑘 ∈ N. Letting 𝑘 ↑ ∞, we see that the monotone convergence theorem demonstrates the first inequality of
1.5). □

inning of polymers at interfaces with disorder. We recover the standard pinning model [19,23] as follows. Suppose that the disorder
∶= {𝜔𝜏}𝜏∈N0

is a real sequence, which is sampled from a probability space (𝛺, ,P) in such a way that the canonical projections
𝜔 ↦ 𝜔𝜏 form a sequence of i.i.d. random variables, and that the transformation 𝑓 is the left-shift acting on 𝜔. Next, suppose that
the waiting-time distribution is independent of 𝜔 and is defined, for 𝑠 ∈ N, by

𝑝𝜔(𝑠) = 𝑝(𝑠) ∶=
𝐿(𝑠)
𝑠𝛼+1

with an index 𝛼 ≥ 0 and a slowly varying function at infinity 𝐿. Finally, given parameters ℎ, 𝛽 ∈ R, consider the potential
𝑣𝜔(𝑠) ∶= ℎ + 𝛽𝜔𝑠 for 𝑠 ∈ N, whose associated Hamiltonian turns out to be

𝐻𝜔,𝑡 =
𝑁𝑡
∑

(ℎ + 𝛽𝜔𝑇𝑖 ).
6
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This model represents a heteropolymer consisting of 𝑡 monomers that interacts with a substrate through the monomers 𝑇1,… , 𝑇𝑁𝑡
.

Monomer 𝜏 has binding energy ℎ + 𝛽𝜔𝜏 , and the spacing along the polymer chain of pinned units has a heavy-tailed distribution.
If the last monomer is forced to be bound to the substrate, then the polymer is described by the constrained Gibbs measure 𝑄𝜔,𝑡,
otherwise the law is the Gibbs measure 𝑃𝜔,𝑡.

Our theory allows us to study the fluctuations of the number 𝑁𝑡 of pinned monomers. In fact, we have 𝑊𝑡 = 𝑁𝑡 𝑃𝜔-a.s. when
 ∶= R and 𝜆𝜔(⋅|𝑠) ∶= 𝛿1 for each 𝑠 ∈ N. Our theory also allows us to investigate the fluctuations of the polymer excursions between
pinned units. To this aim, we may suppose that, e.g.,  is the Hilbert space of square-summable real functions on N endowed with the
Euclidean inner product ⟨⋅, ⋅⟩ and the corresponding norm ‖⋅‖. The space  is separable, and so is its topological dual ⋆. Then, given
an orthonormal basis {𝑒𝑠}𝑠∈N of  , we can put 𝜆𝜔(⋅|𝑠) ∶= 𝛿𝑒𝑠 for 𝑠 ∈ N. In this framework, we have 𝑊𝑡 =

∑𝑁𝑡
𝑖=1 𝑒𝑆𝑖

=
∑

𝑠∈N #𝑡(𝑠)𝑒𝑠
𝑃𝜔-a.s., where #𝑡(𝑠) is a non-negative integer random variable that counts the number of times that a waiting time of size 𝑠 has
occurred up to time 𝑡.

Both for the number of pinned monomers and the number of polymer excursions between pinned units, the reward probability
measures do not depend on 𝜔, so that Assumption 1.2 is automatically satisfied, as seen in Section 1.4. Assumption 1.1 only requires
that ∫𝛺 |𝜔0|P[d𝜔] < +∞, and the condition (1.5) is met with 𝓁 = 0. In fact, since 𝑝(𝑠) > 0 for all sufficiently large 𝑠 by definition, the
set S can be taken equal to any pair of sufficiently large consecutive integers. Thus, Theorems 1.4 and 1.7 provide quenched weak
LDPs with respect to the constrained and non-constrained model, respectively. Regarding the number of pinned monomers, the LDP
is actually full and the rate function is good according to Corollaries 1.5 and 1.8. We note, in general, that if ∫𝛺 |𝜔0|P[d𝜔] < +∞
and rewards are bounded by a common constant 𝜌 > 0, i.e., 𝜆𝜔(𝐵0,𝜌|𝑠) = 1 for all 𝑠 ∈ N and 𝜔 ∈ 𝛺 as in the above cases, then
(𝜑) ≥ 0 for all 𝜑 ∈ ⋆, so that 𝑧𝓁 = 𝑧 and 𝐼𝓁 = 𝐽 . This follows from (𝑖𝑖) of Proposition 1.3 since, for 𝜑 ∈ ⋆ and 𝑡 ∈ N, we have

∫
e𝑡𝜑(𝑤)𝜇𝜔,𝑡(d𝑤) = 𝐸𝜔

[

1{𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

≥ 𝐸𝜔

[

1{𝑇1=𝑡}e
𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

= 𝑝(𝑡)∫
e𝜑(𝑥)+ℎ+𝛽𝜔𝑡𝜆𝜔(d𝑥|𝑡) ≥ 𝑝(𝑡) e−‖𝜑‖𝜌+ℎ+𝛽𝜔𝑡 .

n the other hand, the hypothesis ∫𝛺 |𝜔0|P[d𝜔] < +∞ implies lim𝑡↑∞
𝜔𝑡
𝑡 = 0 P-a.e. 𝜔, which can be easily justified by means of the

strong law of large numbers. In conclusion, Theorems 1.4 and 1.7 lead to the following results.

Corollary 1.11. Suppose that ∫𝛺 |𝜔0|P[d𝜔] < +∞. Then the following hold:
(𝑖) P-a.e. 𝜔 the families {𝜇𝜔,𝑡}𝑡∈N and {𝜈𝜔,𝑡}𝑡∈N, associated with the number of pinned monomers, satisfy the full LDP with good rate function
𝐽 .
(𝑖𝑖) P-a.e. 𝜔 the families {𝜇𝜔,𝑡}𝑡∈N and {𝜈𝜔,𝑡}𝑡∈N, associated with the polymer excursions between pinned units, satisfy the weak LDP with
rate function 𝐽 .

The example of the number of pinned units allows to appreciate the effect of disorder on rate functions. The following proposition
makes use of a known smoothing effect of disorder in the pinning model (under more restrictive hypotheses on disorder than
necessary for the sake of simplicity) to unveil some properties of the rate function 𝐽 of the number of pinned monomers. Note that,
as 𝑁𝑡

𝑡 ∈ [0, 1] for all 𝑡, the large deviation lower bound for open sets implies 𝐽 (𝑤) = +∞ for 𝑤 ∉ [0, 1]. Put 𝑢 ∶=
∑

𝑠∈N 𝑝(𝑠)
∑

𝑠∈N 𝑠𝑝(𝑠) ∈ (0, 1) if
∑

𝑠∈N 𝑠𝑝(𝑠) < +∞ and 𝑢 ∶= 0 otherwise.

roposition 1.12. Assume that 𝑝(𝑠) > 0 for all 𝑠 ∈ N and that either 𝜔0 is bounded with full probability or is Gaussian distributed. Then
he following hold:
𝑖) If 𝛽 = 0 and 𝑢 > 0, then the rate function 𝐽 of the number of pinned monomers has an affine stretch on (0, 𝑢], whereas it is strictly convex

and infinitely differentiable on (𝑢, 1).
(𝑖𝑖) If either 𝛽 = 0 and 𝑢 = 0 or 𝛽 ≠ 0, then 𝐽 is strictly convex and infinitely differentiable on (0, 1).

Thus, for a model with 𝑢 > 0, the rate function 𝐽 of the number of pinned monomers has an affine stretch terminating at the
point 𝑢 when disorder is absent, i.e., when 𝛽 = 0. But as soon as disorder comes into play, i.e., when 𝛽 ≠ 0, the rate function 𝐽 loses
such an affine stretch. We note that the phenomenon of affine stretches in rate functions of homogeneous pinning models have been
investigated in detail in [56,57]. When 𝛽 = 0 and 𝑢 > 0, the function 𝐽 is continuously differentiable on the whole interval (0, 1)
despite a singularity at 𝑢 (see [56], Paragraph 4.4.2).

Proof of Proposition 1.12. Let us denote the free energy of the constrained pinning model 𝑧(0) by 𝖥(ℎ) to highlight the dependence
on the parameter ℎ. Since we are considering a problem where 𝑊𝑡 = 𝑁𝑡 𝑃𝜔-a.s., so that ∫ e𝑡𝜑(𝑤)𝜇𝜔,𝑡(d𝑤) = 𝐸𝜔[1{𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡 ] =
𝐸𝜔[1{𝑡∈ }e𝜑(1)𝑁𝑡+𝐻𝜔,𝑡 ], (𝑖𝑖) of Proposition 1.3 shows that 𝑧(𝜑) = 𝖥(ℎ + 𝑘) with 𝑘 ∶= 𝜑(1). It therefore follows that, for 𝑤 ∈ R,

𝐽 (𝑤) ∶= sup
𝜑∈⋆

{

𝜑(𝑤) − 𝑧(𝜑)
}

= sup
𝑘∈R

{

𝑤𝑘 − 𝖥(ℎ + 𝑘)
}

= sup
𝑘∈R

{

𝑤𝑘 − 𝖥(𝑘)
}

−𝑤ℎ. (1.6)

The overall features of the free energy under the hypotheses of the proposition on disorder have been characterised and are
ow needed. In order to make contact with the existing literature, we suppose without loss of generality that ∫𝛺 𝜔0P[d𝜔] = 0 and
𝛺 𝜔2

0P[d𝜔] = 1. To begin with, we recall that there exists a number ℎ𝑐 such that 𝖥(ℎ) = 0 for ℎ ≤ ℎ𝑐 and 𝖥(ℎ) > 0 for ℎ > ℎ𝑐
(see [23], Chapter 5). The function that maps ℎ in 𝖥(ℎ) is convex on the real line and is infinitely differentiable and strictly convex
on the open interval (ℎ𝑐 ,+∞) (see [25], Theorem 2.1 and [24], Theorem B.1). In the absence of disorder, i.e., when 𝛽 = 0, we have
hat ℎ𝑐 = − log

∑

𝑠∈N 𝑝(𝑠) and that 𝖥(ℎ) for ℎ > ℎ𝑐 is the unique positive real number that solves the equation ∑

𝑠∈N 𝑝(𝑠)e−𝖥(ℎ)𝑠 = e−ℎ
′

7

see [23], Proposition 1.1). Then, when 𝛽 = 0, we can easily verify that limℎ↓ℎ𝑐 𝖥 (ℎ) = 𝑢. This limit is affected by disorder, which has a
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smoothing effect. In fact, when 𝛽 ≠ 0, it is known that limℎ↓ℎ𝑐 𝖥
′(ℎ) = 0 (see [26], Theorem 2.1). In all cases, we find limℎ↑+∞ 𝖥′(ℎ) = 1

ince 𝑝(1) > 0. To prove this claim, we note that, for ℎ > 0, 𝑡 ∈ N, and 𝜔 ∈ 𝛺,

e
∑𝑡

𝑖=1(ℎ+𝛽𝜔𝑖)+𝑡 log 𝑝(1) = 𝐸𝜔

[

1{𝑆1=1,…,𝑆𝑡=1}e
𝐻𝜔,𝑡

]

≤ 𝐸𝜔

[

1{𝑡∈ }e𝐻𝜔,𝑡
]

≤ eℎ𝑡𝐸𝜔

[

1{𝑡∈ }e𝐻𝜔,𝑡−ℎ𝑁𝑡
]

,

o that ℎ + log 𝑝(1) ≤ 𝖥(ℎ) ≤ ℎ + 𝐹 (0) by Proposition 1.3 and Birkhoff’s ergodic theorem. The latter bounds imply limℎ↑+∞
𝐹 (ℎ)
ℎ = 1.

In this way, since convexity of 𝖥 entails 𝖥(ℎ)−𝖥(0)
ℎ ≤ 𝖥′(ℎ) ≤ 𝖥(𝑘)−𝖥(ℎ)

𝑘−ℎ for max{0, ℎ𝑐} < ℎ < 𝑘, we get limℎ↑+∞ 𝖥′(ℎ) = 1 from here by
etting 𝑘 ↑ +∞ first and then ℎ ↑ +∞.

Coming back to formula (1.6), the listed overall features of the free energy allow us to conclude that

𝐽 (𝑤) =

{

𝑤(ℎ𝑐 − ℎ) if 𝛽 = 0 and 𝑤 ∈ [0, 𝑢]
𝑤(𝑘 − ℎ) − 𝖥(𝑘) if 𝛽 = 0 and 𝑤 ∈ (𝑢, 1) or 𝛽 ≠ 0 and 𝑤 ∈ (0, 1),

where 𝑘 > ℎ𝑐 is the unique real number that satisfies 𝖥′(𝑘) = 𝑤. The implicit function theorem demonstrates that 𝐽 is strictly convex
and infinitely differentiable on the interval (𝑢, 1) for 𝛽 = 0 and on the interval (0, 1) for 𝛽 ≠ 0. □

Returns of Markov chains in dynamic random environments. Let  be a finite set and let 𝜔 ↦ 𝐾𝜔 ∶= {𝐾𝜔(𝑎, 𝑏)}𝑎,𝑏∈ be a random
stochastic matrix over , i.e., a random non-negative matrix that satisfies ∑

𝑏∈ 𝐾𝜔(𝑎, 𝑏) = 1 for all 𝑎 and 𝜔. If the environment 𝜔
evolves by successive applications of an ergodic measure-preserving transformation 𝑓 , then the random matrix 𝜔 ↦ 𝐾𝜔 defines a
Markov chain in a dynamic random environment, which at time 𝑡 jumps from state 𝑎 to state 𝑏 with probability 𝐾𝑓 𝑡𝜔(𝑎, 𝑏).

Given a distinguished state 𝑐 ∈ , the returns of the Markov chain to the state 𝑐 define a renewal process in a random
environment. Its waiting-time distribution reads, for 𝑠 ∈ N,

𝑝𝜔(𝑠) ∶=

{

𝐾𝜔(𝑎0, 𝑎𝑠) if 𝑠 = 1
∑

𝑎1∈⧵{𝑐} ⋯
∑

𝑎𝑠−1∈⧵{𝑐}
∏𝑠−1

𝑖=0 𝐾𝑓 𝑖𝜔(𝑎𝑖, 𝑎𝑖+1) if 𝑠 ≥ 2

with 𝑎0 = 𝑎𝑠 ∶= 𝑐. We can use our theory to investigate, e.g., the number of distinct states that the Markov chain explores during its
excursions from the state 𝑐. To this aim, for each 𝑠 ≥ 2 such that 𝑝𝜔(𝑠) > 0, denoting by #{𝑎1,… , 𝑎𝑠} the number of distinct elements
in the collection {𝑎1,… , 𝑎𝑠}, we introduce over  ∶= R the reward probability measure

𝜆𝜔(⋅|𝑠) ∶=
1

𝑝𝜔(𝑠)
∑

𝑎1∈⧵{𝑐}
⋯

∑

𝑎𝑠−1∈⧵{𝑐}
𝛿#{𝑎1 ,…,𝑎𝑠}

𝑠−1
∏

𝑖=0
𝐾𝑓 𝑖𝜔(𝑎𝑖, 𝑎𝑖+1)

with 𝑎0 = 𝑎𝑠 ∶= 𝑐. We put 𝜆𝜔(⋅|1) ∶= 𝛿1 if 𝑝𝜔(1) > 0 and 𝜆𝜔(⋅|𝑠) ∶= 𝛿0 whenever 𝑝𝜔(𝑠) = 0. Under the law 𝑃𝜔 associated with 𝑝𝜔 and
𝜆𝜔(⋅|𝑠), the total reward 𝑊𝑡 is almost surely the number of visited states in all excursions from the state 𝑐 up to time 𝑡.

Since there is no potential in this example, Assumption 1.1 immediately holds in the easy case E[log𝐾⋅(𝑎, 𝑏)] > −∞ for all 𝑎, 𝑏 ∈ ,
which gives E[log 𝑝⋅(𝑠)] > −∞ for every 𝑠. Assumption 1.2 is verified as follows. Fix 𝑠 ∈ N and, for 𝑛 ∈ {0,… , 𝑠}, denote by 𝛺𝑛 the
set of all 𝜔 ∈ 𝛺 with the property that 𝑛 is the smallest non-negative integer 𝑖 such that 𝜆𝜔({𝑖}|𝑠) ≥

1
𝑠+1 . The sets 𝛺0,… , 𝛺𝑠 are

measurable, because they inherit this property from the random stochastic matrix 𝜔 ↦ 𝐾𝜔, and are disjoint. Moreover, ∪𝑠
𝑛=0𝛺𝑛 = 𝛺

since ∑𝑠
𝑛=0 𝜆({𝑛}|𝑠) = 1. With such sets, consider the measurable function 𝜔 ↦ 𝑟𝜔,𝑠 that takes value 𝑛 over 𝛺𝑛. This function leads to

the fulfilment of Assumption 1.2, since |𝑟𝜔,𝑠| ≤ 𝑠 and 𝜆𝜔({𝑟𝜔,𝑠}|𝑠) ≥
1

𝑠+1 for all 𝜔 by construction. Finally, we note that the hypothesis
of Corollary 1.5 is satisfied with, e.g., 𝜉 = 1 and 𝑀 = 1 since 𝜆𝜔([0, 𝑠]|𝑠) = 1 for all 𝑠 and 𝜔. Thus, Theorem 1.7 and Corollary 1.8
ive the following result after we show that the condition (1.5) holds with some 𝓁.

orollary 1.13. Assume that E[log𝐾⋅(𝑎, 𝑏)] > −∞ for all 𝑎, 𝑏 ∈ . Then there exists a finite number 𝓁 ≤ 0 such that P-a.e. 𝜔 the family
𝜈𝜔,𝑡}𝑡∈N, associated with the total number of visited states in the excursions from the distinguishable state 𝑐, satisfies the full LDP with good
ate function 𝐼𝓁 .

roof of Corollary 1.13. It remains to verify that condition (1.5) holds with a finite number 𝓁. The waiting-time tail probability
eads, for 𝑠 ∈ N,

𝑃𝜔[𝑆1 > 𝑠] =
∑

𝑎1∈⧵{𝑐}
⋯

∑

𝑎𝑠∈⧵{𝑐}
𝐾𝜔(𝑎0, 𝑎1)⋯𝐾𝑓 𝑠−1𝜔(𝑎𝑠−1, 𝑎𝑠) (1.7)

with 𝑎0 ∶= 𝑐.
Denoting by 𝑀𝜔 the restriction of 𝐾𝜔 to  ⧵ {𝑐} and putting 𝑀 𝑡

𝜔 ∶= 𝑀𝑓𝜔 ⋯𝑀𝑓 𝑡𝜔 for 𝑡 ∈ N with 𝑀0
𝜔 the identity matrix, we can

recast (1.7) as

𝑃𝜔[𝑆1 > 𝑠] =
∑

𝑎∈⧵{𝑐}

∑

𝑏∈⧵{𝑐}
𝐾𝜔(𝑐, 𝑎)𝑀𝑠−1

𝜔 (𝑎, 𝑏).

Since E[log𝑀⋅(𝑎, 𝑏)] = E[log𝐾⋅(𝑎, 𝑏)] > −∞ for all 𝑎, 𝑏 ∈  ⧵ {𝑐}, there exist a finite number 𝓁 and a set 𝛺𝑜 ∈  with P[𝛺𝑜] = 1
such that lim𝑡↑∞

1
𝑡 log𝑀

𝑡
𝜔(𝑎, 𝑏) = 𝓁 for all 𝑎, 𝑏 ∈  ⧵ {𝑐} and 𝜔 ∈ 𝛺𝑜 (see [29], Theorem 5). We can choose 𝛺𝑜 in order to also have

lim𝑡↑∞
1
𝑡 log𝐾𝑓 𝑡𝜔(𝑐, 𝑎) = 0 for all 𝑎 ∈  ⧵{𝑐} and 𝜔 ∈ 𝛺𝑜. A simple way to justify this claim involves Birkhoff’s ergodic theorem, since

og𝐾 (𝑐, 𝑎) =
∑𝑡 log𝐾 (𝑐, 𝑎) −

∑𝑡−1 log𝐾 (𝑐, 𝑎). Let us show that (1.5) holds for all 𝜔 ∈ 𝛺 with such 𝓁.
8

𝑓 𝑡𝜔 𝑖=0 𝑓 𝑖𝜔 𝑖=0 𝑓 𝑖𝜔 𝑜
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Pick 𝜔 ∈ 𝛺𝑜 and 𝜖 > 0. By construction, there exists a constant 𝑘 such that (𝓁 − 𝜖∕3)𝑡 − 𝑘 ≤ log𝑀 𝑡
𝜔(𝑎, 𝑏) ≤ (𝓁 + 𝜖∕3)𝑡 + 𝑘 and

og𝐾𝑓 𝑡𝜔(𝑐, 𝑎) ≥ −(𝜖∕3)𝑡 − 𝑘 for all 𝑎, 𝑏 ∈  ⧵ {𝑐} and 𝑡 ∈ N. The latter can be extended to also include the case 𝑡 = 0. In this way,
iven any 𝑎𝑜 ∈  ⧵ {𝑐}, the identity

∑

𝑎∈⧵{𝑐}
𝑀 𝑡

𝜔(𝑎𝑜, 𝑎)𝑀
𝑠−1
𝑓 𝑡𝜔(𝑎, 𝑏) = 𝑀 𝑡+𝑠−1

𝜔 (𝑎𝑜, 𝑏)

hows that, for 𝑠 ∈ N, 𝑡 ∈ N0, and 𝑏 ∈  ⧵ {𝑐},

e(𝓁−𝜖∕3)(𝑠−1)−(2𝜖∕3)𝑡−2𝑘 ≤
∑

𝑎∈⧵{𝑐}
𝑀𝑠−1

𝑓 𝑡𝜔(𝑎, 𝑏) ≤ e(𝓁+𝜖∕3)(𝑠−1)+(2𝜖∕3)𝑡+2𝑘 ≤ e(𝓁+𝜖)𝑠+𝜖𝑡+2𝑘.

We also have, for 𝑡 ∈ N0 and 𝑎 ∈  ⧵ {𝑐},

e−(𝜖∕3)𝑡−𝑘 ≤ 𝐾𝑓 𝑡𝜔(𝑐, 𝑎) ≤ 1.

hen, we note that

𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] =
∑

𝑎∈⧵{𝑐}

∑

𝑏∈⧵{𝑐}
𝐾𝑓 𝑡𝜔(𝑐, 𝑎)𝑀𝑠−1

𝑓 𝑡𝜔(𝑎, 𝑏) ≤ ||e(𝓁+𝜖)𝑠+𝜖𝑡+2𝑘

and

𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] ≥ ||e(𝓁−𝜖∕3)(𝑠−1)−𝜖𝑡−3𝑘

for all 𝑠 ∈ N and 𝑡 ∈ N0. These bounds show that

lim sup
𝑠↑∞

sup
𝑡∈N0

{

1
𝑠
log𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] − 𝜖 𝑡

𝑠

}

≤ 𝓁 + 𝜖

and

lim inf
𝑠↑∞

inf
𝑡∈N0

{

1
𝑠
log𝑃𝑓 𝑡𝜔[𝑆1 > 𝑠] + 𝜖 𝑡

𝑠

}

≥ 𝓁 − 𝜖∕3.

he arbitrariness of 𝜖 proves (1.5). □

. Constrained LDPs

In this section we prove Proposition 1.3, Theorem 1.4, and Corollary 1.5. Section 2.1 introduces some fundamental limits
y combining supermultiplicativity properties of the constrained pinning model with Kingman’s subadditive ergodic theorem.
ection 2.2 verifies Proposition 1.3. In Section 2.3 we prove the quenched weak LDP for the family of measures {𝜇𝜔,𝑡}𝑡∈N, identifying
he rate function in Section 2.4. This demonstrates Theorem 1.4. Finally, in Section 2.5 we obtain the quenched full LDP of
orollary 1.5.

.1. Supermultiplicativity

upermultiplicativity. The identity in (1.1) leads to a supermultiplicativity property for the random measures 𝜔 ↦ 𝜇𝜔,𝑡 defined by
(1.2), as shown in the following lemma. For 𝐴,𝐴′ ⊆  and 𝛼 ∈ R, define 𝛼𝐴 ∶= {𝛼𝑤 ∶ 𝑤 ∈ 𝐴} and 𝐴+𝐴′ ∶= {𝑤+𝑤′ ∶ 𝑤 ∈ 𝐴, 𝑤′ ∈ 𝐴′}.

emma 2.1. For 𝑡, 𝑡′ ∈ N and 𝐴,𝐴′ ∈ (), 𝜇𝜔,𝑡+𝑡′ (𝛼𝐴 + 𝛼′𝐴′) ≥ 𝜇𝜔,𝑡(𝐴)𝜇𝑓 𝑡𝜔,𝑡′ (𝐴′) with 𝛼 ∶= 𝑡
𝑡+𝑡′ and 𝛼′ ∶= 𝑡′

𝑡+𝑡′ . In particular,
𝜇𝜔,𝑡+𝑡′ (𝐴) ≥ 𝜇𝜔,𝑡(𝐴)𝜇𝑓 𝑡𝜔,𝑡′ (𝐴) if 𝐴 is convex.

roof of Lemma 2.1. Writing 𝑊𝑡+𝑡′

𝑡+𝑡′ = 𝛼𝑊𝑡
𝑡 + 𝛼′ 𝑊𝑡+𝑡′−𝑊𝑡

𝑡′ , we see that 𝑊𝑡+𝑡′

𝑡+𝑡′ ∈ 𝛼𝐴 + 𝛼′𝐴′ whenever 𝑊𝑡
𝑡 ∈ 𝐴 and 𝑊𝑡+𝑡′−𝑊𝑡

𝑡′ ∈ 𝐴′. It
follows that

𝜇𝜔,𝑡+𝑡′ (𝛼𝐴 + 𝛼′𝐴′) ∶= 𝐸𝜔

[

1{𝑊𝑡+𝑡′
𝑡+𝑡′ ∈𝛼𝐴+𝛼′𝐴′ , 𝑡+𝑡′∈

}e𝐻𝜔,𝑡+𝑡′

]

≥ 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐴,

𝑊𝑡+𝑡′ −𝑊𝑡
𝑡′ ∈𝐴′ , 𝑡+𝑡′∈

}e𝐻𝜔,𝑡+𝑡′

]

≥ 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐴, 𝑡∈ ,

𝑊𝑡+𝑡′ −𝑊𝑡
𝑡′ ∈𝐴′ , 𝑡+𝑡′∈

}e𝐻𝜔,𝑡+𝑡′

]

,

here the last bound accounts for the constraint 𝑡 ∈  . This constraint gives

𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐴, 𝑡∈ ,

𝑊𝑡+𝑡′ −𝑊𝑡
𝑡′ ∈𝐴′ , 𝑡+𝑡′∈

}e𝐻𝜔,𝑡+𝑡′

]

=
∑

𝑛∈N

∑

𝑛′∈N
𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐴, 𝑇𝑛=𝑡

}e𝐻𝜔,𝑡1{𝑊𝑡+𝑡′ −𝑊𝑡
𝑡′ ∈𝐴′ , 𝑇𝑛+𝑛′=𝑡+𝑡′

}e𝐻𝜔,𝑡+𝑡′−𝐻𝜔,𝑡

]

= 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐴, 𝑡∈

}e𝐻𝜔,𝑡

]

𝐸𝑓 𝑡𝜔

[

1{𝑊𝑡′
𝑡′ ∈𝐴′ , 𝑡′∈

}e𝐻𝑓𝑡𝜔,𝑡′
]

= 𝜇𝜔,𝑡(𝐴)𝜇𝑓 𝑡𝜔,𝑡′ (𝐴′).

n fact, if 𝑇𝑛 = 𝑡 and 𝑇𝑛+𝑛′ = 𝑡 + 𝑡′, then we have 𝑊𝑡 =
∑𝑛

𝑖=1 𝑋𝑖, 𝐻𝜔,𝑡 =
∑𝑛

𝑖=1 𝑣𝑓𝑇𝑖−1𝜔(𝑆𝑖), 𝑊𝑡+𝑡′ −𝑊𝑡 =
∑𝑛′

𝑖=1 𝑋𝑛+𝑖, and 𝐻𝜔,𝑡+𝑡′ −𝐻𝜔,𝑡 =
𝑛′ 𝑣 (𝑆 ). On the other hand, conditional on 𝑇 = 𝑡, by (1.1) the variables 𝑆 ,… , 𝑆 , 𝑇 ,… , 𝑇 ,𝑋 ,… , 𝑋 are
9
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independent of 𝑆1,… , 𝑆𝑛, 𝑋1,… , 𝑋𝑛 and jointly distributed as 𝑆1,… , 𝑆𝑛′ , 𝑡 + 𝑇0,… , 𝑡 + 𝑇𝑛′ , 𝑋1,… , 𝑋𝑛′ in the random environment
𝑓 𝑡𝜔. □

Given 𝑡 ∈ N0 and a linear functional 𝜑 ∈ ⋆, consider now the random variable

𝜔 ↦ 𝑍𝜔,𝑡(𝜑) ∶= ∫
e𝑡𝜑(𝑤)𝜇𝜔,𝑡(d𝑤) = 𝐸𝜔

[

1{𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

.

Apart from normalisation, 𝑍𝜔,𝑡(𝜑) is the moment generating function at 𝜑 of the total reward 𝑊𝑡 with respect to the constrained
pinning model 𝑄𝜔,𝑡. To develop our theory, we need both 𝑍𝜔,𝑡(𝜑) and the following truncated version of 𝑍𝜔,𝑡(𝜑), which has the
advantage of involving finite expectations. With 𝑟𝜔,𝑠 as in Assumption 1.2, put 𝑌𝜔,𝑖 ∶= 𝑋𝑖 − 𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖

for brevity and, for 𝐴 ∈ (),
define the random variable

𝜔 ↦ 𝜔,𝑡(𝐴,𝜑) ∶= 𝐸𝜔

[

1{𝑌𝜔,1∈𝐴,…,𝑌𝜔,𝑁𝑡∈𝐴, 𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

.

We have 𝜔,𝑡(𝐴,𝜑) ≤ 𝑍𝜔,𝑡(𝜑) and 𝜔,𝑡( , 𝜑) = 𝑍𝜔,𝑡(𝜑). The identity in (1.1) implies supermultiplicativity also for 𝜔 ↦ 𝜔,𝑡(𝐴,𝜑), as
stated in the next lemma, whose proof is omitted because it is similar to that of Lemma 2.1.

Lemma 2.2. For 𝑡, 𝑡′ ∈ N0, 𝐴 ∈ (), and 𝜑 ∈ ⋆, 𝜔,𝑡+𝑡′ (𝐴,𝜑) ≥ 𝜔,𝑡(𝐴,𝜑)𝑓 𝑡𝜔,𝑡′ (𝐴,𝜑). In particular, 𝑍𝜔,𝑡+𝑡′ (𝜑) ≥ 𝑍𝜔,𝑡(𝜑)𝑍𝑓 𝑡𝜔,𝑡′ (𝜑).

Fundamental limits. Let 𝑡F be an integer larger than the Frobenius number associated with the set S in Assumption 1.1, the latter
being finite since the elements of S are coprime integers. By the definition of Frobenius number, any 𝑡 ≥ 𝑡F can be expressed as
an integer conical combination of the numbers in S. With the points 𝑥𝑠 ∈  of Assumption 1.2, let 𝛿F be a number larger than
max𝑠∈S{‖𝑥𝑠‖}, the latter being finite since S is finite. Together with the above supermultiplicativity properties, the following lemma
sets the basis for the application of Kingman’s subadditive ergodic theorem.

Lemma 2.3. For 𝜑 ∈ ⋆ the following hold:
(𝑖) E[min{0, log𝑍⋅,𝑡(𝜑)}] ≥ E[min{0, log ⋅,𝑡(𝐵0,𝛿 , 𝜑)}] > −∞ for all 𝑡 ≥ 𝑡F and 𝛿 ≥ 𝛿F.
(𝑖𝑖) sup𝑡∈N{E[max{0, 1𝑡 log𝑍⋅,𝑡(0)}]} < +∞.
𝑖𝑖𝑖) sup𝑡∈N{E[max{0, 1𝑡 log ⋅,𝑡(𝐵0,𝛿 , 𝜑)}]} < +∞ for all 𝛿 > 0.
(𝑖𝑣) for each 𝑡 ≥ 𝑡F there exists a compact set 𝐾 ⊂  such that E[min{0, log ⋅,𝑡(𝐾,𝜑)}] > −∞.

By (𝑖) and (𝑖𝑖𝑖), the random variables 𝜔 ↦ log𝑍𝜔,𝑡(𝜑) and 𝜔 ↦ log 𝜔,𝑡(𝐵0,𝛿 , 𝜑) are integrable, i.e., their expected value exists as an
extended real number, for all 𝑡 ≥ 𝑡F and 𝛿 > 0. Moreover, by (𝑖) the expectation E[log ⋅,𝑡(𝐵0,𝛿 , 𝜑)] is finite if 𝛿 ≥ 𝛿F. For 𝑡 ≥ 𝑡F, even
the random variable 𝜔 ↦ log 𝜔,𝑡(𝐾,𝜑) with 𝐾 ⊂  compact is integrable. In fact, we have 𝐾 ⊂ 𝐵0,𝛿 for some 𝛿 > 0 large enough,
so that E[max{0, log ⋅,𝑡(𝐾,𝜑)}] ≤ E[max{0, log ⋅,𝑡(𝐵0,𝛿 , 𝜑)}] < +∞. Then, by (𝑖𝑣), for each 𝑡 ≥ 𝑡F there exists at least one compact set
𝐾 ⊂  such that the expectation E[log ⋅,𝑡(𝐾,𝜑)] exists and is finite.

Proof of Lemma 2.3. By Assumptions 1.1 and 1.2, there exists a real number 𝜂 ≥ 0 with the property that the expectations
E[sup𝑠∈N max{0, log 𝑞⋅(𝑠) − 𝜂𝑠}] and E[sup𝑠∈N max{0, ‖𝑟⋅,𝑠‖ − 𝜂𝑠}] are finite. Recall that 𝑞𝜔 ∶= e𝑣𝜔𝑝𝜔 and 𝐻𝜔,𝑡 ∶=

∑𝑁𝑡
𝑖=1 𝑣𝑓𝑇𝑖−1𝜔(𝑆𝑖). For

𝑡 ∈ N, we have

𝑍𝜔,𝑡(0) = 𝐸𝜔

[

1{𝑡∈ }e𝐻𝜔,𝑡
]

=
𝑡

∑

𝑛=0
𝐸𝜔

[

1{𝑡∈ , 𝑁𝑡=𝑛}e
𝐻𝜔,𝑡

]

=
𝑡

∑

𝑛=1
𝐸𝜔

[

1{𝑇𝑛=𝑡}e
∑𝑛

𝑖=1 𝑣𝑓𝑇𝑖−1𝜔(𝑆𝑖)
]

=
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}

𝑛
∏

𝑖=1
e𝑣𝑓𝑡𝑖−1𝜔(𝑠𝑖)𝑝𝑓 𝑡𝑖−1𝜔(𝑠𝑖),

here 𝑡0 ∶= 0 and 𝑡𝑖 ∶= 𝑠1 +⋯ + 𝑠𝑖 for 𝑖 ≥ 1. Thus,

𝑍𝜔,𝑡(0) ≤
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}

𝑛
∏

𝑖=1
emax{0,log 𝑞𝑓𝑡𝑖−1𝜔(𝑠𝑖)−𝜂𝑠𝑖}+𝜂𝑠𝑖

≤ e𝜂𝑡
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}e

∑𝑛
𝑖=1 sup𝑠∈N max{0,log 𝑞𝑓𝑡𝑖−1𝜔(𝑠)−𝜂𝑠}

≤ e𝜂𝑡
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}e

∑𝑡−1
𝜏=0 sup𝑠∈N max{0,log 𝑞𝑓𝜏𝜔(𝑠)−𝜂𝑠} = 2𝑡−1e𝜂𝑡+

∑𝑡−1
𝜏=0 sup𝑠∈N max{0,log 𝑞𝑓𝜏𝜔(𝑠)−𝜂𝑠}. (2.1)

oreover, if 𝑌𝜔,𝑖 ∶= 𝑋𝑖 − 𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖
∈ 𝐵0,𝛿 for 𝑖 ∈ {1,… , 𝑁𝑡} with some 𝛿 > 0, then

|𝜑(𝑊𝑡)| =
|

|

|

|

|

𝑁𝑡
∑

𝑖=1
𝜑(𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖

) +
𝑁𝑡
∑

𝑖=1
𝜑(𝑌𝜔,𝑖)

|

|

|

|

|

≤ ‖𝜑‖
𝑁𝑡
∑

𝑖=1
‖𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖

‖ + ‖𝜑‖
𝑁𝑡
∑

𝑖=1
‖𝑌𝜔,𝑖‖

≤ ‖𝜑‖
𝑁𝑡
∑

𝑖=1
sup
𝑠∈N

max
{

0, ‖𝑟𝑓𝑇𝑖−1𝜔,𝑠‖ − 𝜂𝑠
}

+ ‖𝜑‖𝜂 𝑇𝑁𝑡
+ ‖𝜑‖𝛿𝑁𝑡

≤ ‖𝜑‖
𝑡−1
∑

supmax
{

0, ‖𝑟𝑓 𝜏𝜔,𝑠‖ − 𝜂𝑠
}

+ ‖𝜑‖𝜂𝑡 + ‖𝜑‖𝛿𝑡.
10
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In this way, for each Borel set 𝐴 ⊆ 𝐵0,𝛿 , we find the bounds

𝜔,𝑡(𝐴,𝜑) ∶= 𝐸𝜔

[

1{𝑌𝜔,1∈𝐴,…,𝑌𝜔,𝑁𝑡∈𝐴, 𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

≤ e‖𝜑‖
∑𝑡−1

𝜏=0 sup𝑠∈N max{0,‖𝑟𝑓𝜏𝜔,𝑠‖−𝜂𝑠}+‖𝜑‖𝜂𝑡+‖𝜑‖𝛿𝑡𝑍𝜔,𝑡(0) (2.2)

and

𝜔,𝑡(𝐴,𝜑) ≥ e−‖𝜑‖
∑𝑡−1

𝜏=0 sup𝑠∈N max{0,‖𝑟𝑓𝜏𝜔,𝑠‖−𝜂𝑠}−‖𝜑‖𝜂𝑡−‖𝜑‖𝛿𝑡𝐸𝜔

[

1{𝑌𝜔,1∈𝐴,…,𝑌𝜔,𝑁𝑡∈𝐴, 𝑡∈ }e𝐻𝜔,𝑡
]

. (2.3)

he latter can be further manipulated by observing that, for positive integers 𝑠1,… , 𝑠𝑛 such that 𝑠1 +⋯ + 𝑠𝑛 = 𝑡, we have

𝐸𝜔

[

1{𝑌𝜔,1∈𝐴,…,𝑌𝜔,𝑁𝑡∈𝐴, 𝑡∈ }e𝐻𝜔,𝑡
]

≥ 𝐸𝜔

[

1{𝑌𝜔,1∈𝐴,𝑆1=𝑠1 ,…,𝑌𝜔,𝑛∈𝐴,𝑆𝑛=𝑠𝑛 , 𝑁𝑡=𝑛}e
𝐻𝜔,𝑡

]

=
𝑛
∏

𝑖=1
𝑞𝑓 𝑡𝑖−1𝜔(𝑠𝑖) 𝜆𝑓 𝑡𝑖−1𝜔

(

𝑟𝑓 𝑡𝑖−1𝜔,𝑠𝑖
+ 𝐴||

|

𝑠𝑖
)

, (2.4)

here 𝑡0 ∶= 0 and 𝑡𝑖 ∶= 𝑠1 +⋯ + 𝑠𝑖 for 𝑖 ≥ 1.
𝑖) Fix an integer 𝑡 ≥ 𝑡F and a real number 𝛿 ≥ 𝛿F. By the definition of 𝑡F, 𝑡 can be written as 𝑡 =

∑𝑛
𝑖=1 𝑠𝑖 with some 𝑛 ∈ {1,… , 𝑡}

nd certain 𝑠1,… , 𝑠𝑛 ∈ S. By the definition of 𝛿F, there exist positive numbers 𝛿1,… , 𝛿𝑛 such that 𝐵𝑥𝑠𝑖 ,𝛿𝑖
⊂ 𝐵0,𝛿 for all 𝑖. Then, the

ounds in (2.3) and (2.4) show that

E
[

min
{

0, log ⋅,𝑡(𝐵0,𝛿 , 𝜑)
}

]

≥ −‖𝜑‖𝑡E
[

sup
𝑠∈N

max
{

0, ‖𝑟⋅,𝑠‖ − 𝜂𝑠
}

]

− ‖𝜑‖𝜂𝑡 − ‖𝜑‖𝛿𝑡

+
𝑛
∑

𝑖=1
E
[

min{0, log 𝑞⋅(𝑠𝑖)}
]

+
𝑛
∑

𝑖=1
E
[

log 𝜆⋅(𝑟⋅,𝑠𝑖 + 𝐵𝑥𝑠𝑖 ,𝛿𝑖
|𝑠𝑖)

]

.

his proves that E[min{0, log𝑍⋅,𝑡(𝜑)}] ≥ E[min{0, log ⋅,𝑡(𝐵0,𝛿 , 𝜑)}] > −∞ thanks to Assumptions 1.1 and 1.2.
(𝑖𝑖) For 𝑡 ∈ N, the bound in (2.1) implies

E
[

max
{

0, 1
𝑡
log𝑍⋅,𝑡(0)

}]

≤ log 2 + 𝜂 + E
[

sup
𝑠∈N

max
{

0, log 𝑞⋅(𝑠) − 𝜂𝑠
}

]

< +∞.

(𝑖𝑖𝑖) For 𝑡 ∈ N and 𝛿 > 0, the bounds in (2.1) and (2.2) give

E
[

max
{

0, 1
𝑡
log ⋅,𝑡(𝐵0,𝛿 , 𝜑)

}]

≤ ‖𝜑‖E
[

sup
𝑠∈N

max{0, ‖𝑟⋅,𝑠‖ − 𝜂𝑠}
]

+ ‖𝜑‖𝜂 + ‖𝜑‖𝛿

+ log 2 + 𝜂 + E
[

sup
𝑠∈N

max
{

0, log 𝑞⋅(𝑠) − 𝜂𝑠
}

]

< +∞.

(𝑖𝑣) Fix 𝑡 ≥ 𝑡F. As before, let 𝑛 ∈ {1,… , 𝑡} and 𝑠1,… , 𝑠𝑛 ∈ S be such that 𝑡 =
∑𝑛

𝑖=1 𝑠𝑖. By Assumption 1.2, for each 𝑖 there exists a
compact set 𝐾𝑖 ⊂  that satisfies E[log 𝜆⋅(𝑟⋅,𝑠𝑖 + 𝐾𝑖|𝑠𝑖)] > −∞. Put 𝐾 ∶= ∪𝑛

𝑖=1𝐾𝑖, and let 𝛿 > 0 be so large that 𝐾 ⊂ 𝐵0,𝛿 . Then, the
bounds in (2.3) and (2.4), together with Assumptions 1.1 and 1.2, show that

E
[

min
{

0, log ⋅,𝑡(𝐾,𝜑)
}

]

≥ −‖𝜑‖𝑡E
[

sup
𝑠∈N

max
{

0, ‖𝑟⋅,𝑠‖ − 𝜂𝑠
}

]

− ‖𝜑‖𝜂𝑡 − ‖𝜑‖𝛿𝑡

+
𝑛
∑

𝑖=1
E
[

min{0, log 𝑞⋅(𝑠𝑖)}
]

+
𝑛
∑

𝑖=1
E
[

log 𝜆⋅(𝑟⋅,𝑠𝑖 +𝐾𝑖|𝑠𝑖)
]

> −∞. □

For 𝜑 ∈ ⋆, put

𝑧𝑜(𝜑) ∶= sup
𝑡≥𝑡F

{

E
[

1
𝑡
log𝑍⋅,𝑡(𝜑)

]}

.

Hölder’s inequality shows that the functions that associate 𝜑 with log𝑍𝜔,𝑡(𝜑) are convex. Hence the function 𝑧𝑜 that maps 𝜑 to
𝑧𝑜(𝜑) is also convex. Actually, it is proper convex since (𝑖) and (𝑖𝑖) of Lemma 2.3 imply 𝑧𝑜(𝜑) > −∞ for all 𝜑 and 𝑧𝑜(0) < +∞,
respectively. In Section 2.4 we will prove that 𝑧𝑜 is also lower semi-continuous, as it is the Legendre transform of a convex function.
With Lemmas 2.2 and 2.3, the following is immediate from (⋆) with 𝐹𝑡(𝜔) = − log𝑍𝜔,𝑡(𝜑).

Corollary 2.4. For 𝜑 ∈ ⋆, lim𝑡↑∞
1
𝑡 log𝑍𝜔,𝑡(𝜑) = lim𝑡↑∞ E[ 1𝑡 log𝑍⋅,𝑡(𝜑)] = 𝑧𝑜(𝜑) P-a.e. 𝜔.

A similar result holds under truncation and will be used in Section 2.4 to work out some technical steps. With Lemmas 2.2 and
.3, the following follows from (⋆) with 𝐹𝑡(𝜔) = − log 𝜔,𝑡(𝐵0,𝛿 , 𝜑).

orollary 2.5. For 𝜑 ∈ ⋆ and 𝛿 ≥ 𝛿F, the supremum 𝑒 ∶= sup𝑡≥𝑡F{E[
1
𝑡 log ⋅,𝑡(𝐵0,𝛿 , 𝜑)]} is finite and lim𝑡↑∞

1
𝑡 log 𝜔,𝑡(𝐵0,𝛿 , 𝜑) = 𝑒

-a.e. 𝜔.

We now go back to the random measures 𝜔 ↦ 𝜇𝜔,𝑡. Although the sequence of term 𝜔 ↦ 𝜇𝜔,𝑡(𝐶) with 𝐶 ∈ () convex
njoys supermultiplicativity according to Lemma 2.1, a result like Corollaries 2.4 and 2.5 cannot be obtained from (⋆) because
he condition E[min{0, log𝜇⋅,𝑡(𝐶)}] > −∞ for all sufficiently large 𝑡 is not satisfied in general. Such a condition is met under the
dditional assumption that E[log 𝜆⋅(𝐺|𝑠)] > −∞ for all 𝑠 ∈ S and 𝐺 ⊆  open and nonempty. The following lemma is a first step
owards proving the quenched weak LDP for the family {𝜇𝜔,𝑡}𝑡∈N via an approximation argument. For 𝐴 ∈ (), put

(𝐴) ∶= sup
{

E
[

1 log𝜇⋅,𝑡(𝐴)
]}

,

11

𝑡≥𝑡F 𝑡
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where the expectation exists thanks to (𝑖𝑖) of Lemma 2.3, since 𝜇𝜔,𝑡(𝐴) ≤ 𝜇𝜔,𝑡() = 𝑍𝜔,𝑡(0). We note that (𝐴) ≤ () = 𝑧𝑜(0) for all
∈ ().

emma 2.6. Suppose that E[log 𝜆⋅(𝐺|𝑠)] > −∞ for all 𝑠 ∈ S and 𝐺 ⊆  open and nonempty. Then the following hold for every 𝐶,𝐶 ′ ⊆ 
pen and convex:
i) lim𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐶) = lim𝑡↑∞ E[ 1𝑡 log𝜇⋅,𝑡(𝐶)] = (𝐶) P-a.e. 𝜔.

(ii) (𝛼𝐶 + 𝛼′𝐶 ′) ≥ 𝛼(𝐶) + 𝛼′(𝐶 ′) for all rational numbers 𝛼, 𝛼′ > 0 such that 𝛼 + 𝛼′ = 1.

Proof of Lemma 2.6. To begin with, given positive integers 𝑡 and 𝑠1,… , 𝑠𝑛 such that 𝑠1 +⋯ + 𝑠𝑛 = 𝑡, observe that the conditions
𝑋𝑖 ∈ 𝑠𝑖𝐶 for 𝑖 ∈ {1,… , 𝑛} imply 1

𝑡
∑𝑛

𝑖=1 𝑋𝑖 ∈ 𝐶 by convexity. It therefore follows that

𝜇𝜔,𝑡(𝐶) ∶= 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐶, 𝑡∈

}e𝐻𝜔,𝑡

]

≥ 𝐸𝜔

[

1{ 1
𝑡
∑𝑛

𝑖=1 𝑋𝑖∈𝐶, 𝑆1=𝑠1 ,…,𝑆𝑛=𝑠𝑛 , 𝑁𝑡=𝑛
}e𝐻𝜔,𝑡

]

≥ 𝐸𝜔

[

1{𝑋1∈𝑠1𝐶, 𝑆1=𝑠1 ,…,𝑋𝑛∈𝑠𝑛𝐶, 𝑆𝑛=𝑠𝑛 , 𝑁𝑡=𝑛}e
𝐻𝜔,𝑡

]

=
𝑛
∏

𝑖=1
e𝑣𝑓𝑡𝑖−1𝜔(𝑠𝑖)𝑝𝑓 𝑡𝑖−1𝜔(𝑠𝑖) 𝜆𝑓 𝑡𝑖−1𝜔(𝑠𝑖𝐶|𝑠𝑖), (2.5)

here 𝑡0 ∶= 0 and 𝑡𝑖 ∶= 𝑠1 +⋯ + 𝑠𝑖 for 𝑖 ≥ 1.
𝑖) As this claim is trivially true when 𝐶 = ∅, suppose that 𝐶 ≠ ∅. Since any 𝑡 ≥ 𝑡F can be expressed as 𝑡 = ∑𝑛

𝑖=1 𝑠𝑖 for some 𝑛 ∈ {1,… , 𝑡}
nd certain 𝑠1,… , 𝑠𝑛 ∈ S, the bound in (2.5) ensures that E[min{0, log𝜇⋅,𝑡(𝐶)}] > −∞ for all 𝑡 ≥ 𝑡F, thanks to the combination of
ssumption 1.1 with the additional assumption that E[log 𝜆⋅(𝐺|𝑠)] > −∞ for all 𝑠 ∈ S and 𝐺 ⊆  open and nonempty. In view of
emma 2.1 and (⋆) with 𝐹𝑡(𝜔) = − log𝜇𝜔,𝑡(𝐶), we realise that lim𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐶) = lim𝑡↑∞ E[ 1𝑡 log𝜇⋅,𝑡(𝐶)] = (𝐶) P-a.e. 𝜔.

(𝑖𝑖) Given rational numbers 𝛼, 𝛼′ > 0 such that 𝛼+𝛼′ = 1, there exists a 𝛽 ∈ N with the property that 𝛼𝛽 and 𝛼′𝛽 are positive integers.
or 𝑛 ∈ N, Lemma 2.1 with 𝑡 = 𝛼𝛽𝑛 and 𝑡′ = 𝛼′𝛽𝑛 shows that 𝜇𝜔,𝛽𝑛(𝛼𝐶 + 𝛼′𝐶 ′) ≥ 𝜇𝜔,𝛼𝛽𝑛(𝐶)𝜇𝑓𝛼𝛽𝑛𝜔,𝛼′𝛽𝑛(𝐶 ′). Taking logarithms and
xpectations, dividing by 𝛽𝑛, and letting 𝑛 ↑ ∞, we find (𝛼𝐶 + 𝛼′𝐶 ′) ≥ 𝛼(𝐶) + 𝛼′(𝐶 ′) by (𝑖) of the lemma. □

.2. A renewal equation in a random environment

In this section we prove that 𝑧𝑜 = 𝑧, with 𝑧 the function defined in Section 1.3 by the variational formula 𝑧(𝜑) ∶= inf{𝜁 ∈
∶ 𝛶𝜑(𝜁 ) ≤ 0} with

𝛶𝜑(𝜁 ) ∶= inf
𝑅∈+

P -ess sup
𝜔∈𝛺

{

log𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)−𝜁𝑆1+𝑅(𝑓𝑆1𝜔)−𝑅(𝜔)1{𝑆1<∞}

]

}

.

o this aim, we resort to the following renewal equation in a random environment: for 𝑡 ∈ N and 𝜑 ∈ ⋆,

𝑍𝜔,𝑡(𝜑) =
𝑡

∑

𝑠=1
𝐸𝜔

[

1{𝑆1=𝑠, 𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

=
𝑡

∑

𝑠=1
𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)1{𝑆1=𝑠}

]

𝑍𝑓 𝑠𝜔,𝑡−𝑠(𝜑).

his equation is due to the fact that, conditional on 𝑆1 = 𝑠, the random variables 𝑆2, 𝑆3,… , 𝑋2, 𝑋3,… are independent of 𝑋1 and
ointly distributed as 𝑆1, 𝑆2,… , 𝑋1, 𝑋2,… in the environment 𝑓 𝑠𝜔. The equality 𝑧𝑜 = 𝑧 demonstrates Proposition 1.3 thanks to
orollary 2.4, and the property that 𝑧𝑜 is proper convex, with 𝑧𝑜(0) finite, and lower semi-continuous. Lower semi-continuity of 𝑧𝑜
ill be verified in Section 2.4.

Fix 𝜑 ∈ ⋆. We first verify that 𝑧𝑜(𝜑) ≤ 𝑧(𝜑). To this aim we assume that 𝑧(𝜑) < +∞, otherwise there is nothing to prove. Pick
real numbers 𝜁 > 𝑧(𝜑) and 𝜖 > 0. Since 𝛶𝜑(𝜁 ) ≤ 0 as 𝜁 > 𝑧(𝜑), there exist a random variable 𝑅 ∈ + and a set 𝛺𝑜 ∈  such that
P[𝛺𝑜] = 1 and

log𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)−𝜁𝑆1+𝑅(𝑓𝑆1𝜔)−𝑅(𝜔)1{𝑆1<∞}

]

≤ 𝜖

for every 𝜔 ∈ 𝛺𝑜. By changing 𝛺𝑜 with ∩𝑡∈N0
𝑓−𝑡𝛺𝑜 if necessary, we may suppose that 𝜔 ∈ 𝛺𝑜 implies 𝑓 𝑡𝜔 ∈ 𝛺𝑜 for any 𝑡 ∈ N0.

Below we will prove that 𝑍𝜔,𝑡(𝜑) ≤ e𝑡(𝜁+𝜖)+𝑅(𝜔) for all 𝜔 ∈ 𝛺𝑜 and 𝑡 ∈ N0. This gives 𝑧𝑜(𝜑) ≤ 𝜁 + 𝜖 since, by Corollary 2.4, there exists
at least one point 𝜔 ∈ 𝛺𝑜 such that lim𝑡↑∞

1
𝑡 log𝑍𝜔,𝑡(𝜑) = 𝑧𝑜(𝜑). The arbitrariness of 𝜁 and 𝜖 demonstrates that 𝑧𝑜(𝜑) ≤ 𝑧(𝜑).

We prove that 𝑍𝜔,𝑡(𝜑) ≤ e𝑡(𝜁+𝜖)+𝑅(𝜔) for all 𝜔 ∈ 𝛺𝑜 and 𝑡 ∈ N0 by induction. The bound is true when 𝑡 = 0, as 𝑍𝜔,0(𝜑) = 1 and
𝑅(𝜔) > 0. Suppose that it holds for every 𝜔 ∈ 𝛺𝑜 up to 𝑡 − 1 with a positive 𝑡. Pick 𝜔 ∈ 𝛺𝑜. Then the renewal equation and the fact
that 𝑓 𝑠𝜔 ∈ 𝛺𝑜 for 𝑠 ∈ {1,… , 𝑡} show that

𝑍𝜔,𝑡(𝜑) =
𝑡

∑

𝑠=1
𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)1{𝑆1=𝑠}

]

𝑍𝑓 𝑠𝜔,𝑡−𝑠(𝜑)

≤
𝑡

∑

𝑠=1
𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)1{𝑆1=𝑠}

]

e(𝑡−𝑠)(𝜁+𝜖)+𝑅(𝑓
𝑠𝜔) = e𝑡(𝜁+𝜖)+𝑅(𝜔)

𝑡
∑

𝑠=1
𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)−𝜁𝑆1+𝑅(𝑓𝑆1𝜔)−𝑅(𝜔)1{𝑆1=𝑠}

]

e−𝑠𝜖𝑖

≤ e𝑡(𝜁+𝜖)+𝑅(𝜔)𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)−𝜁𝑆1+𝑅(𝑓𝑆1𝜔)−𝑅(𝜔)1{𝑆1<∞}

]

e−𝜖 ≤ e𝑡(𝜁+𝜖)+𝑅(𝜔).
12
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Next, let us show the opposite bound 𝑧𝑜(𝜑) ≥ 𝑧(𝜑). If 𝑧𝑜(𝜑) = +∞, then there is nothing to prove. If instead 𝑧𝑜(𝜑) < +∞, then
pick a real number 𝜁 > 𝑧𝑜(𝜑). By Corollary 2.4, the number 𝜁 makes the series ∑

𝑡∈N0
𝑍𝜔,𝑡(𝜑) e−𝜁𝑡 convergent P-a.e. 𝜔. We have

∑

𝑡∈N0
𝑍𝜔,𝑡(𝜑) e−𝜁𝑡 > 1 P-a.e. 𝜔, since 𝑍𝜔,0(𝜑) = 1 and 𝑍𝜔,𝑡(𝜑) > 0 for all 𝑡 ≥ 𝑡F P-a.e. 𝜔, the latter being implied by (𝑖) of Lemma 2.3.

Thus, the random variable 𝜔 ↦ 𝑅(𝜔) ∶= log
∑

𝑡∈N0
𝑍𝜔,𝑡(𝜑) e−𝜁𝑡 is almost surely finite and positive. Given any 𝜔 ∈ 𝛺 such that

0 < 𝑅(𝜔) < +∞, the renewal equation yields

1 >
∑

𝑡∈N
𝑍𝜔,𝑡(𝜑) e−𝜁𝑡−𝑅(𝜔) =

∑

𝑠∈N

∑

𝑡∈N0

𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)1{𝑆1=𝑠}

]

𝑍𝑓 𝑠𝜔,𝑡(𝜑) e−𝜁𝑡−𝜁𝑠−𝑅(𝜔)

=
∑

𝑠∈N
𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)1{𝑆1=𝑠}

]

e−𝜁𝑠+𝑅(𝑓
𝑠𝜔)−𝑅(𝜔) = 𝐸𝜔

[

e𝜑(𝑋1)+𝑣𝜔(𝑆1)−𝜁𝑆1+𝑅(𝑓𝑆1𝜔)−𝑅(𝜔)1{𝑆1<∞}

]

.

This shows that 𝛶𝜑(𝜁 ) < 0, and consequently 𝑧(𝜑) ≤ 𝜁 . We get 𝑧(𝜑) ≤ 𝑧𝑜(𝜑) by letting 𝜁 ↓ 𝑧𝑜(𝜑).

2.3. The weak LDP

The quenched weak LDP for the family {𝜇𝜔,𝑡}𝑡∈N is obtained after replacing the probability measure 𝜆𝜔(⋅|𝑠) by convenient
probability measures 𝜆1𝜔(⋅|𝑠), 𝜆

2
𝜔(⋅|𝑠),… that satisfy the integrability condition of Lemma 2.6. The following lemma introduces such

probability measures, resulting from a coupling argument that underlies an exponential approximation.

Lemma 2.7. There exist a real number 𝐿 ≥ 0 and, for 𝑠 ∈ N, a sequence 𝛬1
𝜔(⋅|𝑠), 𝛬

2
𝜔(⋅|𝑠),… of probability measures on ( × ) such

hat the following hold for all 𝑘:
𝑖) 𝜆𝜔(𝐴|𝑠) = 𝛬𝑘

𝜔(𝐴 × |𝑠) and 𝜔 ↦ 𝜆𝑘𝜔(𝐴|𝑠) ∶= 𝛬𝑘
𝜔( × 𝐴|𝑠) is measurable for 𝑠 ∈ N and 𝐴 ∈ ().

(𝑖𝑖) ∫× e𝑘‖𝑥−𝑥′‖𝛬𝑘
𝜔(d(𝑥, 𝑥

′)|𝑠) ≤ e𝐿 for all 𝑠 ∈ N.
(𝑖𝑖𝑖) E[log 𝜆𝑘⋅ (𝐺|𝑠)] > −∞ for all 𝑠 ∈ S and 𝐺 ⊆  open and nonempty.

Proof of Lemma 2.7. Let  ∶= {𝑢𝑛}𝑛∈N be a countable dense subset of  , which exists by separability, and let

𝜋𝑛 ∶=
e−𝑛−‖𝑢𝑛‖

∑

𝑖∈N e−𝑖−‖𝑢𝑖‖

efine a probability mass function on N. We have ∑

𝑛∈N e‖𝑢𝑛‖𝜋𝑛 < +∞. Let {𝑒1,… , 𝑒𝑑} be a basis of the subspace  in Assumption 1.2,
and let 𝑔 be the function that maps 𝜁 ∶= (𝜁1,… , 𝜁𝑑 ) ∈ R𝑑 to 𝑔(𝜁 ) ∶=

∑𝑑
𝑖=1 𝜁𝑖𝑒𝑖 ∈  . With 𝑔, construct on () the probability measure

𝜌 ∶=
∫R𝑑 1{𝑔(𝜁 )∈ ⋅ }e−2‖𝑔(𝜁 )‖d𝜁

∫R𝑑 e−2‖𝑔(𝜁 )‖d𝜁
,

where d𝜁 is the Lebesgue measure. We have ∫ 𝑒‖𝑣‖𝜌(d𝑣) < +∞ and 𝜌(𝑣+𝐴) ≥ e−2‖𝑣‖𝜌(𝐴) for all 𝑣 ∈  and 𝐴 ∈ (), the latter being
consequence of the translation invariance of the Lebesgue measure. We claim that the lemma holds with the number

𝐿 ∶= log
∑

𝑛∈N
e‖𝑢𝑛‖𝜋𝑛 + log∫

e‖𝑣‖𝜌(d𝑣)

nd the probability measures 𝛬𝑘
𝜔(⋅|𝑠) defined for 𝑠, 𝑘 ∈ N and 𝖠 ∈ ( × ) by

𝛬𝑘
𝜔(𝖠|𝑠) ∶=

∑

𝑛∈N
𝜋𝑛 ∫

[

∫
1{

(𝑥,𝑢𝑛∕𝑘+𝑥−𝑣∕𝑘)∈𝖠
}𝜆𝜔(d𝑥|𝑠)

]

𝜌(d𝑣).

For 𝐴 ∈ (), we have

𝜆𝑘𝜔(𝐴|𝑠) ∶= 𝛬𝑘
𝜔( × 𝐴|𝑠) =

∑

𝑛∈N
𝜋𝑛 ∫

𝜆𝜔
(

𝑣∕𝑘 + 𝐴 − 𝑢𝑛∕𝑘
|

|

|

𝑠
)

𝜌(d𝑣).

𝑖) and (𝑖𝑖) Fix 𝑠 and 𝑘 in N. It is manifest that 𝛬𝑘
𝜔(𝐴 × |𝑠) = 𝜆𝜔(𝐴|𝑠) for all 𝐴 ∈ (), and that

∫×
e𝑘‖𝑥−𝑥

′
‖𝛬𝑘

𝜔(d(𝑥, 𝑥
′)|𝑠) =

∑

𝑛∈N
𝜋𝑛 ∫

e‖𝑢𝑛−𝑣‖𝜌(d𝑣) ≤
∑

𝑛∈N
e‖𝑢𝑛‖𝜋𝑛 ∫

e‖𝑣‖𝜌(d𝑣) = e𝐿.

𝑖𝑖𝑖) Fix 𝑠 ∈ S and 𝑘 ∈ N and pick a set 𝐺 ⊆  open and nonempty, 𝑥 ∈ 𝐺, and 𝛿 > 0 such that 𝐵𝑥,3𝛿 ⊆ 𝐺. Recalling that  is dense
n  , let 𝑚 ∈ N be such that ‖𝑥 − 𝑢𝑚∕𝑘‖ < 𝛿. Note that if 𝑦 ∈ 𝐵𝑟𝜔,𝑠+𝑥𝑠 ,𝛿 and 𝑣 ∈ 𝐵𝑘𝑟𝜔,𝑠+𝑘𝑥𝑠 ,𝑘𝛿 with 𝑟𝜔,𝑠 and 𝑥𝑠 as in Assumption 1.2,

then
‖

‖

‖

𝑦 − 𝑣∕𝑘 − 𝑥 + 𝑢𝑚∕𝑘
‖

‖

‖

≤ ‖

‖

‖

𝑦 − 𝑟𝜔,𝑠 − 𝑥𝑠
‖

‖

‖

+ ‖

‖

‖

𝑟𝜔,𝑠 + 𝑥𝑠 − 𝑣∕𝑘‖‖
‖

+ ‖

‖

‖

𝑥 − 𝑢𝑚∕𝑘
‖

‖

‖

< 3𝛿,

so that 𝑟𝜔,𝑠 + 𝐵𝑥𝑠 ,𝛿 = 𝐵𝑟𝜔,𝑠+𝑥𝑠 ,𝛿 ⊆ 𝐵𝑣∕𝑘+𝑥−𝑢𝑚∕𝑘,3𝛿 . It follows that

𝜆𝑘𝜔(𝐺|𝑠) ≥ 𝜆𝑘𝜔(𝐵𝑥,3𝛿|𝑠) ≥ 𝜋𝑚 ∫ 𝜆𝜔
(

𝐵𝑣∕𝑘+𝑥−𝑢𝑚∕𝑘,3𝛿
|

|

|

𝑠
)

𝜌(d𝑣) ≥ 𝜋𝑚 𝜆𝜔(𝑟𝜔,𝑠 + 𝐵𝑥𝑠 ,𝛿|𝑠) 𝜌( ∩ 𝐵𝑘𝑟𝜔,𝑠+𝑘𝑥𝑠 ,𝑘𝛿).
13

∩𝐵𝑘𝑟𝜔,𝑠+𝑘𝑥𝑠,𝑘𝛿
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In this way, since 𝜌( ∩ 𝐵𝑘𝑟𝜔,𝑠+𝑘𝑥𝑠 ,𝑘𝛿) = 𝜌(𝑘𝑟𝜔,𝑠 +  ∩ 𝐵𝑘𝑥𝑠 ,𝑘𝛿) ≥ e−2𝑘‖𝑟𝜔,𝑠‖𝜌( ∩ 𝐵𝑘𝑥𝑠 ,𝑘𝛿) because 𝑟𝜔,𝑠 ∈  , we find

E
[

log 𝜆𝑘⋅ (𝐺|𝑠)
]

≥ log𝜋𝑚 + E
[

log 𝜆⋅(𝑟⋅,𝑠 + 𝐵𝑥𝑠 ,𝛿|𝑠)
]

− 2𝑘E
[

sup
𝑡∈N

max
{

0, ‖𝑟⋅,𝑡‖ − 𝜂𝑡
}

]

− 2𝑘𝜂 + log 𝜌( ∩ 𝐵𝑘𝑥𝑠 ,𝑘𝛿) > −∞

by Assumption 1.2. □

Thanks to (𝑖𝑖𝑖) of Lemma 2.7, Lemma 2.6 applies to the random measures 𝜔 ↦ 𝜇𝑘
𝜔,𝑡 associated with 𝜆𝑘𝜔(⋅|𝑠): for each open convex

set 𝐶

lim
𝑡↑∞

1
𝑡
log𝜇𝑘

𝜔,𝑡(𝐶) = 𝑘(𝐶) ∶= sup
𝑡≥𝑡F

{

E
[

1
𝑡
log𝜇𝑘

⋅,𝑡(𝐶)
]}

P-a.e. 𝜔.

The function 𝐽𝑜 that maps 𝑤 ∈  in

𝐽𝑜(𝑤) ∶= − inf
𝛿>0

{

lim inf
𝑘↑∞

𝑘(𝐵𝑤,𝛿)
}

turns out to be the rate function in a quenched weak LDP for the family {𝜇𝜔,𝑡}𝑡∈N, as we will show below. The following lemma
provides two general properties of 𝐽𝑜. We note that 𝐽𝑜(𝑤) ≥ −𝑧𝑜(0) > −∞.

emma 2.8. The function 𝐽𝑜 is lower semi-continuous and convex.

roof of Lemma 2.8. Pick 𝑤 ∈  and a sequence {𝑤𝑖}𝑖∈N in  that converges to 𝑤. Given 𝛿 > 0, the monotonicity of 𝑘

nherited from the measures 𝜇𝑘
𝜔,𝑡 entails that −𝐽𝑜(𝑤𝑖) ≤ lim inf𝑘↑∞ 𝑘(𝐵𝑤𝑖 ,𝛿∕2) ≤ lim inf𝑘↑∞ 𝑘(𝐵𝑤,𝛿) for all sufficiently large 𝑖 satisfying

𝑤𝑖 ,𝛿∕2 ⊆ 𝐵𝑤,𝛿 . This implies the bound lim inf 𝑖↑∞ 𝐽𝑜(𝑤𝑖) ≥ − lim inf𝑘↑∞ 𝑘(𝐵𝑤,𝛿) and proves the lower semi-continuity of 𝐽𝑜 by the
rbitrariness of 𝛿.

As far as the convexity of 𝐽𝑜 is concerned, due to lower semi-continuity it suffices to verify that 𝐽𝑜(𝛼𝑤+𝛼′𝑤′) ≤ 𝛼𝐽𝑜(𝑤)+𝛼′𝐽𝑜(𝑤′)
or every fixed 𝑤,𝑤′ ∈  and rational numbers 𝛼, 𝛼′ > 0 such that 𝛼 + 𝛼′ = 1. Given 𝛿 > 0 and observing that 𝐵𝛼𝑤+𝛼′𝑤′ ,𝛿 ⊇
𝐵𝑤,𝛿 +𝛼′𝐵𝑤′ ,𝛿 , (𝑖𝑖) of Lemma 2.6 shows that 𝑘(𝐵𝛼𝑤+𝛼′𝑤′ ,𝛿) ≥ 𝑘(𝛼𝐵𝑤,𝛿 +𝛼′𝐵𝑤′ ,𝛿) ≥ 𝛼𝑘(𝐵𝑤,𝛿)+𝛼′𝑘(𝐵𝑤′ ,𝛿) for all 𝑘 ∈ N. From here,
etting 𝑘 ↑ ∞, we get −𝐽𝑜(𝛼𝑤 + 𝛼′𝑤′) ≥ −𝛼𝐽𝑜(𝑤) − 𝛼′𝐽𝑜(𝑤′) because 𝛿 is arbitrary. □

We next show that P-a.e. 𝜔 the family {𝜇𝜔,𝑡}𝑡∈N satisfies a weak LDP with rate function 𝐽𝑜 by resorting to a coupling with
ew rewards distributed according to 𝜆𝑘𝜔(⋅|𝑠). In fact, with the sequence of probability measures 𝛬1

𝜔(⋅|𝑠), 𝛬
2
𝜔(⋅|𝑠),… introduced by

emma 2.7, we consider waiting times 𝑆1, 𝑆2,… and pairs of rewards (𝑋1, 𝑋′
1), (𝑋2, 𝑋′

2),… distributed according to the joint law

𝖯𝑘𝜔

[

𝑆1 = 𝑠1,… , 𝑆𝑛 = 𝑠𝑛, (𝑋1, 𝑋
′
1) ∈ 𝖠1,… , (𝑋𝑛, 𝑋

′
𝑛) ∈ 𝖠𝑛

]

=
𝑛
∏

𝑖=1
𝑝𝑓 𝑡𝑖−1𝜔(𝑠𝑖)𝛬

𝑘
𝑓 𝑡𝑖−1𝜔

(𝖠𝑖|𝑠𝑖)

or 𝑛 ∈ N, 𝑠1,… , 𝑠𝑛 ∈ N, and 𝖠1,… ,𝖠𝑛 ∈ ( × ), where 𝑡0 ∶= 0 and 𝑡𝑖 ∶= 𝑠1 + ⋯ + 𝑠𝑖 for 𝑖 ≥ 1. Let 𝑊 ′
𝑡 ∶=

∑𝑁𝑡
𝑖=1 𝑋

′
𝑖 be the total

eward associated with the new rewards 𝑋′
1, 𝑋

′
2,… and denote by 𝖤𝑘𝜔 expectation under 𝖯𝑘𝜔. Since 𝜆𝜔(⋅|𝑠) and 𝜆𝑘𝜔(⋅|𝑠) are marginals

f 𝛬𝑘
𝜔(⋅|𝑠), we have

𝜇𝜔,𝑡 = 𝖤𝑘𝜔

[

1{𝑊𝑡
𝑡 ∈ ⋅ , 𝑡∈

}e𝐻𝜔,𝑡

]

, 𝜇𝑘
𝜔,𝑡 = 𝖤𝑘𝜔

[

1{𝑊 ′
𝑡
𝑡 ∈ ⋅ , 𝑡∈

}e𝐻𝜔,𝑡

]

.

mportantly, the properties of 𝛬𝑘
𝜔(⋅|𝑠) make 𝑊 ′

𝑡 an exponential approximation of 𝑊𝑡, in the sense that, for 𝑡 ∈ N0, 𝑘 ∈ N, and 𝛿 > 0,

𝖤𝑘𝜔

[

1{‖𝑊𝑡−𝑊 ′
𝑡 ‖>𝛿𝑡, 𝑡∈ }e𝐻𝜔,𝑡

]

≤ e𝐿𝑡−𝑘𝛿𝑡𝑍𝜔,𝑡(0) (2.6)

ith 𝐿 as in Lemma 2.7. Indeed, a Chernoff-type bound, in combination with (𝑖𝑖) of Lemma 2.7, gives

𝖤𝑘𝜔

[

1{‖𝑊𝑡−𝑊 ′
𝑡 ‖>𝛿𝑡, 𝑡∈ }e𝐻𝜔,𝑡

]

≤ e−𝑘𝛿𝑡𝖤𝑘𝜔
[

1{𝑡∈ }e
𝑘‖𝑊𝑡−𝑊 ′

𝑡 ‖+𝐻𝜔,𝑡
]

≤ e−𝑘𝛿𝑡𝖤𝑘𝜔
[

1{𝑡∈ }e
∑𝑁𝑡

𝑖=1 𝑘‖𝑋𝑖−𝑋′
𝑖 ‖+𝐻𝜔,𝑡

]

= e−𝑘𝛿𝑡
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}

𝑛
∏

𝑖=1
𝑞𝑓 𝑡𝑖−1𝜔(𝑠𝑖)∫×

e𝑘‖𝑥−𝑥
′
‖𝛬𝑘

𝑓 𝑡𝑖−1𝜔
(d(𝑥, 𝑥′)|𝑠𝑖)

≤ e−𝑘𝛿𝑡
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}e

𝐿𝑛
𝑛
∏

𝑖=1
𝑞𝑓 𝑡𝑖−1𝜔(𝑠𝑖) ≤ e𝐿𝑡−𝑘𝛿𝑡𝑍𝜔,𝑡(0),

here 𝑞𝜔 = e𝑣𝜔𝑝𝜔. The bound in (2.6) is the basis of the following proposition, which states the desired LDP.

roposition 2.9. The following bounds hold P-a.e. 𝜔:
𝑖) lim inf 𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,𝛿) ≥ −𝐽𝑜(𝑤) for all 𝑤 ∈  and 𝛿 > 0.

(𝑖𝑖) inf𝛿>0{lim sup𝑡↑∞
1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,𝛿)} ≤ −𝐽𝑜(𝑤) for all 𝑤 ∈  .

Consequently, P-a.e. 𝜔 the family {𝜇 } satisfies the weak LDP with rate function 𝐽 .
14

𝜔,𝑡 𝑡∈N 𝑜
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Proof of Proposition 2.9. Suppose for the moment that (𝑖) and (𝑖𝑖) hold for a certain 𝜔 ∈ 𝛺. Then, the family {𝜇𝜔,𝑡}𝑡∈N is shown
to satisfy the weak LDP with rate function 𝐽𝑜 as follows. Given an open set 𝐺 ⊆  , a point 𝑤 ∈ 𝐺, and a real number 𝛿 > 0
such that 𝐵𝑤,𝛿 ⊆ 𝐺, (𝑖) implies lim inf 𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐺) ≥ lim inf 𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,𝛿) ≥ −𝐽𝑜(𝑤). The arbitrariness of 𝑤 yields the large

deviation lower bound lim inf 𝑡↑∞
1
𝑡 log𝜇𝜔,𝑡(𝐺) ≥ − inf𝑤∈𝐺 𝐽𝑜(𝑤). At the same time, given a compact set 𝐾 ⊂  and a real number

𝑎 < inf𝑤∈𝐾 𝐽𝑜(𝑤), by (𝑖𝑖) for each 𝑤 ∈ 𝐾 there exists 𝛿𝑤 > 0 with the property lim sup𝑡↑∞
1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,𝛿𝑤 ) ≤ −𝑎. As {𝐵𝑤,𝛿𝑤}𝑤∈𝐾 is an

pen cover of 𝐾, there exist finitely many points 𝑤1,… , 𝑤𝑛 in 𝐾 such that 𝐾 ⊆ ∪𝑛
𝑖=1𝐵𝑤𝑖 ,𝛿𝑤𝑖

. Thus, 𝜇𝜔,𝑡(𝐾) ≤
∑𝑛

𝑖=1 𝜇𝜔,𝑡(𝐵𝑤𝑖 ,𝛿𝑤𝑖
) for all

∈ N, giving lim sup𝑡↑∞
1
𝑡 log𝜇𝜔,𝑡(𝐾) ≤ −𝑎. The arbitrariness of 𝑎 implies the large deviation upper bound lim sup𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐾) ≤

inf𝑤∈𝐾 𝐽𝑜(𝑤).
Let us next verify (𝑖) and (𝑖𝑖). By separability,  contains a countable dense subset . Denote by Q+ the set of positive rational

numbers. Thanks to (𝑖𝑖𝑖) of Lemma 2.7, Lemma 2.6 ensures that there exists 𝛺𝑜 ∈  with P[𝛺𝑜] = 1 such that lim𝑡↑∞
1
𝑡 log𝜇

𝑘
𝜔,𝑡(𝐵𝑢,𝛼) =

𝑘(𝐵𝑢,𝛼) for all 𝑘 ∈ N, 𝑢 ∈ , 𝛼 ∈ Q+, and 𝜔 ∈ 𝛺𝑜. By Corollary 2.4, we may also suppose that lim𝑡↑∞
1
𝑡 log𝑍𝜔,𝑡(0) = 𝑧𝑜(0) < +∞ for

very 𝜔 ∈ 𝛺𝑜. We prove that (𝑖) and (𝑖𝑖) hold for any given 𝜔 ∈ 𝛺𝑜. To this aim, we make use of the bound in (2.6) to state that,
or 𝑤 ∈  and 𝛿 > 0,

𝜇𝜔,𝑡(𝐵𝑤,2𝛿) = 𝖤𝑘𝜔

[

1{𝑊𝑡
𝑡 ∈𝐵𝑤,2𝛿 , 𝑡∈

}e𝐻𝜔,𝑡

]

≥ 𝖤𝑘𝜔

[

1{𝑊 ′
𝑡
𝑡 ∈𝐵𝑤,𝛿 , ‖𝑊𝑡−𝑊 ′

𝑡 ‖≤𝛿𝑡, 𝑡∈
}e𝐻𝜔,𝑡

]

≥ 𝖤𝑘𝜔

[

1{𝑊 ′
𝑡
𝑡 ∈𝐵𝑤,𝛿 , 𝑡∈

}e𝐻𝜔,𝑡

]

− 𝖤𝑘𝜔

[

1{
‖𝑊𝑡−𝑊 ′

𝑡 ‖>𝛿𝑡, 𝑡∈
}e𝐻𝜔,𝑡

]

≥ 𝜇𝑘
𝜔,𝑡(𝐵𝑤,𝛿) − e𝐿𝑡−𝑘𝛿𝑡𝑍𝜔,𝑡(0). (2.7)

xchanging 𝑊𝑡 and 𝑊 ′
𝑡 , we also have

𝜇𝜔,𝑡(𝐵𝑤,𝛿) ≤ 𝜇𝑘
𝜔,𝑡(𝐵𝑤,2𝛿) + e𝐿𝑡−𝑘𝛿𝑡𝑍𝜔,𝑡(0). (2.8)

𝑖) Fix 𝑤 ∈  such that 𝐽𝑜(𝑤) < +∞, otherwise there is nothing to prove, and 𝛿 > 0. Pick 𝜖 > 0. We show that

lim inf
𝑡↑∞

1
𝑡
log𝜇𝜔,𝑡(𝐵𝑤,𝛿) ≥ −𝐽𝑜(𝑤) − 2𝜖, (2.9)

hich yields (𝑖) by the arbitrariness of 𝜖. Let 𝛼 ∈ Q+ and 𝑢 ∈  have the properties 5𝛼 ≤ 𝛿 and ‖𝑢 −𝑤‖ < 𝛼, so that 𝐵𝑤,𝛼 ⊆ 𝐵𝑢,2𝛼 ⊆
𝐵𝑢,4𝛼 ⊆ 𝐵𝑤,5𝛼 ⊆ 𝐵𝑤,𝛿 . By construction, 𝐽𝑜(𝑤) satisfies lim inf𝑘↑∞ 𝑘(𝐵𝑤,𝛼) ≥ −𝐽𝑜(𝑤), which allows us to find 𝑘 ∈ N so large that
𝑘(𝐵𝑤,𝛼) ≥ −𝐽𝑜(𝑤)−𝜖 and 𝑧𝑜(0) ≤ 2𝑘𝛼−𝐿−𝐽𝑜(𝑤)−4𝜖 with 𝐿 as in Lemma 2.7. Thus, since lim𝑡↑∞

1
𝑡 ln𝜇

𝑘
𝜔,𝑡(𝐵𝑢,2𝛼) = 𝑘(𝐵𝑢,2𝛼) ≥ 𝑘(𝐵𝑤,𝛼)

and lim𝑡↑∞
1
𝑡 ln𝑍𝜔,𝑡(0) = 𝑧𝑜(0), we can state that 1

𝑡 ln𝜇
𝑘
𝜔,𝑡(𝐵𝑢,2𝛼) ≥ −𝐽𝑜(𝑤)−2𝜖 and 1

𝑡 ln𝑍𝜔,𝑡(0) ≤ 2𝑘𝛼−𝐿−𝐽𝑜(𝑤)−3𝜖 for all sufficiently
arge 𝑡. For such 𝑡, the bound in (2.7) gives

𝜇𝜔,𝑡(𝐵𝑤,𝛿) ≥ 𝜇𝜔,𝑡(𝐵𝑢,4𝛼) ≥ 𝜇𝑘
𝜔,𝑡(𝐵𝑢,2𝛼) − e𝐿𝑡−2𝑘𝛼𝑡𝑍𝜔,𝑡(0) ≥ 𝑒−𝐽𝑜(𝑤)𝑡−2𝜖𝑡(1 − e−𝜖𝑡),

hich demonstrates (2.9).
𝑖𝑖) Pick 𝑤 ∈  and a real number 𝑎 < 𝐽𝑜(𝑤). We prove that

inf
𝛿>0

{

lim sup
𝑡↑∞

1
𝑡
log𝜇𝜔,𝑡(𝐵𝑤,𝛿)

}

≤ −𝑎, (2.10)

hich demonstrates (𝑖𝑖) thanks to the arbitrariness of 𝑎. As 𝐽𝑜(𝑤) ∶= − inf𝛿>0{lim inf𝑘↑∞ 𝑘(𝐵𝑤,𝛿)}, there exists an 𝛼 ∈ Q+ such that
im inf𝑘↑∞ 𝑘(𝐵𝑤,4𝛼) < −𝑎. Hence there exists a 𝑘 ∈ N so large that 𝑘(𝐵𝑤,4𝛼) ≤ −𝑎 and 𝑧𝑜(0) ≤ 𝑘𝛼−𝐿−𝑎. Finally, there exists a 𝑢 ∈ 
ith the property ‖𝑤 − 𝑢‖ < 𝛼. We have 𝐵𝑤,2𝛼 ⊆ 𝐵𝑢,3𝛼 ⊆ 𝐵𝑤,4𝛼 . The bound in (2.8) gives 𝜇𝜔,𝑡(𝐵𝑤,𝛼) ≤ 𝜇𝑘

𝜔,𝑡(𝐵𝑤,2𝛼) + e𝐿𝑡−𝑘𝛼𝑡𝑍𝜔,𝑡(0) ≤
𝑘
𝜔,𝑡(𝐵𝑢,3𝛼) + e𝐿𝑡−𝑘𝛼𝑡𝑍𝜔,𝑡(0) for all 𝑡 ∈ N, so that

lim sup
𝑡↑∞

1
𝑡
log𝜇𝜔,𝑡(𝐵𝑤,𝛼) ≤ max

{

𝑘(𝐵𝑢,3𝛼), 𝐿 − 𝑘𝛼 + 𝑧𝑜(0)
}

≤ max
{

𝑘(𝐵𝑤,4𝛼), 𝐿 − 𝑘𝛼 + 𝑧𝑜(0)
}

≤ −𝑎.

his proves (2.10). □

.4. Legendre transform of the free energy

In this section we show that 𝐽𝑜 is the Legendre transform 𝑧⋆𝑜 of 𝑧𝑜 defined, for 𝑤 ∈  , by 𝑧⋆𝑜 (𝑤) ∶= sup𝜑∈⋆{𝜑(𝑤) − 𝑧𝑜(𝜑)}. Since
𝑜 = 𝑧, this proves that 𝐽𝑜 is the rate function 𝐽 introduced in Section 1.3 as the Legendre transform of 𝑧. Thus, Proposition 2.9
emonstrates Theorem 1.4.

In order to show that 𝐽𝑜 = 𝑧⋆𝑜 , it suffices to verify that 𝐽⋆
𝑜 = 𝑧𝑜 with 𝐽⋆

𝑜 the Legendre transform of 𝐽𝑜 defined, for 𝜑 ∈ ⋆, by
⋆
𝑜 (𝜑) ∶= sup𝑤∈{𝜑(𝑤) − 𝐽𝑜(𝑤)}. In fact, a general result from convex analysis states that 𝐽𝑜(𝑤) = 𝐽⋆⋆

𝑜 (𝑤) ∶= sup𝜑∈⋆{𝜑(𝑤) − 𝐽⋆
𝑜 (𝜑)}

f 𝐽𝑜 is proper convex and lower semi-continuous (see [62], Theorem 2.3.3). We already know from Lemma 2.8 that 𝐽𝑜 is convex
nd lower semi-continuous. If 𝐽⋆

𝑜 = 𝑧𝑜, then 𝐽𝑜 is proper convex because inf𝑤∈ 𝐽𝑜(𝑤) = −𝐽⋆
𝑜 (0) = −𝑧𝑜(0) with 𝑧𝑜(0) finite implies

hat 𝐽𝑜(𝑤) > −∞ for all 𝑤 ∈  and 𝐽𝑜(𝑤) < +∞ for some 𝑤 ∈  . We note that the identity 𝐽⋆
𝑜 = 𝑧𝑜 also proves that 𝑧𝑜 is lower

emi-continuous, as claimed in Section 2.1.
To verify that 𝐽⋆

𝑜 (𝜑) = 𝑧𝑜(𝜑) for 𝜑 ∈ ⋆, we first demonstrate that 𝐽⋆
𝑜 (𝜑) ≤ 𝑧𝑜(𝜑), and afterwards that 𝐽⋆

𝑜 (𝜑) ≥ 𝑧𝑜(𝜑). The latter
s harder to obtain than the former and relies on an inner approximation by a compact convex set, as was done in [34] and [58]
15

or proving the Cramér theorem and the LDPs for homogeneous pinning models, respectively.
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Lower bound. Fix 𝜑 ∈ ⋆, 𝑤 ∈  , and 𝛿 > 0. Note that if 𝑊𝑡
𝑡 ∈ 𝐵𝑤,𝛿 , then 𝜑(𝑊𝑡) − 𝑡𝜑(𝑤) = 𝜑(𝑊𝑡 − 𝑡𝑤) ≥ −‖𝜑‖‖𝑊𝑡 − 𝑡𝑤‖ ≥ −‖𝜑‖𝛿𝑡,

namely 𝜑(𝑊𝑡) ≥ 𝑡𝜑(𝑤) − 𝑡‖𝜑‖𝛿. It follows that

𝐸𝜔

[

1{𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

≥ 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐵𝑤,𝛿 , 𝑡∈

}e𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

≥ e𝑡𝜑(𝑤)−𝑡‖𝜑‖𝛿 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐵𝑤,𝛿 , 𝑡∈

}e𝐻𝜔,𝑡

]

= e𝑡𝜑(𝑤)−𝑡‖𝜑‖𝛿 𝜇𝜔,𝑡(𝐵𝑤,𝛿)

or all 𝑡 ∈ N. Taking logarithms, dividing by 𝑡, and letting 𝑡 ↑ ∞, we get 𝑧𝑜(𝜑) ≥ 𝜑(𝑤) − 𝐽𝑜(𝑤) − ‖𝜑‖𝛿 thanks to Corollary 2.4 and (𝑖)
f Proposition 2.9. Thus, appealing to the arbitrariness of 𝑤 and 𝛿, we find the bound 𝑧𝑜(𝜑) ≥ sup𝑤∈{𝜑(𝑤) − 𝐽𝑜(𝑤)} =∶ 𝐽⋆

𝑜 (𝜑).

pper bound. Pick 𝜑 ∈ ⋆ and real numbers 𝜁 ≤ 𝑧𝑜(𝜑) and 𝜖 > 0. The goal is to show that 𝜁 ≤ 𝐽⋆
𝑜 (𝜑) + 3𝜖. This gives 𝐽⋆

𝑜 (𝜑) ≥ 𝑧𝑜(𝜑)
y the arbitrariness of 𝜁 and 𝜖. The random variables 𝜔 ↦ 𝜔,𝑡(𝐴,𝜑) defined in Section 2.1 come into play here.

As 𝜁 ≤ 𝑧𝑜(𝜑), Corollary 2.4 implies that there exists an integer 𝜏 ≥ 𝑡F such that

𝜁 ≤ E
[

1
𝜏
log𝑍⋅,𝜏 (𝜑)

]

+ 𝜖.

The monotone converge theorem shows that lim𝛿↑∞ 𝜔,𝜏 (𝐵0,𝛿 , 𝜑) = 𝑍𝜔,𝜏 (𝜑). Since E[log ⋅,𝜏 (𝐵0,𝛿 , 𝜑)] exists and is finite for all
≥ 𝛿F by Lemma 2.3, a second application of the monotone converge theorem to the non-negative random variables 𝜔 ↦

og 𝜔,𝜏 (𝐵0,𝛿 , 𝜑) − log 𝜔,𝜏 (𝐵0,𝛿F , 𝜑) entails existence of a number 𝛿 ≥ 𝛿F such that

𝜁 ≤ E
[

1
𝜏
log ⋅,𝜏 (𝐵0,𝛿 , 𝜑)

]

+ 2𝜖. (2.11)

he crucial point is that we can replace the open ball 𝐵0,𝛿 by a compact set, according to the following lemma.

emma 2.10. For every 𝜏 ≥ 𝑡F, 𝛿 ≥ 𝛿F, 𝜑 ∈ ⋆, and 𝜖 > 0, there exists a compact set 𝐾 ⊂  such that E[log ⋅,𝜏 (𝐵0,𝛿 , 𝜑)] ≤
E[log ⋅,𝜏 (𝐾,𝜑)] + 𝜖.

Proof of Lemma 2.10. Fix 𝜏 ≥ 𝑡F, 𝛿 ≥ 𝛿F, 𝜑 ∈ ⋆, and 𝜖 > 0. Recall that there exists a 𝐾𝑜 ⊂  compact such that E[log ⋅,𝜏 (𝐾𝑜, 𝜑)]
exists and is finite, as seen in Section 2.1. Let 𝛿𝑜 ≥ 𝛿 be a number that satisfies 𝐵0,𝛿𝑜 ⊃ 𝐾𝑜 and denote by 𝐹𝑜 the closure of
𝐵0,𝛿𝑜 for brevity. Clearly, 𝐵0,𝛿 ⊆ 𝐵0,𝛿𝑜 ⊂ 𝐹𝑜 ⊂ 𝐵0,2𝛿𝑜 and 𝐾𝑜 ⊂ 𝐹𝑜. Since min{0, log 𝜔,𝜏 (𝐹𝑜, 𝜑)} ≥ min{0, log 𝜔,𝜏 (𝐵0,𝛿𝑜 , 𝜑)} and
max{0, log 𝜔,𝜏 (𝐹𝑜, 𝜑)} ≤ max{0, log 𝜔,𝜏 (𝐵0,2𝛿𝑜 , 𝜑)}, the expectation E[log ⋅,𝜏 (𝐹𝑜, 𝜑)] exists and is finite by Lemma 2.3. The present
lemma is demonstrated once we show that

E
[

log ⋅,𝜏 (𝐹𝑜, 𝜑)
]

≤ E
[

log ⋅,𝜏 (𝐾,𝜑)
]

+ 𝜖 (2.12)

for some compact set 𝐾 ⊂  .
For 𝐴 ∈ () and 𝑖 ∈ {1,… , 𝜏}, put

𝛥𝜔,𝑖(𝐴) ∶= 𝐸𝜔

[

1{𝑌𝜔,1∈𝐹𝑜 ,…,𝑌𝜔,𝑁𝜏 ∈𝐹𝑜 , 𝑌𝜔,𝑖∈𝐴,𝑁𝜏≥𝑖, 𝜏∈ }e𝜑(𝑊𝜏 )+𝐻𝜔,𝜏
]

≤ 𝜔,𝜏 (𝐹𝑜, 𝜑).

We note that the measure that associates 𝐴 ∈ () with

E

[

{

1 + log
⋅,𝜏 (𝐹𝑜, 𝜑)
⋅,𝜏 (𝐾𝑜, 𝜑)

} 𝛥⋅,𝑖(𝐴)
⋅,𝜏 (𝐹𝑜, 𝜑)

]

≤ E
[

1 + log
⋅,𝜏 (𝐹𝑜, 𝜑)
⋅,𝜏 (𝐾𝑜, 𝜑)

]

s finite. Therefore, due to the separability of  , such a measure is tight (see [11], Theorem 7.1.7), so that there exists a 𝐾𝑖 ⊂ 
ompact with the property that

E

[

{

1 + log
⋅,𝜏 (𝐹𝑜, 𝜑)
⋅,𝜏 (𝐾𝑜, 𝜑)

} 𝛥⋅,𝑖(𝐾𝑐
𝑖 )

⋅,𝜏 (𝐹𝑜, 𝜑)

]

≤ 𝜖
𝜏
. (2.13)

efine 𝐾 ∶= (𝐾𝑜 ∪ 𝐾1 ∪ ⋯ ∪ 𝐾𝜏 ) ∩ 𝐹𝑜. We claim that 𝐾 is the desired compact set. In fact, we resort to the bound log(1 + 𝜁 ) ≤
{1 + log(1 + 𝜁 )} 𝜁

1+𝜁 valid for 𝜁 ≥ 0 to write down

log 𝜔,𝜏 (𝐹𝑜, 𝜑) = log 𝜔,𝜏 (𝐾,𝜑) + log
{

1 +
𝜔,𝜏 (𝐹𝑜, 𝜑) − 𝜔,𝜏 (𝐾,𝜑)

𝜔,𝜏 (𝐾,𝜑)

}

≤ log 𝜔,𝜏 (𝐾,𝜑) +
{

1 + log
𝜔,𝜏 (𝐹𝑜, 𝜑)
𝜔,𝜏 (𝐾,𝜑)

}𝜔,𝜏 (𝐹𝑜, 𝜑) − 𝜔,𝜏 (𝐾,𝜑)
𝜔,𝜏 (𝐹𝑜, 𝜑)

.

ince 𝜔,𝜏 (𝐹𝑜, 𝜑) ≥ 𝜔,𝜏 (𝐾,𝜑) ≥ 𝜔,𝜏 (𝐾𝑜, 𝜑), we can even replace 𝜔,𝜏 (𝐾,𝜑) by 𝜔,𝜏 (𝐾𝑜, 𝜑) in the second logarithm to obtain

log 𝜔,𝜏 (𝐹𝑜, 𝜑) ≤ log 𝜔,𝜏 (𝐾,𝜑) +
{

1 + log
𝜔,𝜏 (𝐹𝑜, 𝜑)
𝜔,𝜏 (𝐾𝑜, 𝜑)

}𝜔,𝜏 (𝐹𝑜, 𝜑) − 𝜔,𝜏 (𝐾,𝜑)
𝜔,𝜏 (𝐹𝑜, 𝜑)

. (2.14)

ext, we observe that either 𝑌𝜔,𝑖 ∈ 𝐾 for 𝑖 ∈ {1,… , 𝑁𝜏} or there exists a 𝑖 ≤ 𝑁𝜏 such that 𝑌𝜔,𝑖 ∈ 𝐾𝑐 . We also observe that
𝜔,𝑖(𝐾𝑐 ) = 𝛥𝜔,𝑖(𝐾𝑐 ∩ 𝐹𝑜) ≤ 𝛥𝜔,𝑖(𝐾𝑐

𝑖 ), as 𝛥𝜔,𝑖(𝐴) = 𝛥𝜔,𝑖(𝐴 ∩ 𝐹𝑜) for any 𝐴 ∈ (). These arguments give

𝜔,𝜏 (𝐹𝑜, 𝜑) ≤ 𝜔,𝜏 (𝐾,𝜑) +
𝜏
∑

𝛥𝜔,𝑖(𝐾𝑐 ) ≤ 𝜔,𝜏 (𝐾,𝜑) +
𝜏
∑

𝛥𝜔,𝑖(𝐾𝑐
𝑖 ).
16
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Combining this inequality with (2.14), we get the bound

log 𝜔,𝜏 (𝐹𝑜, 𝜑) ≤ log 𝜔,𝜏 (𝐾,𝜑) +
𝜏
∑

𝑖=1

{

1 + log
𝜔,𝜏 (𝐹𝑜, 𝜑)
𝜔,𝜏 (𝐾𝑜, 𝜑)

} 𝛥𝜔,𝑖(𝐾𝑐
𝑖 )

𝜔,𝜏 (𝐹𝑜, 𝜑)
.

fter taking expectation, this bound becomes (2.12) thanks to (2.13). □

By the bound in (2.11) and Lemma 2.10, there exists a compact set 𝐾 ⊂  such that

𝜁 ≤ E
[

1
𝜏
log ⋅,𝜏 (𝐾,𝜑)

]

+ 3𝜖.

Replacing 𝐾 by the closed convex hull of {0} ∪ 𝐾 if necessary, we can treat 𝐾 as a compact convex set that contains 0 (see [45],
heorem 3.20). For every 𝑛 ∈ N, Lemma 2.2 implies that E[ 1𝜏 log ⋅,𝜏 (𝐾,𝜑)] ≤ E[ 1

𝑛𝜏 log ⋅,𝑛𝜏 (𝐾,𝜑)], so that

𝜁 ≤ E
[

1
𝑛𝜏

log ⋅,𝑛𝜏 (𝐾,𝜑)
]

+ 3𝜖.

If 𝜌 ≥ 𝛿F is a number such that 𝐾 ⊂ 𝐵0,𝜌, then, defining 𝑒 ∶= sup𝑡≥𝑡F{E[
1
𝑡 log ⋅,𝑡(𝐵0,𝜌, 𝜑)]}, we can even conclude that

𝜁 ≤ E
[

1
𝑛𝜏

log ⋅,𝑛𝜏 (𝐾,𝜑) − 1
𝑛𝜏

log ⋅,𝑛𝜏 (𝐵0,𝜌, 𝜑)
]

+ 𝑒 + 3𝜖.

In this way, as the random variables 𝜔 ↦ log 𝜔,𝑛𝜏 (𝐵0,𝜌, 𝜑) − log 𝜔,𝑛𝜏 (𝐾,𝜑) are non-negative, Fatou’s lemma gives

𝜁 ≤ lim sup
𝑛↑∞

E
[

1
𝑛𝜏

log ⋅,𝑛𝜏 (𝐾,𝜑) − 1
𝑛𝜏

log ⋅,𝑛𝜏 (𝐵0,𝜌, 𝜑)
]

+ 𝑒 + 3𝜖 ≤ E
[

lim sup
𝑡↑∞

{

1
𝑡
log ⋅,𝑡(𝐾,𝜑) − 1

𝑡
log ⋅,𝑡(𝐵0,𝜌, 𝜑)

}]

+ 𝑒 + 3𝜖.

Since lim𝑡↑∞
1
𝑡 log 𝜔,𝑡(𝐵0,𝜌, 𝜑) = 𝑒 P-a.e. 𝜔 by Corollary 2.5, from here we get the desired bound 𝜁 ≤ 𝐽⋆

𝑜 (𝜑) + 3𝜖 once we prove that

lim sup
𝑡↑∞

1
𝑡
log 𝜔,𝑡(𝐾,𝜑) ≤ 𝐽⋆

𝑜 (𝜑) P-a.e. 𝜔. (2.15)

o this aim, we note that the conditions 𝑌𝜔,1 ∈ 𝐾,… , 𝑌𝜔,𝑁𝑡
∈ 𝐾 entail 1

𝑡
∑𝑁𝑡

𝑖=1 𝑌𝜔,𝑖 = (1 − 𝑁𝑡
𝑡 )0 +

1
𝑡
∑𝑁𝑡

𝑖=1 𝑌𝜔,𝑖 ∈ 𝐾, since 𝐾 is convex
with 0 ∈ 𝐾. It follows that, for 𝑡 ∈ N,

𝜔,𝑡(𝐾,𝜑) ∶= 𝐸𝜔

[

1{𝑌𝜔,1∈𝐾,…,𝑌𝜔,𝑁𝑡∈𝐾, 𝑡∈ }e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

≤ 𝐸𝜔

[

1{ 1
𝑡
∑𝑁𝑡

𝑖=1 𝑌𝜔,𝑖∈𝐾, 𝑡∈
}e𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

. (2.16)

he following lemma concludes the proof because it yields (2.15) through (2.16).

emma 2.11. For any compact set 𝐾 ∈  and 𝜑 ∈ ⋆,

lim sup
𝑡↑∞

1
𝑡
log𝐸𝜔

[

1{ 1
𝑡
∑𝑁𝑡

𝑖=1 𝑌𝜔,𝑖∈𝐾, 𝑡∈
}e𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

≤ 𝐽⋆
𝑜 (𝜑) P-a.e. 𝜔.

roof of Lemma 2.11. Fix 𝐾 ⊂  compact and 𝜑 ∈ ⋆. Denote by 𝐹 the closed ball of center 0 and radius 2E[sup𝑠∈N max{0, ‖𝑟⋅,𝑠‖−
𝜂𝑠}] + 2𝜂 < +∞, with 𝜂 the number in Assumption 1.2. We will prove that P-a.e. 𝜔

lim sup
𝑡↑∞

1
𝑡
log𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈∩𝐹+𝐾, 𝑡∈

}e𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

≤ 𝐽⋆
𝑜 (𝜑), (2.17)

here  is the finite-dimensional subspace in Assumption 1.2. This bound gives us the lemma as follows. Since ∑𝑁𝑡
𝑖=1 𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖

∈ 
and

‖

‖

‖

‖

𝑁𝑡
∑

𝑖=1
𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖

‖

‖

‖

‖

≤
𝑁𝑡
∑

𝑖=1
max

{

0, ‖𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖
‖ − 𝜂𝑆𝑖

}

+ 𝜂𝑇𝑁𝑡
≤

𝑡−1
∑

𝜏=0
sup
𝑠∈N

max
{

0, ‖𝑟𝑓 𝜏𝜔,𝑠‖ − 𝜂𝑠
}

+ 𝜂𝑡,

Birkhoff’s ergodic theorem entails that P-a.e. 𝜔 the vector 1
𝑡
∑𝑁𝑡

𝑖=1 𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖
belongs to  ∩𝐹 for all sufficiently large 𝑡. Thus, P-a.e. 𝜔

he condition 𝑊𝑡
𝑡 − 1

𝑡
∑𝑁𝑡

𝑖=1 𝑟𝑓𝑇𝑖−1𝜔,𝑆𝑖
= 1

𝑡
∑𝑁𝑡

𝑖=1 𝑌𝜔,𝑖 ∈ 𝐾 implies that 𝑊𝑡
𝑡 ∈  ∩ 𝐹 +𝐾 for all sufficiently large 𝑡.

The bound in (2.17) relies on the compactness of  ∩𝐹 +𝐾, for which the dimension of  must be finite. In order to demonstrate
this bound, recall that, by (𝑖𝑖) of Proposition 2.9, there exists an 𝛺𝑜 ∈  with P[𝛺𝑜] = 1 such that

inf
𝛿>0

{

lim sup
𝑡↑∞

1
𝑡
log𝜇𝜔,𝑡(𝐵𝑤,𝛿)

}

≤ −𝐽𝑜(𝑤)

for all 𝑤 ∈  and 𝜔 ∈ 𝛺𝑜. Fix 𝜔 ∈ 𝛺𝑜 and 𝜖 > 0. Then, for each 𝑤 there exists 𝛿𝑤 > 0 such that lim sup𝑡↑∞
1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,𝛿𝑤 ) ≤ −𝐽𝑜(𝑤)+𝜖.

he number 𝛿𝑤 can be chosen so small that ‖𝜑‖𝛿𝑤 ≤ 𝜖. By compactness, there exist finitely many points 𝑤1,… , 𝑤𝑛 in  ∩ 𝐹 + 𝐾
uch that  ∩ 𝐹 +𝐾 ⊆ ∪𝑛

𝑖=1𝐵𝑤𝑖 ,𝛿𝑤𝑖
. This gives

𝐸𝜔

[

1{𝑊𝑡 ∈∩𝐹+𝐾, 𝑡∈
}e𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

≤
𝑛
∑

𝐸𝜔

[

1{𝑊𝑡 ∈𝐵 , 𝑡∈
}e𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

17
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≤
𝑛
∑

𝑖=1
e𝑡𝜑(𝑤𝑖)+𝑡‖𝜑‖𝛿𝑤𝑖 𝜇𝜔,𝑡(𝐵𝑤𝑖 ,𝛿𝑤𝑖

) ≤
𝑛
∑

𝑖=1
e𝑡𝜑(𝑤𝑖)+𝑡𝜖𝜇𝜔,𝑡(𝐵𝑤𝑖 ,𝛿𝑤𝑖

),

nd it therefore follows that

lim sup
𝑡↑∞

1
𝑡
log𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈∩𝐹+𝐾, 𝑡∈

}e𝜑(𝑊𝑡)+𝐻𝜔,𝑡

]

≤ max
{

𝜑(𝑤1) − 𝐽𝑜(𝑤1),… , 𝜑(𝑤𝑛) − 𝐽𝑜(𝑤𝑛)
}

+ 2𝜖 ≤ 𝐽⋆
𝑜 (𝜑) + 2𝜖.

The arbitrariness of 𝜖 demonstrates (2.17). □

2.5. The full LDP

It is well known that a weak LDP gives a full LDP with good rate function when it is combined with exponential tightness
(see [17], Lemma 1.2.18). Hence Corollary 1.5 is a consequence of the following lemma.

Lemma 2.12. Under the hypotheses of Corollary 1.5, P-a.e. 𝜔 the family of measures {𝜇𝜔,𝑡}𝑡∈N is exponentially tight, i.e., for each number
> 0 there exists a compact set 𝐾 ⊂  such that

lim sup
𝑡↑∞

1
𝑡
log𝜇𝜔,𝑡(𝐾𝑐 ) ≤ −𝜅.

roof of Lemma 2.12. Since  is finite-dimensional, it suffices to consider compact sets 𝐾 that are closed balls centered at the
rigin. To this aim, pick a number 𝜌 > 0, and let 𝜉 > 0 be as in Corollary 1.5. For 𝑡 ∈ N, a Chernoff-type bound gives

𝜇𝜔,𝑡(𝐵𝑐
0,𝜌) ∶= 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈𝐵𝑐

0,𝜌 , 𝑡∈
}e𝐻𝜔,𝑡

]

≤ 𝐸𝜔

[

1{
∑𝑁𝑡

𝑖=1 ‖𝑋𝑖‖≥𝜌𝑡, 𝑡∈ }e
𝐻𝜔,𝑡

]

≤ e−𝜉𝜌𝑡𝐸𝜔

[

1{𝑡∈ }e
𝜉
∑𝑁𝑡

𝑖=1 ‖𝑋𝑖‖+𝐻𝜔,𝑡
]

. (2.18)

t the same time, with 𝑀 as in Corollary 1.5, we have

𝐸𝜔

[

1{𝑡∈ }e
𝜉
∑𝑁𝑡

𝑖=1 ‖𝑋𝑖‖+𝐻𝜔,𝑡
]

=
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}

𝑛
∏

𝑖=1
e𝑣𝑓𝑡𝑖−1𝜔(𝑠𝑖)𝑝𝑓 𝑡𝑖−1𝜔(𝑠𝑖)∫

e𝜉‖𝑥‖𝜆𝑓 𝑡𝑖−1𝜔(d𝑥|𝑠𝑖)

= e𝑀𝑡
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}

𝑛
∏

𝑖=1
𝑞𝑓 𝑡𝑖−1𝜔(𝑠𝑖)∫

e𝜉‖𝑥‖−𝑀𝑠𝑖𝜆𝑓 𝑡𝑖−1𝜔(d𝑥|𝑠𝑖)

≤ e𝑀𝑡
𝑡

∑

𝑛=1

∑

𝑠1∈N
⋯

∑

𝑠𝑛∈N
1{𝑡𝑛=𝑡}

𝑛
∏

𝑖=1
𝑞𝑓 𝑡𝑖−1𝜔(𝑠𝑖) e

sup𝑠∈N max
{

0,log ∫ e𝜉‖𝑥‖−𝑀𝑠𝜆𝑓𝑡𝑖−1𝜔(d𝑥|𝑠)
}

≤ e𝑀𝑡+
∑𝑡−1

𝜏=0 sup𝑠∈N max
{

0,log ∫ e𝜉‖𝑥‖−𝑀𝑠𝜆𝑓𝜏𝜔(d𝑥|𝑠)
}

𝑍𝜔,𝑡(0), (2.19)

here 𝑡0 ∶= 0 and 𝑡𝑖 ∶= 𝑠1 +⋯ + 𝑠𝑖 for 𝑖 ≥ 1. Since E[sup𝑠∈N max{0, log ∫ e𝜉‖𝑥‖−𝑀𝑠𝜆⋅(d𝑥|𝑠)}] < +∞ by hypothesis and 𝑧𝑜(0) is finite,
ombining (2.18) with (2.19), taking logarithm, dividing by 𝑡, and letting 𝑡 ↑ ∞, we find

lim sup
𝑡↑∞

1
𝑡
log𝜇𝜔,𝑡(𝐵𝑐

0,𝜌) ≤ 𝑀 − 𝜉𝜌 + 𝑧𝑜(0) + E
[

sup
𝑠∈N

max
{

0, log∫
e𝜉‖𝑥‖−𝑀𝑠𝜆⋅(d𝑥|𝑠)

}]

P-a.e. 𝜔,

thanks to Birkhoff’s ergodic theorem and Corollary 2.4. In this way, given 𝜅 > 0, the lemma is proved by choosing 𝜌 so large that
he r.h.s. is smaller than 𝜅 and 𝐾 equal to the closure of 𝐵0,𝜌. □

. Non-constrained LDPs

In this section we deduce Theorem 1.7 and Corollary 1.8 from our results on the constrained pinning model. To this aim, we note
hat, for 𝑡 ∈ N0, the events {𝑇𝑛 = 𝜏, 𝑇𝑛+1 > 𝑡} = {𝑇𝑛 = 𝜏, 𝑆𝑛+1 > 𝑡−𝜏} with 0 ≤ 𝑛 ≤ 𝜏 ≤ 𝑡 form a partition of the space of configurations.
ccording to (1.1), the conditions 𝑇𝑛 = 𝜏 and 𝑆𝑛+1 > 𝑡 − 𝜏 entail that 𝐻𝜔,𝑡 =

∑𝑛
𝑖=1 𝑣𝑓𝑇𝑖−1𝜔(𝑆𝑖) = 𝐻𝜔,𝜏 and 𝑊𝑡 =

∑𝑛
𝑖=1 𝑋𝑖 = 𝑊𝜏 are

ndependent of 𝑆𝑛+1, which in turn is distributed as 𝑆1 in the environment 𝑓 𝜏𝜔. In this way, we find the identity of measures

𝜈𝜔,𝑡 ∶= 𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈ ⋅

}e𝐻𝜔,𝑡

]

=
𝑡

∑

𝜏=0

𝜏
∑

𝑛=0
𝐸𝜔

[

1{𝑊𝑡
𝑡 ∈ ⋅ , 𝑇𝑛=𝜏, 𝑆𝑛+1>𝑡−𝜏

}e𝐻𝜔,𝑡

]

=
𝑡

∑

𝜏=0

𝜏
∑

𝑛=0
𝐸𝜔

[

1{𝑊𝜏
𝑡 ∈ ⋅ , 𝑇𝑛=𝜏

}e𝐻𝜔,𝜏

]

𝑃𝑓 𝜏𝜔[𝑆1 > 𝑡 − 𝜏]

=
𝑡

∑

𝜏=0
𝐸𝜔

[

1{𝑊𝜏
𝑡 ∈ ⋅ , 𝜏∈

}e𝐻𝜔,𝜏

]

𝑃𝑓 𝜏𝜔[𝑆1 > 𝑡 − 𝜏]. (3.1)

imilarly, for 𝜑 ∈ ⋆, we have

∫ e𝑡𝜑(𝑤)𝜈𝜔,𝑡(d𝑤) = 𝐸𝜔

[

e𝜑(𝑊𝑡)+𝐻𝜔,𝑡
]

=
𝑡

∑

𝐸𝜔

[

1{𝜏∈ }e𝜑(𝑊𝜏 )+𝐻𝜔,𝜏
]

𝑃𝑓 𝜏𝜔[𝑆1 > 𝑡 − 𝜏] =
𝑡

∑

𝑍𝜔,𝜏 (𝜑)𝑃𝑓 𝜏𝜔[𝑆1 > 𝑡 − 𝜏]. (3.2)
18
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These formulas connect the non-constrained setting with the constrained one, and represent the starting point to prove Theorem 1.7
and Corollary 1.8.

From now on we assume that (1.5) holds. We define the rate function 𝐼𝓁 as the Legendre transform of 𝑧𝓁 ∶= max{𝑧,𝓁}. Recall
that 𝑧 is proper convex and lower semi-continuous by Proposition 1.3. The identity in (3.2) immediately gives (𝑖) of Theorem 1.7
according to the following lemma.

Lemma 3.1. For 𝜑 ∈ ⋆, lim𝑡↑∞
1
𝑡 log ∫ e𝑡𝜑(𝑤)𝜈𝜔,𝑡(d𝑤) = 𝑧𝓁(𝜑) P-a.e. 𝜔.

Proof of Lemma 3.1. Fix 𝜑 ∈ ⋆. Proposition 1.3 states that there exists a set 𝛺𝑜 ∈  with P[𝛺𝑜] = 1 such that lim𝑡↑∞
1
𝑡 log𝑍𝜔,𝑡(𝜑) =

lim𝑡↑∞
1
𝑡 log ∫ e𝑡𝜑(𝑤)𝜇𝜔,𝑡(d𝑤) = 𝑧(𝜑) for all 𝜔 ∈ 𝛺𝑜. We can choose 𝛺𝑜 so that also (1.5) is satisfied for all 𝜔 ∈ 𝛺𝑜. Pick 𝜔 ∈ 𝛺𝑜. Since

∫ e𝑡𝜑(𝑤)𝜈𝜔,𝑡(d𝑤) ≥ max{𝑍𝜔,𝑡(𝜑), 𝑃𝜔[𝑆1 > 𝑡]} by (3.2) and lim inf 𝑠↑∞
1
𝑠 log𝑃𝜔[𝑆1 > 𝑠] ≥ 𝓁 by the second inequality of (1.5), we can

conclude that

lim inf
𝑡↑∞

1
𝑡
log∫

e𝑡𝜑(𝑤)𝜈𝜔,𝑡(d𝑤) ≥ max{𝑧(𝜑),𝓁} =∶ 𝑧𝓁(𝜑).

This settles the first half of the proof and already proves the lemma when 𝑧𝓁(𝜑) = +∞. If 𝑧𝓁(𝜑) < +∞, then, given real numbers
𝜁 > 𝑧𝓁(𝜑) and 𝜖 > 0, there exists a positive constant 𝐶 such that 𝑍𝜔,𝜏 (𝜑) ≤ 𝐶e𝜁𝜏 and 𝑃𝑓 𝜏𝜔[𝑆1 > 𝑠] ≤ 𝐶e𝜁𝑠+𝜖𝜏 for all 𝑠, 𝜏 ∈ N0, the latter
being a consequence of the first inequality of (1.5). Combining (3.2) with these bounds, we find lim sup𝑡↑∞

1
𝑡 log ∫ e𝑡𝜑(𝑤)𝜈𝜔,𝑡(d𝑤) ≤

𝜁 + 𝜖. The arbitrariness of 𝜁 and 𝜖 shows that

lim sup
𝑡↑∞

1
𝑡
log∫

e𝑡𝜑(𝑤)𝜈𝜔,𝑡(d𝑤) ≤ 𝑧𝓁(𝜑). □

The proof that the family {𝜈𝜔,𝑡}𝑡∈N satisfies a quenched weak LDP with the rate function 𝐼𝓁 is given in Section 3.1 for the case
𝓁 = −∞ and in Section 3.2 for the case 𝓁 > −∞. This verifies (𝑖𝑖) of Theorem 1.7. Section 3.3 addresses the quenched full LDP of
Corollary 1.8.

3.1. The weak LDP for infinite exponential tail constant

When 𝓁 = −∞, we have 𝑧𝓁 = 𝑧 and 𝐼𝓁 = 𝐽 . Thus, (𝑖𝑖) of Theorem 1.7 for 𝓁 = −∞ follows from the following proposition.

Proposition 3.2. If 𝓁 = −∞, then P-a.e. 𝜔 the family {𝜈𝜔,𝑡}𝑡∈N satisfies the weak LDP with rate function 𝐽 .

Proof of Proposition 3.2. The large deviation lower bound for open sets is immediate from Theorem 1.4, as 𝜈𝜔,𝑡(𝐴) ≥ 𝜇𝜔,𝑡(𝐴) for
all 𝑡 ∈ N and 𝐴 ∈ (). We verify the large deviation upper bound for compact sets.

According to Proposition 1.3, (𝑖𝑖) of Proposition 2.9, and the first inequality of (1.5) with 𝓁 = −∞, there exists a set 𝛺𝑜 ∈ 
with P[𝛺𝑜] = 1 such that, for every 𝜔 ∈ 𝛺𝑜, we have lim𝑡↑∞

1
𝑡 log𝑍𝜔,𝑡(0) = 𝑧(0) with 𝑧(0) finite, inf𝛿>0{lim sup𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,𝛿)} ≤

𝐽𝑜(𝑤) = −𝐽 (𝑤) for 𝑤 ∈  , and

lim sup
𝑠↑∞

sup
𝜏∈N0

{

1
𝑠
log𝑃𝑓 𝜏𝜔[𝑆1 > 𝑠] − 𝜏

𝑠

}

= −∞. (3.3)

e will show that, for all 𝜔 ∈ 𝛺𝑜 and 𝑤 ∈  ,

inf
𝛿>0

{

lim sup
𝑡↑∞

1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑤,𝛿)

}

≤ −𝐽 (𝑤). (3.4)

This gives the quenched large deviation upper bound for compact sets with rate function 𝐽 , as in the proof of Proposition 2.9.
Pick 𝜔 ∈ 𝛺𝑜, 𝑤 ∈  , and a real number 𝑎 < 𝐽 (𝑤). Then there exists an 𝜂 > 0 such that lim sup𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,4𝜂) < −𝑎.

In turn, there exists a positive constant 𝐶 that provides the inequalities 𝜇𝜔,𝜏 (𝐵𝑤,4𝜂) ≤ 𝐶e−𝑎𝜏 and 𝑍𝜔,𝜏 (0) ≤ 𝐶e𝑧(0)𝜏+𝜏 for all
𝜏 ∈ N0. Given 𝜖 ∈ (0, 1∕2) such that 𝜖‖𝑤‖ ≤ 𝜂, the conditions 𝑡∕2 ≤ (1 − 𝜖)𝑡 < 𝜏 ≤ 𝑡 and 𝑊𝜏

𝑡 ∈ 𝐵𝑤,𝜂 imply 𝑊𝜏
𝜏 ∈ 𝐵𝑤,4𝜂 , since

‖𝑊𝜏 −𝑤𝜏‖ ≤ ‖𝑊𝜏 −𝑤𝑡‖ + (𝑡 − 𝜏)‖𝑤‖ < 𝜂𝑡 + 𝜖‖𝑤‖𝑡 ≤ 2𝜂𝑡 < 4𝜂𝜏. Hence it follows from (3.1) that

𝜈𝜔,𝑡(𝐵𝑤,𝜂) =
𝑡

∑

𝜏=0
𝐸𝜔

[

1{𝑊𝜏
𝑡 ∈𝐵𝑤,𝜂 , 𝜏∈

}e𝐻𝜔,𝜏

]

𝑃𝑓 𝜏𝜔[𝑆1 > 𝑡 − 𝜏]

≤
𝑡

∑

𝜏=0
1{𝜏≤(1−𝜖)𝑡}𝑍𝜔,𝜏 (0)𝑃𝑓 𝜏𝜔[𝑆1 > 𝑡 − 𝜏] +

𝑡
∑

𝜏=0
1{𝜏>(1−𝜖)𝑡}𝜇𝜔,𝜏 (𝐵𝑤,4𝜂)

≤ 𝑡𝐶e|𝑧(0)|𝑡+2𝑡 sup
𝜏∈N0

{

𝑃𝑓 𝜏𝜔[𝑆1 > 𝜖𝑡]e−𝜏
}

+ 𝑡𝐶e−𝑎𝑡+𝜖|𝑎|𝑡.

aking the logarithm, dividing by 𝑡, letting 𝑡 ↑ ∞, and invoking (3.3), we get lim sup𝑡↑∞
1
𝑡 log 𝜈𝜔,𝑡(𝐵𝑤,𝜂) ≤ −𝑎+ 𝜖|𝑎|. Letting 𝜖 ↓ 0, this

ives inf {lim sup 1 log 𝜈 (𝐵 )} ≤ −𝑎, which proves (3.4) thanks to the arbitrariness of 𝑎. □
19

𝛿>0 𝑡↑∞ 𝑡 𝜔,𝑡 𝑤,𝛿
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3.2. The weak LDP for finite exponential tail constant

The following lemma shows that the family {𝜈𝜔,𝑡}𝑡∈N satisfies the quenched large deviation lower bound for open sets with rate
function 𝐼𝓁 even when 𝓁 > −∞.

Lemma 3.3. Assume that 𝓁 > −∞. Then P-a.e. 𝜔 the family {𝜈𝜔,𝑡}𝑡∈N satisfies the large deviation lower bound with rate function 𝐼𝓁 ,
i.e., lim inf 𝑡↑∞

1
𝑡 log 𝜈𝜔,𝑡(𝐺) ≥ − inf𝑤∈𝐺 𝐼𝓁(𝑤) for all 𝐺 ⊆  open.

Proof of Lemma 3.3. According to (𝑖) of Proposition 2.9, there exists an event 𝛺𝑜 ∈  with P[𝛺𝑜] = 1 such that the bound
lim inf 𝑡↑∞

1
𝑡 log𝜇𝜔,𝑡(𝐵𝑤,𝛿) ≥ −𝐽𝑜(𝑤) = −𝐽 (𝑤) holds for all 𝜔 ∈ 𝛺𝑜, 𝑤 ∈  , and 𝛿 > 0. By the second inequality of (1.5), we can even

uppose that 𝛺𝑜 satisfies lim inf 𝑠↑∞ inf 𝜏∈N0
{ 1
𝑠 log𝑃𝑓 𝜏𝜔[𝑆1 > 𝑠] + 𝜖 𝜏

𝑠 } ≥ 𝓁 for all 𝜔 ∈ 𝛺𝑜 with any number 𝜖 > 0. Pick 𝜔 ∈ 𝛺𝑜. We
verify that

lim inf
𝑡↑∞

1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑤,𝛿) ≥ −𝐼𝓁(𝑤) (3.5)

or all 𝑤 ∈  and 𝛿 > 0, which implies the quenched large deviation lower bound for open sets, as we have seen in the proof of
roposition 2.9.

Fix 𝑤 ∈  and 𝛿 > 0. We will prove that

lim inf
𝑡↑∞

1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑤,𝛿) ≥ − sup

𝜑∈dom 𝑧

{

𝜑(𝑤) − 𝛽𝑧(𝜑) − (1 − 𝛽)𝓁
}

(3.6)

or all 𝛽 ∈ [0, 1], where dom 𝑧 ∶= {𝜑 ∈ ⋆ ∶ 𝑧(𝜑) < +∞} is the effective domain of the proper convex lower semi-continuous
unction 𝑧. This gives (3.5) as follows. The function that maps (𝛽, 𝜑) ∈ [0, 1] × dom 𝑧 to the real number 𝜑(𝑤) − 𝛽𝑧(𝜑) − (1 − 𝛽)𝓁 is
oncave and upper semi-continuous with respect to 𝜑 for each fixed 𝛽 ∈ [0, 1], and is convex and continuous with respect to 𝛽 for

each fixed 𝜑 ∈ dom 𝑧. Due to compactness of the closed interval [0, 1], Sion’s minimax theorem allows us to exchange the infimum
over 𝛽 ∈ [0, 1] and the supremum over 𝜑 ∈ dom 𝑧, to conclude that

𝐼𝓁(𝑤) ∶= sup
𝜑∈⋆

{

𝜑(𝑤) − 𝑧𝓁(𝜑)
}

= sup
𝜑∈dom 𝑧

inf
𝛽∈[0,1]

{

𝜑(𝑤) − 𝛽𝑧(𝜑) − (1 − 𝛽)𝓁
}

= inf
𝛽∈[0,1]

sup
𝜑∈dom 𝑧

{

𝜑(𝑤) − 𝛽𝑧(𝜑) − (1 − 𝛽)𝓁
}

.

In this way, (3.6) demonstrates (3.5) after we take the supremum over 𝛽.
We prove (3.6), considering the case 𝛽 > 0 first. Pick 𝛽 ∈ (0, 1] and denote by 𝜏𝑡 the largest integer less than or equal to 𝛽𝑡. Focus

on the sufficiently large integers 𝑡 satisfying 𝜏𝑡 > 0 and ‖𝑤‖ < 𝛽𝛿𝑡∕2. Then, the condition 𝑊𝜏𝑡
𝜏𝑡

∈ 𝐵𝑤∕𝛽,𝛿∕2 implies 𝑊𝜏𝑡
𝑡 ∈ 𝐵𝑤,𝛿 . Indeed,

observing that 0 ≤ 𝑡− 𝜏𝑡∕𝛽 < 1∕𝛽, if ‖𝑊𝜏𝑡 − 𝜏𝑡𝑤∕𝛽‖ < 𝛿𝜏𝑡∕2, then ‖𝑊𝜏𝑡 − 𝑡𝑤‖ ≤ ‖𝑊𝜏𝑡 − 𝜏𝑡𝑤∕𝛽‖+ (𝑡− 𝜏𝑡∕𝛽)‖𝑤‖ < 𝛿𝜏𝑡∕2 + ‖𝑤‖∕𝛽 < 𝛿𝑡 as
𝑡 ≤ 𝑡 and ‖𝑤‖ < 𝛽𝛿𝑡∕2. Thus, keeping only the term corresponding to 𝜏 = 𝜏𝑡 > 0 in the r.h.s. of (3.1), we obtain

𝜈𝜔,𝑡(𝐵𝑤,𝛿) ≥ 𝐸𝜔

[

1{𝑊𝜏𝑡
𝑡 ∈𝐵𝑤,𝛿 , 𝜏𝑡∈

}e𝐻𝜔,𝜏𝑡

]

𝑃𝑓 𝜏𝑡𝜔
[

𝑆1 > 𝑡 − 𝜏𝑡
]

≥ 𝐸𝜔

[

1{𝑊𝜏𝑡
𝜏𝑡

∈𝐵𝑤∕𝛽,𝛿∕2 , 𝜏𝑡∈
}e𝐻𝜔,𝜏𝑡

]

𝑃𝑓 𝜏𝑡𝜔
[

𝑆1 > 𝑡 − 𝜏𝑡
]

= 𝜇𝜔,𝜏𝑡
(

𝐵𝑤∕𝛽,𝛿∕2
)

𝑃𝑓 𝜏𝑡𝜔
[

𝑆1 > 𝑡 − 𝜏𝑡
]

. (3.7)

ince lim𝑡↑∞ 𝜏𝑡∕𝑡 = 𝛽, we have lim inf 𝑡↑∞
1
𝑡 log𝜇𝜔,𝜏𝑡 (𝐵𝑤∕𝛽,𝛿∕2) ≥ −𝛽𝐽 (𝑤∕𝛽) and

lim inf
𝑡↑∞

1
𝑡
log𝑃𝑓 𝜏𝑡𝜔

[

𝑆1 > 𝑡 − 𝜏𝑡
]

≥ (1 − 𝛽)𝓁.

The latter limit is trivial for 𝛽 = 1 because 𝑃𝜔[𝑆1 > 0] = 1, whereas for 𝛽 < 1 it follows from the fact that, for any 𝜖 > 0,

lim inf
𝑡↑∞

1
𝑡
log𝑃𝑓 𝜏𝑡𝜔

[

𝑆1 > 𝑡 − 𝜏𝑡
]

≥ (1 − 𝛽) lim inf
𝑠↑∞

inf
𝜏∈N0

{

1
𝑠
log𝑃𝑓 𝜏𝜔

[

𝑆1 > 𝑠
]

+ 𝜖 𝜏
𝑠

}

− 𝜖 ≥ (1 − 𝛽)𝓁 − 𝜖.

hese arguments, in combination with (3.7) and the fact that 𝐽 is the Legendre transform of 𝑧, show that

lim inf
𝑡↑∞

1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑤,𝛿) ≥ −𝛽𝐽 (𝑤∕𝛽) + (1 − 𝛽)𝓁 = − sup

𝜑∈⋆

{

𝜑(𝑤) − 𝛽𝑧(𝜑)
}

+ (1 − 𝛽)𝓁 = − sup
𝜑∈dom 𝑧

{

𝜑(𝑤) − 𝛽𝑧(𝜑) − (1 − 𝛽)𝓁
}

,

hich is (3.6) under the hypothesis 𝛽 > 0.
In order to settle the case 𝛽 = 0, we observe that, as 𝑧 is proper convex and lower semi-continuous, there exist a point 𝑢 ∈ 

nd a real number 𝑐 such that 𝑧(𝜑) ≥ 𝜑(𝑢) − 𝑐 for every 𝜑 ∈ ⋆ (see [62], Theorem 2.2.6). For all 𝜖 ∈ (0, 1) such that 𝜖‖𝑢‖ < 𝛿∕2 we
have 𝐵𝑤+𝜖𝑢,𝛿∕2 ⊆ 𝐵𝑤,𝛿 . Thus, the bound (3.6) with 𝜖 in place of 𝛽 and 𝑤 + 𝜖𝑢 in place of 𝑤 gives

lim inf
𝑡↑∞

1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑤,𝛿) ≥ lim inf

𝑡↑∞
1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑤+𝜖𝑢,𝛿∕2)

≥ − sup
𝜑∈dom 𝑧

{

𝜑(𝑤 + 𝜖𝑢) − 𝜖𝑧(𝜑) − (1 − 𝜖)𝓁
}

≥ − sup
𝜑∈dom 𝑧

{

𝜑(𝑤) − 𝓁
}

− 𝜖(𝑐 + 𝓁).
20

From here we obtain (3.6) corresponding to 𝛽 = 0 by letting 𝜖 ↓ 0. □
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In the case 𝓁 > −∞, our derivation of the large deviation upper bound for compact sets requires that ⋆ is separable. In fact,
ue to the difficulty to deal with the measure 𝐸𝜔

[

1{𝑊𝜏
𝑡 ∈ ⋅ , 𝜏∈ }e

𝐻𝜔,𝜏
]

in (3.1) when 𝜏 grows slower than 𝑡, we resort to an estimate
ased on the cumulant generating function. The latter needs that ⋆ is not too large in order to ensure uniformity with respect to
he disorder. The following lemma shows what the separability of ⋆ is needed for.

emma 3.4. If ⋆ is separable, then there exists a countable subset  ⊂ ⋆ such that, for 𝑤 ∈  ,

𝐼𝓁(𝑤) = sup
𝜑∈

{

𝜑(𝑤) − 𝑧𝓁(𝜑)
}

.

roof of Lemma 3.4. By hypothesis, there exists a countable dense subset ⋆ of ⋆. Denote by Q the collection of rational numbers
nd, for 𝜗 ∈ ⋆ and 𝛼 ∈ Q, define

𝛿𝜗,𝛼 ∶= inf
𝜑∈dom 𝑧𝓁

max
{

‖𝜗 − 𝜑‖, |𝛼 − 𝑧𝓁(𝜑)|
}

,

here dom 𝑧𝓁 ∶= {𝜑 ∈ ⋆ ∶ 𝑧𝓁(𝜑) < +∞}. For 𝑛 ∈ N, pick 𝑔𝜗,𝛼,𝑛 ∈ dom 𝑧𝓁 in such a way that max{‖𝜗 − 𝑔𝜗,𝛼,𝑛‖, |𝛼 − 𝑧𝓁(𝑔𝜗,𝛼,𝑛)|} ≤
𝜗,𝛼 +

1
𝑛 . The countable family  ∶= {𝑔𝜗,𝛼,𝑛}𝜗∈⋆ ,𝛼∈Q,𝑛∈N has the following useful property: for any 𝜑 ∈ dom 𝑧𝓁 and 𝜖 > 0 there exists

a 𝑔 ∈  such that

max{‖𝜑 − 𝑔‖, |𝑧𝓁(𝜑) − 𝑧𝓁(𝑔)|} < 3𝜖.

In fact, given 𝜑 ∈ dom 𝑧𝓁 and 𝜖 > 0, there exists a 𝜗 ∈ ⋆ such that ‖𝜑 − 𝜗‖ < 𝜖 and 𝛼 ∈ Q such that |𝑧𝓁(𝜑) − 𝛼| < 𝜖. It follows that
𝜗,𝛼 < 𝜖. Then, for 𝑛 ∈ N satisfying 1

𝑛 < 𝜖, we find

max
{

‖𝜑 − 𝑔𝜗,𝛼,𝑛‖, |𝑧𝓁(𝜑) − 𝑧𝓁(𝑔𝜗,𝛼,𝑛)|
}

≤ max
{

‖𝜑 − 𝜗‖, |(𝑧𝓁(𝜑) − 𝛼)|
}

+ max
{

‖𝜗 − 𝑔𝜗,𝛼,𝑛‖, |𝛼 − 𝑧𝓁(𝑔𝜗,𝛼,𝑛)|
}

≤ max
{

‖𝜑 − 𝜗‖, |(𝑧𝓁(𝜑) − 𝛼)|
}

+ 𝛿𝜗,𝛼 +
1
𝑛
< 3𝜖.

he family  is the desired countable subset of ⋆. Indeed, for 𝑤 ∈  ,

𝐼𝓁(𝑤) = sup
𝜑∈dom 𝑧𝓁

{

𝜑(𝑤) − 𝑧𝓁(𝜑)
}

≤ sup
𝜑∈

{

𝜑(𝑤) − 𝑧𝓁(𝜑)
}

, (3.8)

nd hence 𝐼𝓁(𝑤) = sup𝜑∈{𝜑(𝑤) − 𝑧𝓁(𝜑)}. To prove (3.8), we note that, given 𝑤 ∈  and real numbers 𝑎 ≤ 𝐼𝓁(𝑤) and 𝜖 > 0, there
xists a 𝜑 ∈ dom 𝑧𝓁 such that 𝑎 ≤ 𝜑(𝑤) − 𝑧𝓁(𝜑) + 𝜖. Hence there exists a 𝑔 ∈  such that max{‖𝜑 − 𝑔‖, |𝑧𝓁(𝜑) − 𝑧𝓁(𝑔)|} < 3𝜖, as seen
bove. It follows that

𝑎 ≤ 𝜑(𝑤) − 𝑧𝓁(𝜑) + 𝜖 ≤ 𝑔(𝑤) − 𝑧𝓁(𝑔) + ‖𝜑 − 𝑔‖‖𝑤‖ + |𝑧𝓁(𝜑) − 𝑧𝓁(𝑔)| + 𝜖

≤ 𝑔(𝑤) − 𝑧𝓁(𝑔) + 3𝜖‖𝑤‖ + 4𝜖 ≤ sup
𝜑∈

{

𝜑(𝑤) − 𝑧𝓁(𝜑)
}

+ 3𝜖‖𝑤‖ + 4𝜖.

he arbitrariness of 𝑎 and 𝜖 demonstrates (3.8). □

We are now in a position to deduce the large deviation upper bound for compact sets, obtaining the following proposition, which
s (𝑖𝑖) of Theorem 1.7 for 𝓁 > −∞.

roposition 3.5. Suppose that 𝓁 > −∞ and ⋆ is separable. Then P-a.e. 𝜔 the family {𝜈𝜔,𝑡}𝑡∈N satisfies the weak LDP with rate function
𝓁 .

roof of Proposition 3.5. In view of Lemma 3.3, it remains to verify the quenched large deviation upper bound for compact
ets. Let  ⊂ ⋆ be the countable set in Lemma 3.4. By Lemma 3.1, there exists a set 𝛺𝑜 ∈  with P[𝛺𝑜] = 1 such that
im𝑡↑∞

1
𝑡 log ∫ e𝑡𝑔(𝑣)𝜈𝜔,𝑡(d𝑣) = 𝑧𝓁(𝑔) for all 𝜔 ∈ 𝛺𝑜 and 𝑔 ∈ . Pick 𝜔 ∈ 𝛺𝑜. Below we show that

inf
𝛿>0

{

lim sup
𝑡↑∞

1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑤,𝛿)

}

≤ 𝑧𝓁(𝑔) − 𝑔(𝑤) (3.9)

for all 𝑤 ∈  and 𝑔 ∈ . This gives inf𝛿>0{lim sup𝑡↑∞
1
𝑡 log 𝜈𝜔,𝑡(𝐵𝑤,𝛿)} ≤ −𝐼𝓁(𝑤) for every 𝑤 by Lemma 3.4, which in turn demonstrates

he large deviation upper bound for compact sets as in the proof of Proposition 2.9.
Given 𝑤 ∈  , 𝑔 ∈ , and 𝛿 > 0, the bound 𝑔(𝑣) − 𝑔(𝑤) ≥ −‖𝑔‖‖𝑣 −𝑤‖ ≥ −‖𝑔‖𝛿 for 𝑣 ∈ 𝐵𝑤,𝛿 implies, for 𝑡 ∈ N,

𝜈𝜔,𝑡(𝐵𝑤,𝛿) = ∫𝐵𝑤,𝛿

𝜈𝜔,𝑡(d𝑣) ≤ ∫
e𝑡𝑔(𝑣)−𝑡𝑔(𝑤)+𝑡‖𝑔‖𝛿𝜈𝜔,𝑡(d𝑣).

Taking logarithm, dividing by 𝑡, letting first 𝑡 ↑ ∞ and afterwards 𝛿 ↓ 0, we find (3.9). □

3.3. The full LDP

One of the hypothesis of Corollary 1.8 is that  is finite-dimensional. In particular, this implies that ⋆ is separable, so that
P-a.e. 𝜔 the family of measures {𝜈𝜔,𝑡}𝑡∈N satisfies the weak LDP with rate function 𝐼𝓁 when either 𝓁 = −∞ or 𝓁 > −∞. Thus, similarly
21

to Corollary 1.5, the full LDP stated by Corollary 1.8 is a consequence of the following quenched exponential tightness.
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Lemma 3.6. Under the hypotheses of Corollary 1.5, P-a.e. 𝜔 the family of measures {𝜈𝜔,𝑡}𝑡∈N is exponentially tight.

roof of Lemma 3.6. The proof follows the proof of Lemma 2.12. Let 𝜉 > 0 be as in Corollary 1.5. For any number 𝜌 > 0 and 𝑡 ∈ N,
a Chernoff-type bound, together with the identity in (3.1), gives

𝜈𝜔,𝑡(𝐵𝑐
0,𝜌) =

𝑡
∑

𝜏=0
𝐸𝜔

[

1{𝑊𝜏
𝑡 ∈𝐵𝑐

0,𝜌 , 𝜏∈
}e𝐻𝜔,𝜏

]

𝑃𝑓 𝜏𝜔[𝑆1 > 𝑡 − 𝜏]

≤
𝑡

∑

𝜏=0
𝐸𝜔

[

1{
∑𝑁𝜏

𝑖=1 ‖𝑋𝑖‖≥𝜌𝑡, 𝜏∈ }e
𝐻𝜔,𝜏

]

≤ e−𝜉𝜌𝑡
𝑡

∑

𝜏=0
𝐸𝜔

[

1{𝜏∈ }e
𝜉
∑𝑁𝜏

𝑖=1 ‖𝑋𝑖‖+𝐻𝜔,𝜏
]

. (3.10)

n the other hand, with 𝑀 as in Corollary 1.5, (2.19) implies
𝑡

∑

𝜏=0
𝐸𝜔

[

1{𝜏∈ }e
𝜉
∑𝑁𝜏

𝑖=1 ‖𝑋𝑖‖
]

≤ e𝑀𝑡+
∑𝑡−1

𝜏=0 sup𝑠∈N max
{

0,log ∫ e𝜉‖𝑥‖−𝑀𝑠𝜆𝑓𝜏𝜔(d𝑥|𝑠)
} 𝑡
∑

𝜏=0
𝑍𝜔,𝜏 (0). (3.11)

hus, combining (3.10) with (3.11), taking the logarithm, dividing by 𝑡, and letting 𝑡 ↑ ∞, we find

lim sup
𝑡↑∞

1
𝑡
log 𝜈𝜔,𝑡(𝐵𝑐

0,𝜌) ≤ 𝑀 − 𝜉𝜌 + max{0, 𝑧𝑜(0)} + E
[

sup
𝑠∈N

max
{

0, log∫
e𝜉‖𝑥‖−𝑀𝑠𝜆⋅(d𝑥|𝑠)

}]

P-a.e. 𝜔,

hanks to Birkhoff’s ergodic theorem and Corollary 2.4. This bound entails exponential tightness as in Lemma 2.12. □
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