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Abstract

In this paper we present a new general method for simulating integrals of stochastic processes. We

focus on the nontrivial case of time integrals conditional on the state variable levels at the endpoints

of a time interval, based on a moment-based probability distribution construction. We present

different classes of models with important usages in finance, medicine, epidemiology, climatology,

bioeconomics and physics. We highlight the benefits of our method and benchmark its performance

against existing schemes.

1. Introduction

Time integrals of stochastic processes and their simulation feature in numerous research prob-

lems in finance, medicine, epidemiology, technology, engineering, bioeconomics and physics; the

cases mentioned next are certainly non-exhaustive. In financial engineering, time integrals appear

in stochastic volatility models, commodity price models (see e-companion Section EC.9), Asian op-

tions, volatility options and interest rate derivatives. In turbulent diffusion modelling and related

phenomena, the position of a fluid particle at a certain time is given by the integrated velocity

(e.g., see Obukhov, 1959). Sums of random variables arise in wireless communications and re-

lated areas (see Nadarajah, 2008), portfolio credit risk applications such as portfolio loss process

modelling (see Giesecke et al., 2011 and Dassios and Zhao, 2017), but also specialized areas of

biomedical engineering involving signal averaging. Within the family of sigmoidal growth models,

the stochastic Verhulst population model involves a stochastic integral in its explicit solution that

requires accurate simulation for generating probabilistic forecasts in fields including geoscience,

oncology to describe tumor growth (e.g., see Laird, 1964, and later research) or epidemic dynamics

(e.g., see Shen, 2020, Wu et al., 2020). A similar simulation challenge appears in the randomized

Schaefer model, which describes the growth of populations living in a randomly varying environ-

ment and being harvested, but also in the Ginzburg–Landau model used originally to describe

phase transition for superconductivity, while over the years its use has broadened towards various

directions.

A long-lasting concern in the cases described above remains the efficient simulation of stochas-

tic time integrals or the even more involved, as will become clearer later, conditional stochastic

integrals. Our analysis encompasses stochastic volatility models, such as the Heston and dou-

ble Heston, stochastic alpha-beta-rho (SABR), Ornstein–Uhlenbeck stochastic volatility (OU-SV),

3/2 and 4/2, but also linear models with multiplicative noise and nonlinear reducible models, such
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as the stochastic Verhulst, Gordon–Schaefer and Ginzburg–Landau. We extend our application

to certain model variants with jumps, such as Bates, Duffie–Pan–Singleton (DPS), time-changed

Lévy and self-exciting point processes. The aim of this paper is to unify simulation in a practicable

manner that is fast and accurate.

For years, discretization of stochastic differential equations (SDEs) features in the literature

(see, for example, Chen et al., 2012 for a review) as a possible way to go round the simulation of

integrated processes, inevitably yielding a bias, which can be hard to quantify accurately, besides

rendering the procedure particularly tedious. To circumvent this, attempts have been made to

simulate exactly or, perhaps more precisely phrased, recover the O(s−1/2) convergence rate of

an unbiased Monte Carlo estimation with a total computational budget s, such as Broadie and

Kaya (2006), Cai et al. (2017), Kang et al. (2017) and Li and Wu (2019), for different models.

These approaches have proved to be able to produce accurate results. At their core, they rely

on simulating an integrated process over a time interval conditional on its level at the interval

endpoints. Although accurate, a serious demerit of them, as pointed out in the seminal work of

Broadie and Kaya (2006), is the implicit need to recover the unknown distribution function of the

conditional integrated process using numerical inversion of the associated Laplace transform. This

can become a heavy load and almost impracticable when generating entire sample trajectories,

aside from introducing potential error, and thereby bias, and computational burden increases

during numerical integration. Luckily, recent contributions, for example, by Cai et al. (2014a)

have endowed us with computable error bounds of the Laplace transform inversions guaranteeing

their accuracy; nevertheless, computational speed remains an issue in view also of its trade-off with

accuracy, especially when integrating into a Monte Carlo simulation application. This still hinders

the way between the method and the user, leaving space for further research.

Our contribution is summarized as follows. We present a unified methodological framework for

modelling (conditional) integrated processes. To this end, we first employ an adaptively modified

moment generating function algorithm from Choudhury and Lucantoni (1996) to compute fast the

moments of the conditional integrated process. Thereby, we propose an accurate Pearson curve fit

to approximate its probability distribution. This allows us to easily generate random samples from

it, bypassing at any stage computational intensive Laplace transform inversion or differentiation

for the computation of the moments. We also study the error resulting from this approximation

and the bias induced in simulation estimators.

The system of Pearson curves is simple and fast in family selection for varying levels of skewness

and kurtosis, in parameter estimation and simulation. As we explain, we approximate the unknown

distribution of the time integral, which for each different model is moment-determinate, i.e., it is

uniquely determined by its moments, by a bona fide distribution with a non-negative density.

Although this is based on a first four-moment fit, we do show that the differences between the

higher-order moments of a four-moment Pearson curve fit and the true ones are immaterial. Hence,

the resulting simulation methodology is convergent and very accurate. Another notable merit of it

is that the size ∆t of the time interval does not affect the accuracy, as it does not involve any SDE

discretization. Therefore, it serves as an ideal substitute of approximations that require a large

number of time steps (small ∆t) to potentially secure enough accuracy, when actually a single time

step of arbitrary size suffices and entire sample trajectories and resulting undesired time increases

are unnecessary. It can still be used when access to sample trajectories is intended, offering a speed

up over numerical integration- or expansion-based methods.
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Our framework makes it possible to investigate important applications in different areas. More

specifically, due to increased problem dimensionality, Monte Carlo simulation remains the method

of choice for computing expected values of nonlinear functions of driving processes on several occa-

sions, including cases of path-dependence, advanced stochastic volatility models and self-exciting

point processes, where Fourier or Laplace-transform solutions are inexistent or slow to compute.

Therefore, we start by considering the evaluation of European plain vanilla options and extend

to further refinements of the proposed method applicable to path-dependent contracts, such as

barriers and lookbacks. In the second main part of the paper, we explore applications in, typically,

non-finance models. We cast a spotlight on the stochastic logistic model and present, for the sake

of exemplification, a simulation case study of tumor growth having first calibrated the model to

growth data of multicellular tumor spheroids. We also revisit the Ginzburg–Landau model and its

simulation and demonstrate our method’s capability under stressed volatility conditions.

The remainder of the paper is structured as follows. In Section 2 we present the Pearson curve

fitting procedure, whereas in Section 3 we study its convergence to the true distribution with

increasing shared moments. In Section 4, we introduce the various financial models and present

various properties which will serve as the building block for our simulation scheme. In Section 5

we portray our random number generation mechanism using our moment-based probability dis-

tribution build-up, whereas in Section 6 we study the bias introduced in simulation estimators.

Section 7 presents our numerical study focused on financial applications, whereas in Sections 8 and

9 we extend to other models and unfold the applicability of our simulation method via practical

examples in areas such as oncology and bioeconomics. Section 10 concludes the paper. Supple-

mentary results and various additional applications (e.g., early-exercisable contracts) are deferred

to the e-companion.

2. Moment-based approximations to probability distributions: the case of Pearson

curves

Consider a set Ω equipped with a σ-algebra F . The random variable Ψ on Ω has cumulative

distribution function G and moments µn := µn (G) =
∫
R x

ndG (x). As said in the introduction,

in this paper we focus primarily on Ψ representing (conditional) stochastic time integrals (see

later Sections 4, 8 and 9). This is certainly not a restriction and, in fact, in Section EC.8 of

the e-companion we present an additional popular application to the Carr–Geman–Madan–Yor

(CGMY) model exemplifying this.

As part of this research, we have studied algorithms based on scale mixtures (see Hörmann

et al., 2004, p. 325), Cornish–Fisher series expansion (see Abramowitz and Stegun, 1968, p. 935),

moment-based approximations using mixtures (Lindsay et al., 2000), and Johnson and Pearson

distribution fits by moments (see Devroye, 1986). Among these methods, unreported numerical

results have highlighted the superior performance of the Pearson system. Indeed, albeit very fast,

algorithms related to scale mixtures and series techniques have been quite inaccurate. The Gram–

Charlier series might exhibit unusual behaviour, but also the Cornish–Fisher expansion may diverge

as this is the Legendre inversion of the Edgeworth expansion of a distribution, which typically

diverges when including many moments (see Fusai and Tagliani, 2002). The Pearson system also

takes precedence over the Johnson family of distributions. This is attributed to Pearson family’s

simpler and faster procedure for member selection and parameter estimation for given moments,

as opposed to Johnson which is more complicated based on Hill’s algorithm (see Hill et al., 1976);
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sometimes the latter even fails to converge for certain parameter settings (see Simonato, 2011).

Hence, we adhere to Pearson’s system of distributions, which we will generally denote by G̃, as our

choice for implementing moment matching and eventually drawing random numbers from.

Let g̃ (x) be the density function associated with G̃ satisfying the differential equation

dg̃ (x)

dx
= − c0 + x

c1 + c2x+ c3x2
g̃ (x) . (1)

Solving equation (1) yields well-defined density functions with general form

g̃ (x) = C
(
c1 + c2x+ c3x

2
)− 1

2c3 exp


(c2 − 2c0c3) arctan

(
c2+2c3x√
4c1c3−c22

)
c3

√
4c1c3 − c2

2

 , (2)

where C is the normalizing constant and {c0, c1, c2, c3} the parameters that control the shape of the

distribution. These are estimated in the distribution fitting using the first four finite raw moments

{µ1, µ2, µ3, µ4} and are given by

c0 = c2 :=

√
βγ (ε+ 3)

10ε− 12γ − 18
, c1 :=

(4ε− 3γ)β

10ε− 12γ − 18
, c3 :=

2ε− 3γ − 6

10ε− 12γ − 18
, (3)

where

β := µ2 − µ2
1, γ :=

(
µ3 − 3µ1µ2 + 2µ3

1

)2(
µ2 − µ2

1

)3 , ε :=
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1(

µ2 − µ2
1

)2
are, respectively, the variance, squared skewness and kurtosis of the Pearson random variable. It

is worth noting that, although numerical methods exist making possible the Pearson system to fit

more than four moments, they inevitably impact the computational effort (see Rose and Smith,

2002, Chapter 5) therefore we do not consider them here. In Section 7, we study the closeness of

the higher-order moments of a four-moment Pearson curve fit to the true ones and favourably show

that, in practice, the differences remain very small also under challenging model parameterizations.

Given knowledge of the first four integer moments, we classify the Pearson distribution family types

according to Johnson et al. (1994) being standard in the literature. We make a selection based on

the η-criterion proposed by Elderton and Johnson (1969): given
√
γ and ε, we compute

η :=
γ (ε+ 3)2

4 (4ε− 3γ) (2ε− 3γ − 6)
.

In particular, we get from it the main types I (η < 0), IV (0 < η < 1) and VI (η > 1); and the

transition types, i.e., normal (η = 0, ε = 3), II (η = 0, ε < 3), III (η = ±∞), V (η = 1) and VII

(η = 0, ε > 3).

3. Proximity of distributions with shared moments

A natural question that arises once we obtain the Pearson fit G̃ is how well it approximates

the true distribution G with common moments. Our task next is to consider convergence under

various notions of distance and provide ways to estimate the closeness in different moment-based

metrics.
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3.1. Lévy distance

Definition 1. In the space of distribution functions of random variables, the Lévy distance (Lévy,

1925) between any pair of elements G (x) and G̃ (x) is defined as

L
(
G, G̃

)
= inf

{
ε : G (x− ε)− ε ≤ G̃ (x) ≤ G (x+ ε) + ε for all x

}
.

To measure the distance between the two distribution functions in terms of their characteristic

functions, ϕG (u) and ϕG̃ (u), Zolotarev’s metric (Zolotarev and Senatov, 1976) can be employed

L
(
G, G̃

)
= min

T>0
max

{
1

2
max
|u|≤T

∣∣ϕG (u)− ϕG̃ (u)
∣∣ , 1

T

}
.

The Lévy distance and Zolotarev’s metric are equivalent in the sense that they induce the same

topology. We quote also the following result from Zolotarev (1970). For any T > e, the Lévy

distance satisfies the inequality

L
(
G, G̃

)
≤ 1

π

∫ T
0

∣∣∣∣ϕG (u)− ϕG̃ (u)

u

∣∣∣∣ du+
2e ln T
T

. (4)

This useful result allows us to measure the closeness of our Pearson curve fit G̃ and the true distri-

bution G via their characteristic functions. The latter is available from the literature for different

models of interest (see later), whereas in the next result we focus on the Pearson characteristic

function.

Proposition 1. Let ϕG̃ (u) =
∫
R e

iuxg̃ (x) dx be the characteristic function of G̃, where i :=
√
−1.

This then satisfies the system of ordinary differential equations{
ϕ′
G̃

(u) = ϑG̃ (u)

ϑ′
G̃

(u) = uc2+i(1−2c3)
iuc3

ϑG̃ (u) + c1
c3
ϕG̃ (u)

, (5)

with set of initial conditions
(
ϕG̃ (0) , ϑG̃ (0)

)
= (1, iµ1).

Proof. See e-companion Section EC.1.

An analytic solution of (5) can be obtained easily with the aid of a software system that allows

symbolic computations, such as Mathematica, which, in the interest of space, we omit here.

Next, we present different metrics which give a gauge of the closeness of the target and approx-

imating distributions based on a certain number of moments. Let the distribution functions G (x)

and G̃ (x) satisfy

µn (G) = µn

(
G̃
)

= µn, n = 0, 1, . . . , 2m (m ≥ 2). (6)

In the first instance, in our case of the four-moment fit, (6) holds for m = 2. From Klebanov

and Mkrtchyan (1986), the estimate of closeness in the L-metric can be expressed in terms of the

truncated Carleman’s series βk,m :=
∑m

n=k+1 (µ2n/µ2k)
−1/(2(n−k)). Since divergence of Carleman’s

series is a sufficient condition for the moment problem to be determinate (Akhiezer, 1965), it is

natural to seek an estimate of closeness in terms of β−1 which gets smaller for larger m. Based on

this and Zolotarev’s inequality (4), we have a further inequality.

Theorem 2 (Klebanov and Mkrtchyan, 1986). Let G and G̃ be two distribution functions for
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which βm ≡ β0,m holds. Then, there exists a constant Cµ2 dependent on µ2 such that

L
(
G, G̃

)
≤ Cµ2 ln (1 + βm−1)

β
1/4
m−1

. (7)

A sharpened version of inequality (7) and a variant when additional moments of the two

distributions are not coinciding but are only fairly close can be found in Section EC.2 of the

e-companion.

3.2. Uniform distance

In addition to the Lévy distance, we consider here the topology given by the uniform metric

(Kolmogorov, 1933, Zolotarev, 1983) between two distributions G and G̃,

ρ
(
G, G̃

)
= sup

x

∣∣∣G (x)− G̃ (x)
∣∣∣ .

The Lévy and uniform metrics are linked as follows.

Lemma 3 (Linnik and Ostrovskĭı, 1977). For all distribution functions G and G̃,

L
(
G, G̃

)
≤ ρ

(
G, G̃

)
≤ (1 + %)L

(
G, G̃

)
, (8)

where % = supx G̃
′ (x) if G̃ is absolutely continuous.

Lemma 3 applies in the Pearson case upon existence of density g̃ (2) which implies absolute

continuity. Combining (7) and (8) gives a bound to the uniform distance between G and G̃. Related

to this distance is also Esseen’s inequality recorded in Section EC.2 of the e-companion. Next, we

present a classical bounding result due to Akhiezer (1965, Corollary 2.5.4), which is revisited by

Lindsay and Basak (2000, Theorems 1, 2).

Theorem 4 (Lindsay and Basak, 2000). Let any two arbitrary distributions G (x) and G̃ (x) satisfy

(6). Then, for all the values of x,∣∣∣G (x)− G̃ (x)
∣∣∣ ≤ {P ′m (x)W−1

m Pm (x)
}−1

=: $m (x) , (9)

where Pm (x) :=
(
1, x, x2, . . . , xm

)′
and Wm := ‖µi+j‖mi,j=0 is a Hankel symmetric matrix defined

by the first 2m moments.

Bound (9) goes to 0 at the rate x−2m as x → ∞ giving relatively sharp tail information. An

improvement to (9) is due to Khamis (1954) who introduces a constant non-negative multiplier

that is smaller than the unity and is given by 1 + min
{

l.u.bc≤x≤d
−G′(x)

G̃′(x)
, l.u.bc≤x≤d

−G̃′(x)
G′(x)

}
if it

exists.

All the above metrics between probability measures can be verified in our case of the Pearson

distribution with some shared moments and admit practical bounding techniques for the approxi-

mation error.

3.3. An entropy bound

In problems where the key question is the choice of an approximating distribution, the use of

the maximum entropy principle is also popular. Assuming we have some known moments, this
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principle suggests to select, among the distributions consistent with such partial information, the

one with maximum entropy, that is, the most uncertain.

For a generic continuous distribution functionH with supportD and associated density function

h (x), we define the differential entropy H [h] = −
∫
D h (x) lnh (x) dx. Also, in addition to our

original approximating Pearson distribution function G̃ with associated density function g̃, we

consider the entropy-maximizing distribution Ĝ with density function

ĝ(x) := exp

(
−

m∑
n=0

λnx
n

)
, (10)

where {λn} are the Lagrange multipliers (Kapur and Kesavan, 1992). This is obtained by maxi-

mizing the entropy constrained by moments. The resulting distribution Ĝ shares the same first m

moments with the target true distribution G with density g.

Our aim is to derive an entropy bound to the absolute difference of each of H ∈
{
Ĝ, G̃

}
with respect to the true G. To this end, we consider two measures of difference between density

functions, that is, the divergence and variation measures

I [g, h] :=

∫
D
g (x) ln

g (x)

h (x)
dx and V [g, h] :=

∫
D
|h (x)− g (x)| dx,

respectively. Next, we present a lower bound for the divergence measure, although more compli-

cated ones exist in the literature.

Lemma 5 (Kullback, 1967). We have that

I ≥ V
2

2
+
V4

36
. (11)

Based on the above, we can restate the uniform metric as follows.

Theorem 6. For the distributions G and H ∈
{
Ĝ, G̃

}
,

|H (x)−G (x)| ≤ 3

√
−1 +

√
1 +

4I [g, h]

9
. (12)

In addition, I [g, ĝ] =
∑m

n=0 λnµn (G)−H [g].

Proof. Inequality (12) follows from |H (x)−G (x)| ≤ V [g, h] and by solving (11).

In addition, for H ≡ Ĝ, we have

I [g, ĝ] =

∫
D
g (x) ln

g (x)

ĝ (x)
dx = −H [g]−

∫
D
g (x) ln ĝ (x) dx = −H [g] +

m∑
n=0

λn

∫
D
xnĝ (x) dx,

where the third equality is due to (10) and from which the result follows.

In this section, we have established some estimates of closeness of probability laws, which we

will revisit later in Sections 6 and 7. We move now to our first application of the Pearson curve

approximation and resulting simulation scheme to stochastic volatility models.
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4. Stochastic volatility models

Let (Ω,F , Q, {Ft}) be a filtered probability space where the filtration satisfies the usual con-

ditions with F0 trivial. This filtered probability space supports all the processes we encounter in

the sequel and Q denotes the risk neutral probability measure. We begin with the general class of

affine bivariate stochastic volatility models.

4.1. Bivariate affine models

The Heston model (Heston, 1993) is a classical member of the class of affine stochastic volatility

models (Duffie et al., 2000, Duffie et al., 2003):

dS(t) = rS(t)dt+ σ(t)S(t)(ρdW2(t) +
√

1− ρ2dW1(t)), (13)

dσ2(t) = k(θ − σ2(t))dt+ vσ(t)dW2(t), (14)

where W1 and W2 are two independent standard Brownian motions; r is the continuously com-

pounded risk-free interest rate. (S(t), t ≥ 0) denotes the asset price process. (σ(t), t ≥ 0) is the

instantaneous variance process described by a Cox et al. (1985) (CIR) square-root diffusion with

constant parameters θ, k, v and instantaneous correlation ρ ∈ [−1, 1] between the two processes.

If the Feller condition, 2kθ ≥ v2, is satisfied, the zero boundary is unattainable by process (14);

otherwise, it is attracting and attainable. At the zero boundary though, the process is immediately

reflected into the positive domain. The variance transition is given by

σ2(t)
(law)
=

v2(1− e−k(t−u))

4k
χ′2d (λ) , (15)

where χ′2d (λ) is a noncentral chi-squared random variable with d := 4θk/v2 degrees of freedom and

noncentrality parameter

λ :=
4ke−k(t−u)σ2(u)

v2(1− e−k(t−u))
.

By substituting (14) in (13), we get on the log-scale that

lnS(t) = lnS(u) + r(t− u)− 1

2

∫ t

u
σ2(s)ds

+
ρ

v

(
σ2(t)− σ2(u)− kθ(t− u) + k

∫ t

u
σ2(s)ds

)
+ Ŵ1

((
1− ρ2

) ∫ t

u
σ2(s)ds

)
,

where Ŵ1 is a standard Brownian motion independent of
∫ t
u σ

2(s)ds. Therefore, Ŵ1

((
1− ρ2

) ∫ t
u σ

2(s)ds
)

is an Ocone martingale, is process symmetric (see Rheinländer and Schmutz, 2013) and condition-

ally strong Markov (see Karatzas and Shreve, 1991). Conditionally on σ2(t) and
∫ t
u σ

2(s)ds, we

then have that (
lnS(t)

∣∣∣ lnS(u), σ2(u), σ2(t),

∫ t

u
σ2(s)ds

)
∼ N (mu,t, s

2
u,t),

where

mu,t := lnS(u) + r(t− u)− 1

2

∫ t

u
σ2(s)ds+

ρ

v

(
σ2(t)− σ2(u)− kθ(t− u) + k

∫ t

u
σ2(s)ds

)
,

s2
u,t := (1− ρ2)

∫ t

u
σ2(s)ds.
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Extended model constructions with independent jumps in the asset price process (Bates, 1996),

contemporaneous asset price and variance jumps of correlated magnitudes (Duffie et al., 2000) and

time-changed Lévy models (Carr et al., 2003) are well known, hence, in the interest of space, we

omit their details here and defer to Section 5.3 some more notes on their simulation.

4.2. SABR

In this model, proposed by Hagan et al. (2002), the forward asset price dynamics follows

a constant elasticity of variance (CEV) diffusion process with volatility evolving according to a

driftless geometric Brownian motion:

dS(t) = σ(t)Sβ(t)
(
ρdW2(t) +

√
1− ρ2dW1(t)

)
,

dσ(t) = vσ(t)dW2(t),

where β ∈ [0, 1] is constant. In this case, we straightforwardly have that

lnσ(t) ∼ N
(

lnσ(u)− 1

2
v2(t− u), v2(t− u)

)
.

Also, conditionally on
(
σ2(t),

∫ t
u σ

2(s)ds
)

, we distinguish among several cases of describing the

distribution of lnS. For β = 1,(
lnS(t)

∣∣∣ lnS(u), σ(u), σ2(t),

∫ t

u
σ2(s)ds

)
∼ N (mu,t, s

2
u,t),

where

mu,t := lnS(u)− 1

2

∫ t

u
σ2(s)ds+

ρ

v
(σ(t)− σ(u)), s2

u,t := (1− ρ2)

∫ t

u
σ2(s)ds.

For β ∈ [0, 1), ρ = 0 and (S(t), t ≥ 0) with an absorbing boundary at 0 (Islah, 2009, Cai et al.,

2017),

P

(
S(t) = 0

∣∣∣∣σ(u), σ(t),

∫ t

u
σ2(s)ds, S(u)

)
= 1−Qχ2

(
A0;

1

1− β

)
,

P

(
S(t) ≤ y

∣∣∣∣σ(u), σ(t),

∫ t

u
σ2(s)ds, S(u)

)
= 1−Qχ′2

(
A0;

1

1− β
,C0(y)

)
for any y > 0, where

A0 :=

(∫ t

u
σ2(s)ds

)−1(
S(u)1−β

1− β

)2

, C0(y) :=

(∫ t

u
σ2(s)ds

)−1(
y1−β

1− β

)2

,

Qχ2(·; d) and Qχ′2(·; d, λ) are, respectively, the chi-squared and noncentral chi-squared cumulative

distribution functions. Finally, for β ∈ [0, 1), ρ 6= 0 and (S(t), t ≥ 0) with an absorbing boundary
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at 0,

P

(
S(t) = 0

∣∣∣∣σ(u), σ(t),

∫ t

u
σ2(s)ds, S(u)

)
≈ 1−Qχ2

(
A; 1 +

β

(1− β)(1− ρ2)

)
,

P

(
S(t) ≤ y

∣∣∣∣σ(u), σ(t),

∫ t

u
σ2(s)ds, S(u)

)
≈ 1−Qχ′2

(
A; 1 +

β

(1− β)(1− ρ2)
, C(y)

)
for y > 0, where

A :=

(
S(u)1−β

1−β + ρ
v (σ(t)− σ(u))

)2

(1− ρ2)
∫ t
u σ

2(s)ds
, C(y) :=

(
y1−β

1−β

)2

(1− ρ2)
∫ t
u σ

2(s)ds
.

4.3. Ornstein–Uhlenbeck driven stochastic volatility

This model started becoming known since the early works of Scott (1987) and Stein and Stein

(1991). The original assumption of zero correlation between asset price and volatility was relaxed

later by Schöbel and Zhu (1999). More specifically, the volatility process σ(t) is represented by a

Gaussian OU model:

dS(t) = rS(t)dt+ σ(t)S(t)
(
ρdW2(t) +

√
1− ρ2dW1(t)

)
,

dσ(t) = k(θ − σ(t))dt+ vdW2(t).

In this case, we have (e.g., see Li and Wu, 2019) that(
σ(t),

∫ t

u
σ(s)ds

)
∼ N2

(
µ
u,t
,Σu,t

)
,

where N2 is a bivariate normal distribution with mean vector and covariance matrix

µ
u,t

:=

(
(σ(u)− θ)(1− ζu,t) + θ

θ(t− u) +
(σ(u)−θ)ζu,t

k

)
and Σu,t :=

v2ζu,t(2−ζu,t)
2k

v2ζ2
u,t

2k2

v2ζ2
u,t

2k2

−v2ζ2
u,t+2kv2

(
t−u− ζu,t

k

)2

2k3

 ,

respectively, for ζu,t := 1− exp (−k (u− t)). Then,(
lnS(t)

∣∣∣ lnS(u), σ(u),

∫ t

u
σ(s)ds,

∫ t

u
σ2(s)ds

)
∼ N (mu,t, s

2
u,t),

with

mu,t := lnS(u) +
(
r − ρv

2

)
(t− u) +

ρ

2v
(σ2(t)− σ2(u))− ρkθ

v

∫ t

u
σ(s)ds+

(
ρk

v
− 1

2

)∫ t

u
σ2(s)ds,

s2
u,t := (1− ρ2)

∫ t

u
σ2(s)ds.
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4.4. Double Heston model

Aiming to improve the empirical performance of the Heston model, Christoffersen et al. (2009)

proposed the multivariate extension

dS(t) = rS(t)dt+

2∑
j=1

σj(t)S(t)
(
ρjdWj+2(t) +

√
1− ρ2

jdWj(t)
)
,

dσ2
j (t) = kj(θj − σ2

j (t))dt+ vjσj(t)dWj+2(t), j = 1, 2,

where the standard Brownian motions {Wj}4j=1 are mutually independent. Similarly to the original

Heston model, we have that

σ2
j (t)

(law)
=

v2
j (1− e−kj(t−u))

4kj
χ′2dj (λj)

and (
lnS(t)

∣∣∣ lnS(u), {σ2
j (t)}2j=1,

{∫ t

u
σ2
j (s)ds

}2

j=1

)
∼ N (mu,t, s

2
u,t),

where

mu,t := lnS(u)+r(t−u)+

2∑
j=1

(
ρj

∫ t

u
σj(s)dWj+2(s)− 1

2

∫ t

u
σ2
j (s)ds

)
, s2

u,t :=
2∑
j=1

(1−ρ2
j )

∫ t

u
σ2
j (s)ds.

4.5. 4/2 and 3/2 models

Finally, Grasselli (2017) introduced another generalization of the Heston model, the so-called

4/2 stochastic volatility model, where

dS(t) = rS(t)dt+ S(t)

(
ασ(t) +

β

σ(t)

)
(ρdW2(t) +

√
1− ρ2dW1(t)),

dσ2(t) = k(θ − σ2(t))dt+ vσ(t)dW2(t).

In this case, (
lnS(t)

∣∣∣ lnS(u), σ2(u), σ2(t),

∫ t

u
σ2(s)ds,

∫ t

u

ds

σ2(s)

)
∼ N (mu,t, s

2
u,t),

where

mu,t := lnS(u) +

(
r − αβ − αρkθ

v
+
βρk

v

)
(t− u) +

αρ

v

(
σ2(t)− σ2(u)

)
+
βρ

v
ln
σ2(t)

σ2(u)

+

(
αρk

v
− α2

2

)∫ t

u
σ2(s)ds+

[
βρ

v

(
v2

2
− kθ

)
− β2

2

] ∫ t

u

ds

σ2(s)
,

s2
u,t := (1− ρ2)

(
α2

∫ t

u
σ2(s)ds+ β2

∫ t

u

ds

σ2(s)
+ 2αβ(t− u)

)
.

This model reduces to the original Heston when β = 0 and α = 1. Instead, when α = 0, the model

coincides with the 3/2 model which was proposed independently by Heston (1997) and Platen

(1997).
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5. Moment-based random number generator

Key quantity in the models presented in the previous section is the conditional time integral

of a function of the variance. To highlight this commonality across the different models, we will

denote it by Ψ(u, t) and the relevant conditioning arguments by Φ(u, t). Their exact forms for the

models of Section 4 are presented in Table 1.

[Insert Table 1]

The simulation of the models can then be summarized as follows:

1. Simulate (Φ(u, t)|σ(u))

2. Simulate (Ψ(u, t)|σ(u),Φ(u, t))

3. Simulate (lnS(t)| lnS(u), σ(u),Φ(u, t),Ψ(u, t)).

Steps 1 and 3 are trivial as we have seen that the conditional distributions are known; what

remains a challenge is the generation of conditional samples from Ψ(u, t) in step 2. (The case

of the double Heston model is a mere extension of the original Heston by independence of the

variance processes.) Hitherto in the literature, exact simulation of the conditional Ψ(u, t) relies

on numerical inversion of its Laplace transform L(a) := E [exp (−aΨ(u, t)) |Φ(u, t)] (refer to the

e-companion Section EC.3 for the various models), which is nevertheless the hardest and most time-

consuming step of the whole simulation scheme. For this reason, typical exact simulation schemes

are very slow when used to simulate entire trajectories due to multiple numerical inversion of the

conditional Laplace transform of Ψ(u, t) at each time u. For ease of notation when referring to the

conditional distribution of Ψ(u, t), we focus hereafter on the condition on Φ(u, t), which is the key

feature in our problem, with the rest of the information up to time u incorporated.

5.1. Random number generation based on fitted Pearson curves

We aim to circumvent the above stumbling block by proposing a new approach to simulating

(Ψ(u, t)|Φ(u, t)) relying on fitting a Pearson curve to the corresponding theoretical distribution

introduced in Section 2. A major advantage of this, as we will ascertain in our numerical study

in Section 7, is that it gives excellent results for different models and parameter sets. This is

explained, as we have shown in Section 3, by convergence of the approximating distribution under

various notions of distance. In addition, whilst we are exactly fitting only four moments, in practice

higher moments of the two distributions are very close, as we will show in Section 7.1, resulting in

even sharpened bounds, hence high precision. This is because the moment problem is determinate,

i.e., the distribution of (Ψ(u, t)|Φ(u, t)) is uniquely determined by the sequence of its moments. A

criterion for this is the existence of the moment generating function for all a ∈ (−c, c), where c > 0

(see Stoyanov, 2013). From Section EC.3 of the e-companion, we have, from (EC.4) for Heston,

that a ≥ −k2/2v2; from (EC.5) for SABR, a ≥ −(σ(t) − σ(u))2/2v2; from (EC.6) for OU-SV,

a ≥ −k2/2v2; and for 4/2 from (EC.7), a ≥ −k2/2v2 and b ≥ −(2θk − v2)2/8v2.

Once the Pearson curve type is determined, we can draw random numbers from it. First, we

generate random numbers Ŷ from the selected standardized family with zero mean and unitary

variance, based on the procedure summarized in Section EC.4 of the e-companion (see Johnson
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et al., 1994 for more details). Then, we rescale and shift using the true mean, µ1, and standard

deviation, β1/2, to obtain

Y := µ1 + β1/2Ŷ (16)

corresponding to a random sample from (Ψ(u, t)|Φ(u, t)).

5.2. Computation of moments

Associated with our moment-based technique is the efficient computation of the integer mo-

ments. The n-th conditional moment of Ψ(u, t) is traditionally given by

µn = (−1)n
∂n

∂an
L(a)

∣∣∣∣
a=0

. (17)

However, computing the moments from (17) may not be practicable, especially for high-order

moments, as the Laplace transform may involve special functions as in the majority of the cases

examined in this paper. For example, consider the relevant Laplace transform (EC.4) for the

Heston model. Evaluating the first four moments of Ψ(u, t) from (17), using, e.g., the symbolic

toolbox of Mathematica, requires 307 Bessel function evaluations, which is highly computational

intensive but also endangers numerical errors.

In this paper, we bypass such kind of problem by numerical inversion of an adaptively modified

moment generating function introduced by Choudhury and Lucantoni (1996). According to this,

µn =
n!

2nlrnnα
n
n

L(αnrn) + (−1)nL(−αnrn) + 2

nl−1∑
j=1

<(L(αnrne
πij/nl)e−πij/l)

− ên, (18)

ên :=

∞∑
j=1

α2ljn
n

n!

(n+ 2ljn)!
µn+2ljn10−γj ,

where <(z) denotes the real part of z and ên is the error term. As Choudhury and Lucantoni

(1996) report, the choice rn := 10−γ/(2nl) is made in order to bound the error and achieve accuracy

of the order 10−γ . Algorithm 1 summarizes the procedure for computing any m integer moments

as well as the parameter l and the adaptive αn.

[Insert Algorithm 1]

The proposed method has several merits. First, it is fast: for the first four moments, the

Laplace transform is evaluated 14 times = 2 (for µ1) + 3 (for µ2) + 4 (for µ3) + 5 (for µ4) (for

l = 1 used in equation 18). Hence, for (EC.4), the Bessel function is evaluated just 28 times,

which is a considerable reduction from 307 times in (17). Second, it is very accurate: using γ = 11

as per the recommendation of Choudhury and Lucantoni (1996), the error appears, consistently

with them, only in the eleventh to thirteenth significant place. This is generally easy to verify by

calculating just the first few terms in ê based on the true moments, as the infinite series is heavily

damped and the error cannot be significant. Finally, the Laplace transform can be evaluated for

the whole sample of Φ(u, t) draws altogether (as opposed to one by one), which we favour in our

application requiring multiple moment computations for different random realizations of Φ(u, t)

due to dependence of the moments of Ψ(u, t) on Φ(u, t).

13



5.3. Summary of the simulation method and extensions

Our method still hinges on the Laplace transform, but circumvents its numerical inversion in

virtue of the speedy computation of the moments and simulation of the Pearson proxy. In Section

7, it is shown that the computing time is drastically reduced, benefiting the simulation of the asset

price process on a set of multiple observation dates. We summarize the methodology in Algorithm

2 based on sampling from (16). (For martingale-correction of the discounted asset price trajectory,

see Andersen, 2008, Proposition 7 and Glasserman, 2004, equation 4.60.) If we care to simulate

the terminal asset price only, we use m = 1.

[Insert Algorithm 2]

The 4/2 model (see also Section 4.5) requires some extra care as it requires sampling from

(Ψ(u, t)|Φ(u, t)) ≡
(∫ t

u σ
2(s)ds,

∫ t
u

ds
σ2(s)

∣∣∣σ2(t)
)

. In Section EC.5 of the e-companion, we present an

extension of the framework described above to the multivariate case, in particular the bivariate case

of relevance here. Alternatively, the sampling problem can be simplified by entirely bypassing the

time integrals using directly the conditional Laplace transform E
[
exp (−a lnS(t))| lnS(u), σ2(u), σ2(t)

]
from Grasselli (2017, Proposition 4.1).

A few more cases of models with jumps ensue. Extending to the Bates and DPS models is

straightforward, following Broadie and Kaya (2006, Sections 6.1–6.2), by replacing the time integral

with our usual four-moment Pearson fit. Similar logic applies to the simulation of the 4/2 model

extension with independent jumps of Lin et al. (2017). In addition, we have a couple of cases that

deserve some more attention.

5.3.1. Time-changed Lévy models

A Lévy model with integrated CIR time-change is given by

lnS(t) = lnS(u) + r(t− u)− ψ(1)

∫ t

u
σ2(s)ds+ L

(∫ t

u
σ2(s)ds

)
,

where σ(t) is a square-root diffusion process, L is a Lévy process and ψ(u) := lnE
(
euL(1)

)
. Having

first simulated
∫ t
u σ

2(s)ds according to the fitted Pearson distribution, we then simulate the Lévy

process L on the new (stochastic) time scale. The simulation of standard Lévy processes including

the variance gamma or normal inverse Gaussian is trivial (e.g., see Cont and Tankov, 2004); the

case of the CGMY process is much harder (e.g., see Ballotta and Kyriakou, 2014) and one can use

the new technique we develop in Section EC.8 of the e-companion based on a new Pearson curve

fit.

5.3.2. Jump-diffusion model with state-dependent jump intensity

Next, we draw attention to the class of self-exciting point processes, in particular, a jump-

diffusion process with state-dependent drift, diffusion coefficient and jump intensity:

dλ(t) = kλ(θλ − λ(t))dt+ σλ
√
λ(t)dW (t) + dJ(t), (19)

where kλ, θλ, σλ are constant, J(t) := βN(t) is a jump process given by a compound self-exciting

point process with CIR intensity, N(t) :=
∑

i≥1 1{T̄i<t} is the total number of jumps and T̄i is the

i-th jump time (see Dassios and Zhao, 2017 for more details). Model (19) accounts for jumps, for

example, in the asset price process, that are not uniformly distributed over time, but tend to appear
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in clusters (e.g., see Fulop and Li, 2019 and Du and Luo, 2019). For the sake of exemplification,

we will assume that

lnS(t) = lnS(u) +

(
r − σ2

2

)
(t− u)− ω

∫ t

u
λ(s)ds+ σW (t) +

N(t)∑
i=1

Ji (20)

for jump sizes J ∼ N
(
µJ , σ

2
J

)
and ω := exp

(
µJ + 1

2σ
2
J

)
− 1. This model can be seen as a self-

exciting extension of the one proposed in Wachter (2013) with β = 0. It is also a special case

with constant variance σ2 of the affine model in Fulop and Li (2019, Model III). (Our method

is adaptable to the full model specification; upon assuming stochastic variance with jumps, the

simulation task becomes similar to that of the DPS model.)

Giesecke et al. (2011) and Dassios and Zhao (2017) show us how to simulate exactly the pairs{(
T̄i, λ(T̄i)

)}N(t)

i=1
for u < T̄i < t ∀i > 0; nevertheless, on several occasions, such as (20), we need

to be able to simulate also (∫ T̄i+1

T̄i

λ(s)ds

∣∣∣∣∣λ(T̄i), λ(T̄i+1)

)
. (21)

Between two consecutive jump times T̄i and T̄i+1, the process λ evolves as a CIR diffusion and our

method lends itself to the efficient simulation of (21). Then, we have that

∫ t

u
λ(s)ds =

N(t)∑
i=0

∫ T̄i+1

T̄i

λ(s)ds+

∫ t

T̄N(t)

λ(s)ds

and lnS(t)
∣∣∣ lnS(u),

∫ t

u
λ(s)ds,

N(t)∑
i=1

Ji

 ∼ N (mu,t, s
2
u,t)

with

mu,t := lnS(u) +

(
r − 1

2
σ2

)
(t− u)− ω

∫ t

u
λ(s)ds+

N(t)∑
i=1

Ji, s2
u,t := σ2(t− u).

6. Error propagation to target simulation output

Having fitted a Pearson curve type G̃ to the distribution G of (Ψ|Φ), what we are further

interested in is how any error from this distributional approximation, which we have introduced

in Section 3, translates to the ultimate simulation estimators for quantities of interest, such as a

derivative’s price. In this section, we take a step forward in that direction and study how the bias

introduced into the simulation estimator is bounded.

To highlight the dependence on Φ with marginal density function fΦ as required in what follows,

we augment accordingly the original notation used in Sections 2–3 for the target and approximating

distribution functions of Ψ conditional on Φ, G ( ·|Φ) and G̃ ( ·|Φ), respectively. Suppose that we

are interested in estimating E [Π] based on G using Ẽ [Π] based on G̃; g and g̃ are the associated

conditional density functions. Then, it is always true that

E [Π] = E [E [Π|Ψ = x,Φ = φ]] =

∫
fΦ (φ)

∫ ∞
L

ξ (x;φ) g (x|φ) dxdφ, (22)
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where (L,∞) is the support of distribution G and

ξ (x;φ) := E [Π|Ψ = x,Φ = φ] .

The absolute bias induced by the approximation satisfies∣∣∣E [Π]− Ẽ [Π]
∣∣∣ ≤ ∫ fΦ (φ)

∫ ∞
L
|ξ (x;φ)| |g (x|φ)− g̃ (x|φ)| dxdφ,

where

|g (x|φ)− g̃ (x|φ)| ≤ 1

2π

∫
R

∣∣ϕG (u|φ)− ϕG̃ (u|φ)
∣∣ du

for integrable characteristic functions ϕG and ϕG̃; for the latter, refer to Proposition 1.

Next, we aim to derive a more easily accessible and computable upper bound relying on the

moment-based metrics of proximity of G and G̃ in Section 3, such as the uniform distance, the

entropy bound or the reciprocal polynomial bound, which we generally denote by Υ (x;φ). We do

that in the following theorem and corollary, specifying the necessary conditions for existence of the

bound. We then put under scrutiny specific cases.

Theorem 7. Let ∣∣∣G (x|φ)− G̃ (x|φ)
∣∣∣ ≤ Υ (x;φ) . (23)

For ξ (x;φ) of finite variation for each φ, the total variation of ξ is a bounded function of φ and∣∣∣E [Π]− Ẽ [Π]
∣∣∣ ≤ ∫ fΦ (φ)

∫ ∞
L

∣∣∣∣∂ξ∂x (x;φ)

∣∣∣∣Υ (x;φ) dxdφ (24)

is finite.

Proof. From (22),

E [Π|Ψ,Φ] =

∫ ∞
L

ξ (x;φ) g (x|φ) dx = [ξ (x;φ)G (x|φ)]∞L −
∫ ∞
L

∂ξ

∂x
(x;φ)G (x|φ) dx

= −
∫ ∞
L

∂ξ

∂x
(x;φ)G (x|φ) dx

by finite limits of ξ (x;φ)G (x|Φ) as x→ L and x→∞. Similar result holds for G̃. Then,∣∣∣E [Π|Ψ = x,Φ = φ]− Ẽ [Π|Ψ = x,Φ = φ]
∣∣∣ ≤ ∫ ∞

L

∣∣∣∣∂ξ∂x (x;φ)

∣∣∣∣ ∣∣∣G̃ (x|φ)−G (x|φ)
∣∣∣ dx

from which (24) follows by finite total variation of ξ and by virtue of (23).

Corollary 8. For ∂ξ (x;φ) /∂x > 0,∣∣∣E [Π]− Ẽ [Π]
∣∣∣ ≤ ∫ fΦ (φ)

∫ ∞
L

ξ (x;φ)

∣∣∣∣∂Υ

∂x
(x;φ)

∣∣∣∣ dxdφ. (25)

If, then, lim supx→∞ ξ (x;φ) <∞, the absolute difference
∣∣∣E [Π]− Ẽ [Π]

∣∣∣ is bounded.

Proof. From (24), we get that∫ ∞
L

∂ξ

∂x
(x;φ) Υ (x;φ) dx = [ξ (x;φ) Υ (x;φ)]∞L −

∫ ∞
L

ξ (x;φ)
∂Υ

∂x
(x;φ) dx ≤

∫ ∞
L

ξ (x;φ)

∣∣∣∣∂Υ

∂x
(x;φ)

∣∣∣∣ dx,
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hence (25) follows.

For a further study of the above results, we need to make some explicit assumptions. Consider

the plain vanilla call option case with

ξ (x;φ) ≡ E
[
(S − eκ)+

∣∣Ψ = x,Φ = φ
]
,

where y+ := max(y, 0) and κ ∈ R, in conjunction, for example, with the bound Υ (x;φ) ≡ $m (x)

in (9). Also, for the majority of the models in Section 4 (see also Table 1),

( lnS|Ψ = x,Φ = φ) ∼ N (γ + εφ+ λx, ηx) ,

where γ, ε, λ, η are non-random (we may adapt to other models in the paper, if needed). Then,

ξ (x;φ) = em(x;φ)+
s2(x)

2 N

(
m (x;φ) + s2 (x)− κ

s (x)

)
− eκN

(
m (x;φ)− κ

s (x)

)
,

where N (·) = 1√
2π

∫ ·
−∞ e

−y2/2dy and

m (x;φ) = γ + εφ+ λx, s2 (x) = ηx (η > 0) .

The bound (25) holds, depending on the interplay of λ and η. If λ + η/2 = 0, then ξ (x;φ)

converges to a finite constant, however $′m (x) converges to 0 at polynomial rate. If λ+ η/2 < 0,

then λ < 0 so ξ (x;φ) ∼ e(λ+ η
2 )x as x→∞, i.e., ξ decreases exponentially fast in the limit; this is

not affected by the convergence rate of $′m (x). If, contrary to these cases, ξ (x;φ)→∞, then we

can try to truncate ξc (x;φ) = E
[
min

{
(S − eκ)+ , c

}∣∣Ψ = x,Φ = φ
]

using some c < ∞, so that

limx→∞ ξ
c (x;φ) = c (instead, a put-type ξ (x;φ) ≡ E

[
(eκ − S)+

∣∣Ψ = x,Φ = φ
]

is automatically

bounded). If ξ (x;φ) → ∞, capping can still be avoided depending on the limiting behaviour of

G (x|φ) and G̃ (x|φ).

Theorem 9. If ξ (x;φ) → ∞ but not as fast as G (x|φ) , G̃ (x|φ) → 1, then
∣∣∣E [Π]− Ẽ [Π]

∣∣∣ is

bounded.

Proof. This follows from

E [Π|Ψ,Φ] =

∫ ∞
L

ξ (x;φ) g (x|φ) dx = − [ξ (x;φ) (1−G (x|φ))]∞L +

∫ ∞
L

∂ξ

∂x
(x;φ) (1−G (x|φ)) dx

if ξ (x;φ) (1−G (x|φ)) has limit 0 as x→∞; similarly for Ẽ [Π|Ψ,Φ] with respect to G̃.

With regard to Theorem 9, we have from (1) when c3 = 0 that

ln g̃ (x|φ) = − x
c2

+

(
c1

c2
2

− 1

)
ln (c1 + c2x) + C.

The support of this density can be (L,∞) or (−∞, L), where L = −c1/c2, depending on c2 > 0 or

c2 < 0. Accordingly, we have that

g̃ (x|φ) ∝ (±x∓ L)c1/c
2
2−1 exp

(
− x
c2

)
.

Hence, Theorem 9 will hold when 1/c2 > λ + η/2. Notice that we require also c1/c
2
2 − 1 > −1,

i.e., c1 > 0 for the integral to converge as x → L; this has to be the case if the support is to
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contain 0. Also, this case corresponds to a gamma distribution with shape parameter c1/c
2
2 and

scale parameter ±1/c2 > 0.

In addition to the plain vanilla call option with payoff

Π (T ) = (S (T )−K)+

at some maturity time T > 0 for fixed strike price K, other functions we consider in this paper

include

Π (T ) = (S (T )−K)+1{
max

0≤t≤T
S(t)≤U

} (26)

corresponding to the payoff of a type of barrier option (up-and-out call) with 1{·} denoting the

indicator of the event {·} and U the fixed barrier level;

Π (T ) =

(
K − min

0≤t≤T
S(t)

)+

(27)

corresponding to a lookback put; and

Π (T ) =
(
S̄(T )−K

)+
(28)

equalling the payoff of an Asian call option with S̄ the arithmetic average of the asset price

recordings up to time T . For some of these cases and some models, explicit expressions for ξ exist

and we present them in Section EC.7 of the e-companion.

7. Numerical study

The following section is dedicated to a numerical analysis of the proposed simulation strategies

in the Heston (one- and two-factor), SABR, OU-SV, 3/2 and 4/2, Bates, DPS, NIGCIR (NIG with

integrated CIR time-change) and SECIRJD (self-exciting point process with CIR intensity) models.

We use parameter sets from the relevant literature that are practically relevant and representative

of different markets and market conditions and are not benign (including high correlations, high

volatility of variance, and long maturities). All parameter values and their sources are reported

in Table 2. All numerical experiments are run in Matlab R2019b in Microsoft Windows 10 on a

machine with an Intel(R) Core(TM) i7-9750HQ CPU @2.60GHz and 16 GB of RAM. A code is

made available from https://openaccess.city.ac.uk/id/eprint/26427/.

[Insert Table 2]

7.1. Analysis of error and computing time

Before moving to the actual application, we study the core of our method, that is, the ability of

Algorithm 1 to compute fast and accurately the moments of the conditional time integral as well as

the quality of the subsequent Pearson distribution fit. In the interest of space, we present results

relating only to the Heston model (parameter sets H1 and H5, being common in the literature),

which is the most computationally complicated with associated Laplace transform (EC.4) that

involves Bessel functions whose calculation generally slows down the simulation. We break down

the procedure in Algorithm 2 for simulating over the one-period [0, T ] into the following four pieces:

Step 1 Generate a sample of
(
σ2(T )

∣∣σ2(0)
)
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Step 2 Compute the first four integer moments of
(∫ T

0 σ2(s)ds
∣∣∣σ2(T )

)
using Algorithm 1

Step 3 Generate a sample of
(∫ T

0 σ2(s)ds
∣∣∣σ2(T )

)
from the Pearson curve fitted by moments

Step 4 Generate a sample of
(
S(T )

∣∣∣∫ T0 σ2(s)ds, σ2(T )
)

.

We have trialed the procedure described above several times; the mean execution times cor-

responding to each step are reported in Section EC.6 of the e-companion. Increasing the number

of simulations results in linear increases of the computing time of each step, but with constant

percentages of each with respect to the total time. Steps 1, 3 and 4 account for 4%, 11% and 8%

of the total time and can be easily implemented using standard routines in numerical computing

environments such as Matlab (ncx2rnd for step 1; pearsrnd for step 3; randn for step 4). The

moments’ evaluation, that is, step 2, is the dominant element occupying 77% of the total execu-

tion time. In addition to this, we compare evaluation done using Algorithm 1 and via analytical

moments from equation (17). Results reported in Section EC.6 of the e-companion for the first

four integer moments indicate a considerable speed-up using Algorithm 1, which in the case of the

Heston model translates to 28 Bessel function evaluations versus 307 via equation (17).

Next, we study the potential sources of error from our moment-based approximation. First, we

compare moments evaluated using Algorithm 1 and analytically from equation (17) for three differ-

ent random realizations of the terminal variance corresponding to the 25, 50 and 75th percentiles

of that distribution, for convenience. (Similar performances were observed for different terminal

variances and parameter sets.) The absolute discrepancies are extremely small, as expected based

on the discussion in Section 5.2 (see also Section EC.6 of the e-companion).

Second, we investigate the ability of the Pearson fit to represent the true distribution of the

conditional integrated variance. To this end, we perform two tests. In the first one, we aim to

assess the closeness of the Pearson moments from the true ones, i.e., having matched the first four

integer moments, how far are the higher-order moments from the true ones? Adhering to the same

25, 50 and 75th percentiles of the terminal variance distribution as before for convenience, we

present on a log-scale in Figure 1 the first eight integer moments. Indeed, the moments are very

close and, for example, for parameters H1 and conditional on the 50th percentile of the terminal

variance, we experience absolute differences of the fifth to eighth moments of 0.0003, 0.0014, 0.0034

and 0.0064. Other parameter sets yield similar results insinuating that we are implicitly able to

almost fit more than four moments, hence corroborating the high accuracy of our method.

[Insert Figure 1]

Having replaced the original steps 2 and 3 of Broadie and Kaya (2006) by our approach, it also

comes natural to evaluate the potential impact on accuracy. For this, we compute the true and

fitted Pearson cumulative distribution functions, G and G̃, of
(∫ T

0 σ2(s)ds
∣∣∣σ2(T )

)
for different

terminal variances and present both in Figure 2 for terminal variance corresponding to the 50th

percentile only in the interest of space. The two plots are practically almost identical. Putting un-

der the microscope the left side of the distribution (see bottom plots in Figure 2) reveals maximum

absolute differences between the two of 0.001 and 0.007 for parameters H1 and H5 respectively,

whereas for larger values of the integrated variance we observe even smaller differences. These

also fall within the theoretical upper bound (7)–(8) computed values. Finally, an implementation

of a two-sample Kolmogorov–Smirnov test leads to non-rejection of the null hypothesis that the
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samples are drawn from the same distribution with very significantly high p-values for the different

parameter sets (smallest p-value being 0.6 for H1).

[Insert Figure 2]

In Figure 3, we show the outcome from the implementation of the entropy approach in Section

3.3. More specifically, we compare the entropy-maximizing distribution based on m moments and

our (formally four-moment) fitted Pearson distribution against the true distribution. We report

the evaluated bound (12) to the absolute differences between each approximating distribution

H ∈
{
Ĝ, G̃

}
and the true distribution G (top plots) as well as the individual entropies (bottom

plots). It is obvious that the distances are small and are reducing with increasing m. The fitted

Pearson is very close in terms of entropy to the true distribution, while the entropy-maximizing

distribution converges to the true distribution with increasing m, remaining, though, even with

twelve moments matched, behind the Pearson fit.

[Insert Figure 3]

We conclude this part with a short note of some additional attempts, thanks to a sugges-

tion of one of our reviewers, of fitting of Pearson curves based, instead, on exponential, neg-

ative (see Cressie et al., 1981) or even fractional (see Cressie and Borkent, 1986) moments, i.e.,

E(e−mαΨ(0,T )|Φ(0, T )) for m = 1, . . . 4 and given α, E(Ψ(0, T )−m|Φ(0, T )), E(Ψ(0, T )γ |Φ(0, T )) for

γ ∈ Q, consistently with the notation in Table 1. More specifically, the computation of the latter

proved particularly slow; the application of negative moments produced some accurate simulation

estimates but was not sufficiently fast. On the contrary, the use of exponential moments did speed

up the computations. However, the resulting error bounds were found to be substantially wider,

hence we did not consider this any further. More detailed results can be provided upon request.

7.2. Path-independent derivatives

In this section, we aim to assess the accuracy and speed of our proposed Algorithm 2 in the

context of pricing path-independent options, in particular, European plain vanilla options, by

comparing with various methods starring in the literature. We study simulation schemes such as

those of Broadie and Kaya (2006), Glasserman and Kim (2011), Giles (2008), Giles and Szpruch

(2014), Cai et al. (2017) and Li and Wu (2019), but also the method of Fang and Oosterlee (2008) as

a very accurate proxy for the true option prices. We consider the one-factor and two-factor Heston,

SABR, OU-SV, 3/2 and 4/2 models as well as models with jumps including Bates, DPS, NIGCIR

and SECIRJD. We compute root mean square errors, RMSE =
√

bias2 + standard error2, where

the bias, as defined in Section 6, is given by the difference between the simulated and true option

price. The bias is bounded and can be computed based on Theorem 7. Alternatively, this can

be estimated accurately using the hybrid analytical-Monte Carlo valuation described in Sections

EC.7.1.1–EC.7.1.2 of the e-companion for variance reduction and M = 108 simulation trials (true

prices in the SABR model can be obtained as in Cai et al., 2017). We report on the top panel of

Table 3 the estimated biases (and standard errors) and true prices for at-the-money plain vanilla

options in the different model settings. Obviously these are consistently very small across all the

different parameter sets in Table 2. (More, similar results for in-the-money and out-of-the-money

options can be made available upon request.)
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[Insert Table 3]

We compute RMSEs for varying number of simulations M for the different models and build

the speed-accuracy portrayals of the most competing methods. Numerical results are displayed in

Table 4, whereas Figures 4–6 present a few relevant illustrations on a log-log scale. AsM increases,

the standard error reduces and the RMSE depends eventually on any residual error. Nevertheless,

in the case of our Algorithm 2 this is usually of the order 10−4, for example, for Heston, double

Heston, 3/2, Bates, DPS, NIGCIR and SECIRJD, or even 10−6 for the SABR model (see Table

3) and, thus, from Figures 4 and 6 we can see how close the RMSEs are to those from methods

with optimal convergence like Broadie and Kaya (2006), Giles (2008), Giles and Szpruch (2014),

Cai et al. (2017) and Li and Wu (2019). Our scheme exhibits the same convergence rate but more

importantly reduces the computing time, hence the parallelly shifted plots to the left.

In particular, from Table 4, the computing times compared to Broadie and Kaya (2006), Li

and Wu (2019) and Cai et al. (2017) decrease, respectively, by an approx. factor of 800, 190 and

8. In the case of the SABR and OU-SV models, the Laplace transforms (EC.5) and (EC.6) do not

involve special functions like Heston’s (EC.4), therefore the resulting speed-up gain in the Li and

Wu (2019) and Cai et al. (2017) approaches is magnified in our method which gathers momentum

becoming impressively faster when computing the required moments using Algorithm 1. Similarly

in relation to the expansion approach of Glasserman and Kim (2011) involving infinite summations

requiring truncation (here we have used 10 terms), we achieve power saving by a factor of 3–4. In

the case of models with jumps, Bates and NIGCIR exhibit similar computing times to Heston. The

simulation of DPS and SECIRJD is slower as the conditional time integral must be simulated more

times according to the (random) number of jumps (which, for the particular parameter values, are

expected to be more for the latter).

[Insert Table 4]

[Insert Figures 4, 5, 6]

7.3. Path-dependent derivatives

In what follows, we study the efficiency of Algorithm 2 in generating sample paths by turning

our attention to the evaluation of path-dependent contracts. Although our method is applicable to

general payoff structures and models, we focus here on barrier (up-and-out) and arithmetic Asian

call options with payoffs (26) and (28) and monthly monitoring in the Heston model for which

we have easily accessible true prices. In particular, these are given for Asians by the accurate

lower bound of Fusai and Kyriakou (2016) used in a control variate Monte Carlo setting to achieve

extra accuracy; for barriers, we use the Fourier-based technique of Fang and Oosterlee (2011) and

barrier level U = 120. Accessing these numbers smooths the way for the estimation of biases which

we report on the remaining panels of Table 3 for M = 108 simulations. Similarly to the case of

path-independent options the biases are still very small, which is not surprising as the size of the

time interval does not affect the error.

Furthermore, we compare our simulation results based on Algorithm 2 with the time-discretization

scheme of Andersen (2008). For a fair comparison, we have tried different number of time steps

and chosen the minimum of 250 time steps per year to have an as similar as possible RMSE (for

M = 104) based on the pre-computed biases. Results are exhibited in Table 5 and Figure 7. We

find that Andersen’s scheme is faster for a small number of replications. However, as it is obvi-

ous from the graphs in Figure 7, for increasing number of simulations, the (large) bias becomes
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dominant and the RMSE decay is severely slowed down. This contrasts our method which results

in moderate to high levels of precision as M increases. This is welcoming news as our method

constitutes a valid new methodology for applications where the entire sample paths are needed.

[Insert Table 5]

[Insert Figure 7]

We devote the final part of this section to the SABR model given its rising popularity in the

literature. First, we apply Algorithm 2 to pricing barrier options with payoff (26) and compare

with the mSABR method of Leitao et al. (2017), which, even if non-exact, represents a satisfactory

benchmark, and the low-bias simulation scheme of Chen et al. (2012) using the formers’ choice

of parameters. Based on the reports in Table 6, our Algorithm 2 and the mSABR method agree

at 2–3 decimal places, whereas the discrepancies with Chen et al. (2012) are higher. This can

be attributed to the larger bias induced by the small-disturbance expansion approximation of

moments of the integrated variance and the potentially restrictive lognormal fit they employ. The

observed increases in computing time are due to the varying maturity times (see Table 2) subject

to quarterly monitoring per annum.

[Insert Table 6]

In what follows, we consider further applications entailing accurate simulation solutions. This

is especially important in super-linear growth settings where it is well known that, for standard

SDEs, the explicit Euler scheme runs into difficulties, performs poorly or fails to converge (see

Hutzenthaler et al., 2010).

8. Linear SDEs: multiplicative noise

The constant-coefficients inhomogeneous model with general form

dX(t) = (aX(t) + c) dt+ (bX(t) + q) dW (t) (29)

belongs to this class of SDEs. From Kloeden and Platen (1992), (29) has solution

X(t) = Y (t; a, b, 1)

(
X(0) + (c− bq)

∫ t

0
Y (s; a, b,−1)ds+ q

∫ t

0
Y (s; a, b,−1)dW (s)

)
,

where

Y (t; a, b, γ) := exp

(
γ

(
a− 1

2
b2
)
t+ γbW (t)

)
. (30)

The above solution can be extended to the more general case of variable coefficients.

A well-known special case of (29) in finance is the Brennan and Schwartz (1980) process

dX(t) = κ (θ −X(t)) dt+ σX(t)dW (t) (31)

with κ := −a > 0, θ := −c/a ∈ R, σ := b > 0 and q := 0, in consistency with a more standard

parameterization of the model (e.g., see Cai et al., 2014b). For instance, (31) has been used to

model interest rate uncertainty, but has also appeared in the energy marketplace with the spot

price reverting towards an equilibrium price level (which might be stochastic, that is, the so-called
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Pilipovic model). In Li et al. (2018), (31) is referred to as a GARCH linear SDE and is used to

model stochastic default intensity, with additional references given therein for uses in modelling

the volatility or variance of asset returns. The model (31) can be simulated using our Algorithm

3 for n = 0, a = −κ, b = σ and c = κθ; for more details, refer to the next section.

9. Reducible SDEs

9.1. Stochastic generalized logistic (Richards) growth model

This is an autonomous, nonlinear reducible SDE model with polynomial drift of degree n of

the general form

dX(t) = (cX(t)n + aX(t)) dt+ bX(t)dW (t). (32)

The substitution x1−n reduces (32) to a linear SDE with multiplicative noise, from which its explicit

solution is

X(t) = Y (t; a, b, 1)

(
X(0)1−n + c (1− n)

∫ t

0
Y (s; a, b, n− 1)ds

) 1
1−n

, (33)

where Y is given by (30).

[Insert Algorithm 3]

We summarize the simulation methodology for the model (33) in Algorithm 3. If we are

interested in simulating X at a terminal time T > 0 only, we use m = 1. Simulation steps 3

and 6 of Algorithm 3 are trivial; for step 5, the conditional distribution of
∫ t

0 Y (s; a, b, γ)ds plays

a crucial role in the implementation of the methodology developed in this paper. To this end,

let W (µ)(t) = µt + W (t) be a Brownian motion with constant drift µ ∈ R. We also recall from

Matsumoto and Yor (2005) the additive functional A(µ)(t) =
∫ t

0 exp
(
2W (µ)(s)

)
ds. Then, they

show (see also Cai et al., 2017) that

E

[
exp

(
− u

A(µ)(t)

)∣∣∣∣W (µ)(t) = w

]
= exp

{
−g(w, u)2 − w2

2t

}
(34)

for any t > 0 and g(w, u) := arcosh(ue−w + coshw).

Proposition 2. The Laplace transform of
(∫ t

0 Y (s; a, b, γ)ds
)−1

conditional on Y (t; a, b, γ) is given

by

E

[
exp

(
− u∫ t

0 Y (s; a, b, γ)ds

)∣∣∣∣∣Y (t; a, b, γ)

]
= exp

−
g
(

lnY (t;a,b,γ)
2 , γ

2b2u
4

)2
−
(

lnY (t;a,b,γ)
2

)2

1
2γ

2b2t

 .

(35)

Proof. See e-companion Section EC.1.

The range of admissible values u ≥ − 2
γ2b2

(√
Y (t; a, b, γ)− 1

)2
ensures that the moment prob-

lem is determinate. Special cases of great practical importance are the stochastic Verhulst and

Gordon–Schaefer models for n = 2 and the stochastic Ginzburg–Landau equation for n = 3 which

we explore further in the following sections.
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9.2. Stochastic logistic (Verhulst) growth model

The Verhulst (1838) model, also referred to usually as logistic or S-shaped, belongs to the

Richards family of sigmoidal growth models. The deterministic model is described by

dX̃(t)

dt
= λ

(
K − X̃(t)

)
X̃(t), (36)

where λ is the Malthusian growth coefficient and K > 0 a finite supportable carrying capacity

in an environment of finite resources. To account for seasonal variations, (36) is augmented by a

random component which results in the autonomous stochastic linear-quadratic Verhulst equation

dX̃(t) = λ̃

(
1− X̃(t)

K

)
X̃(t)dt+ σX̃(t)dW (t),

where W is a standard Brownian motion, X(0) ∈ (0,∞), λ̃ := λK and λ, σ > 0 are constant. The

extinction boundary 0 is non-attractive if λ̃ > σ2/2 and is attractive if λ̃ < σ2/2. Also, there is no

explosion as the boundary +∞ is non-attractive. Equivalently, we can write

dX(t) =
(
λ̃X(t)−X2(t)

)
dt+ σX(t)dW (t), (37)

where X := λX̃. In this model, an approximately exponential growth is succeeded by a slowed

down linear growth, as saturation begins, and ceases at maturity. The solution exists and is unique

for all t ≥ 0, and from (32)–(33) for n = 2

X(t) = Y (t; λ̃, σ, 1)

(
X(0)−1 +

∫ t

0
Y (s; λ̃, σ, 1)ds

)−1

=
X(0)Y (t; λ̃, σ, 1)

1 +X(0)
∫ t

0 Y (s; λ̃, σ, 1)ds
.

This is an environmental stochasticity model meaning that random fluctuations in the environ-

ment, such as weather, epidemics, natural disasters, crop failures, can affect the entire population.

Originally, the model (36) aimed at portraying the self-limiting growth of a biological popula-

tion. According to this, the rate of reproduction is proportional to the existing population and the

amount of available resources. A multi-dimensional version allows for affection of co-existing species

by coupling together separate single species models. The logistic model appears also in branches of

medicine such as oncology. In what follows, we focus the spotlight on the logistic model for tumor

growth, we parameterize this and use it to exemplify the application of our simulation method.

9.3. Tumor growth: a simulation case study

Cancer cells have an inflated rate of proliferation leading to a rapid tumor growth. A survey of

the relevant literature reveals that, generally, small tumors grow exponentially, however the growth

slows down when they get larger. This decelerated growth has the consequence that the diameter

(if a solid tumor) typically eventually remains constant in time. Therefore, a model that is able

to accommodate these features can be a sensible choice (e.g., see Laird, 1964, and later research

in the field). Note that, while growth curves are relevant for modelling the untreated tumor, they

cannot be applied to the treated tumor as it may decrease and regrow after a treatment such as

radiation (e.g., see Demidenko, 2013, Chapter 10); studying post-treatment tumor is beyond the

scope of this exercise.
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Here, we adopt the stochastic logistic model (37) for the growth of tumors, where we denote

by X(t) the tumor volume at time t. For the purposes of the illustration, we calibrate the model

to growth data of multicellular tumor spheroids, three-dimensional aggregates of cancer cells, that

have been grown under controlled experimental conditions, as described in Chignola et al. (1999),

that were made available by Demidenko (2013). The nonlinear least-squares parameter estimates

of the model are λ̂ = 0.00109, K̂ = 203.10135 and X̂(0) = 9.63691; in addition, the estimated

daily volatility is σ̂ = 10.6539%.

[Insert Figure 8]

Figure 8 exhibits the historical daily tumor growth and the fitted deterministic Verhulst equa-

tion (red solid line). In addition, our simulation method serves a useful tool for the analysis of the

tumor growth based on the model (37). First, it can be used to generate probabilistic forecasts:

the medium (green) line shows the expected value forecasts and the upper and lower (orange dot-

ted) lines are confidence bands such that there is a 90% chance that the tumor volume will not

exceed these bands. Second, it allow us to study the state of growth at certain points in time. In

particular, we document three critical time points (see vertical lines in Figure 8) corresponding to

different phases of the tumor growth in vivo, therefore signifying the timing of relevant guideline for

treatment: T1, when tumor slow growth (tumor vasculature) is completed since commencement of

cell division; T2, when aggressive tumor growth occurs and the maximum rate of growth is reached;

T3, when growth is slowed again (due to limited supply of oxygen, nutrients, and space). For the

given model, these critical points are given by

T̂1,3 =
1

λ̂
ln

((
±
√

3− 2
)(

1− K̂

X̂(0)

))

and

T̂2 =
1

λ̂
ln

(
K̂

X̂(0)
− 1

)
(inflection point). Finally, Figure 9 shows the tumor volume (for the 95th percentile simulated

radius) at the three different phases and the corresponding simulated distributions of the tumor

radii and volumes as percentages of the estimated maximum limit, 100X(T̂i)/K̂%. At time T̂1,

there is a large concentration of probability mass at lower volume levels but there is also a nonzero

probability of volume expansion as implied by the left tail. The distribution of the relative volume

becomes more symmetric and the kurtosis reduces as we approach the terminal phase at T̂3.

[Insert Figure 9]

9.4. Stochastic Gordon–Schaefer model

The model (32) is popular, for example, in bioeconomics where it can be used to represent the

growth of a population living in a randomly varying environment and being harvested, such as a

fish population under fishing, or a wildlife population under hunting, or even a tree population in

forestry.

Early important contributions on specific stochastic models for fisheries are due to Beddington

and May (1977), Braumann (1985) and Hanson and Ryan (1998). The stochastic Gordon–Schaefer
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population growth SDE model

dX(t) = rX(t)

(
1− X(t)

K

)
dt−H(t)dt+ σX(t)dW (t) (38)

includes the term H(t) := qEX(t) which represents the (e.g., fishing) harvesting rate, where E ≥ 0

is the (fishing) effort (e.g., hours trawled or number of hooks sets per day) and q > 0 is the fraction

of the population harvested per unit of effort, so that the difference

r

(
1− X(t)

K

)
− qE

is the natural growth rate adjusted for mortality due to harvesting. Under a basic profit structure,

the profit per unit time is

Π(t) = pH(t)− cE, (39)

where the revenues (first term) depend on the harvesting rate and p is the price per unit sold, and

the costs (second term) appreciate subject to c cost per unit effort per unit time. p and c can,

respectively, be functions of the harvesting rate (higher rate implying lower selling price) and the

effort E (increasing effort leading, for example, to overtime and therefore higher cost). Finally,

from (32)–(33)

X(t) = Y (t; r − qE, σ, 1)

(
X(0)−1 +

r

K

∫ t

0
Y (s; r − qE, σ, 1)ds

)−1

.

[Insert Figure 10]

In Figure 10, we revisit the bioeconomic resource model framework of Hanson and Ryan (1998)

for the Pacific halibut. One can determine the optimal sustainable constant effort E∗ that maxi-

mizes the expected value of the asymptotic profit. By adopting their parameter estimates based

on a realistic set of data, we use our method to generate population size (in kilograms) sample

paths. The top panel shows the impact of increasing fishing effort starting from E = 0 (top-left),

which reduces the model (38) to (37), implying a significantly overestimated population size under

a misspecified model with harvesting mortality ignored, for example, by 25%, 50% and 75% when

E = 50%E∗, E∗ and 150%E∗ (not explicitly reported in the plot), respectively. In particular,

the central and bottom panels focus on the impact of the fishing effort on the profit process (39).

Along these panels, the middle plot corresponds to the optimal sustainable effort E∗, whilst as we

diverge from it the profit drops. This mirrors the position of the mode of the estimated density

of the terminal profit in the bottom panels, from which we observe that as E reduces below or

increases above the optimal level the mode shifts to left; the standard deviation, skewness and

kurtosis also increase with E.

9.5. Ginzburg–Landau equation

Our last application is devoted to the Ginzburg–Landau equation. In its deterministic version,

this was introduced by Ginzburg and Landau (1950) to describe phase transition for superconduc-

tivity. Over the years, this model has been used in bistable systems, chemical turbulence, phase

transitions in non-equilibrium systems, optics with dissipation, thermodynamics and hydrodynam-

ics, etc. It has also played an important role as a modulation equation and served as a simple

model for the transition from regular to turbulent behaviour (see Mielke, 2002).
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Because random noise is often unavoidable, taking into consideration stochastic disturbances

is needed. A stochastic version of it is provided by Kloeden and Platen (1992) and is given by

dX(t) =

((
α+

1

2
σ2

)
X(t)− βX3(t)

)
dt+ σX(t)dW (t), (40)

where X(0) ∈ (0,∞) and α ≥ 0 and β, σ > 0 are constant. From (33), its solution is given explicitly

by

X(t) =
X(0)Y (t;α+ 1

2σ
2, σ, 1)√

1 + 2X2(0)β
∫ t

0 Y (s;α+ 1
2σ

2, σ, 2)ds
.

Several variants of (40) with a colored noise or regime switching also exist.

Here, we focus on (40) and run a simulation experiment borrowed from Hutzenthaler et al.

(2010) in order to demonstrate the efficiency of our proposed scheme. Table 7 shows, for different

values of the parameter σ, Monte Carlo estimates of E
(
X2(3)

)
using our method as well as

estimates based on different implementations of the Euler approximation. As σ increases, the bias

of the Euler scheme increases and the resulting estimates become perceptibly inaccurate. For very

large σ = 6 or 7, in most of the runs the Euler scheme explodes returning ‘NaN’ (‘not-a-number’),

whilst our method remains robust, even under such extremely volatile conditions, and is remarkably

faster by a factor of 20.

[Insert Table 7]

10. Conclusion

In this paper, we propose a novel method for the simulation of integrals of general stochastic

processes. We focus our analysis on especially hard cases of dependence on the terminal value of the

process. We manage to relax the most time-consuming parts of other methods: i) the repeatedly

recovered conditional distribution by numerical transform inversion; ii) the large number of time

steps intermediating the actual monitoring dates for the purpose of reducing the bias of time-

discretization techniques; iii) the number of terms in expansion approaches; iv) the attainment of

the required moments by direct differentiation of a Laplace transform.

Our method builds on efficient computation of the moments of the integrated process. We then

propose a moment-based random number generator which is accurate, with very small and bounded

bias, and fast, improving on the complexity and speed of pre-existing techniques. Bypassing the

most prolonged parts of others, we are able to generate entire paths of stochastic processes of

interest in reasonable time. We explore the flexibility and robustness of our method in different

practical problem structures and show that it can efficiently contribute to the interface of simulation

with various areas in financial engineering, medicine, bioeconomics and physics and, thereby, lead

to useful implications within the application domain.
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Lévy, P. (1925) Calcul des Probabilités. Paris: Gauthier-Villars.

Li, C. and Wu, L. (2019) Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model. European Journal of

Operational Research, 275, 768–779.

Li, M., Mercurio, F. and Resnick, S. (2018) The Garch linear SDE: explicit formulas and the pricing of a quanto CDS. Available

online at https://www.risk.net/media/download/1001271/download.

Lin, W., Li, S., Luo, A. and Chern, S. (2017) Consistent pricing of VIX and equity derivatives with the 4/2 stochastic volatility

plus jumps model. Journal of Mathematical Analysis and Applications, 447, 778–797.

Lindsay, B. G. and Basak, P. (2000) Moments determine the tail of a distribution (but not much else). The American

Statistician, 54, 248–251.

Lindsay, B. G., Pilla, R. S. and Basak, P. (2000) Moment-based approximations of distributions using mixtures: Theory and

applications. Annals of the Institute of Statistical Mathematics, 52, 215–230.
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Algorithm 1 Numerical inversion of adaptively modified moment generating function
Input: m, γ, L(·)
Output: {µn}mn=1

1: Set l = α1 = 1 and compute µ1 from (18)

2: Compute α2 = 1/µ1 and µ2

3: Set l = 1 ∨ 2 and α1 = α2 = 2µ1/µ2 and compute new values for µ1 and µ2 (from 18)

4: Set n = 3

5: while n ≤ m do

6: l = 1 ∨ 2, compute αn = (n− 1)µn−2/µn−1

7: Compute µn from (18)

8: n = n+ 1

9: end

Algorithm 2 Moment-matched conditional sampling scheme: asset price process under stochastic
volatility
Input: Model parameters, terminal time T , number of monitoring dates N
Output: Asset price path {S(t)} for t = {0,∆, 2∆, 3∆, ..., T}
1: Set ∆ = T

N

2: for t = 0 : ∆ : T −∆ do
3: Given σ(t), generate Φ(t, t+ ∆)

4: Compute the moments of Ψ(t, t+ ∆) conditional on σ(t) and Φ(t, t+ ∆) using Algorithm 1

5: Sample from the conditional Ψ(t, t+ ∆) from (16) given the moments

6: Sample S(t+ ∆) given S(t), σ(t),Φ(t, t+ ∆) and Ψ(t, t+ ∆)

7: end for

8: return {S(t)} for t = {0,∆, 2∆, 3∆, ..., T}

Algorithm 3 Moment-matched conditional sampling scheme: linear & reducible SDEs
Input: Model parameters, terminal time T , number of monitoring dates N
Output: Sample path {X(t)} for t = {0,∆, 2∆, 3∆, ..., T}
1: Set ∆ = T

N

2: for t = 0 : ∆ : T −∆ do
3: Given Y (t; a, b, 1), simulate Y (t+ ∆; a, b, 1)

4: Compute the moments of
∫ t+∆

t
Y (s; a, b, n− 1)ds conditional on Y (t+ ∆; a, b, 1) using Algorithm 1

5: Simulate the conditional
∫ t+∆

t
Y (s; a, b, n− 1)ds from (16) given the moments

6: Simulate X(t+ ∆) from (33) given X(t)

7: end for

8: return {X(t)} for t = {0,∆, 2∆, 3∆, ..., T}
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Table 1: Key quantities in simulation of different models

Model Φ(u, t) Ψ(u, t)

Heston σ2(t)
∫ t
u
σ2(s)ds

SABR σ2(t) 1∫ t
u σ

2(s)ds

OU-SV
(
σ(t),

∫ t
u
σ(s)ds

) ∫ t
u
σ2(s)ds

Double Heston
(
σ2

1(t), σ2
2(t)

) (∫ t
u
σ2

1(s)ds,
∫ t
u
σ2

2(s)ds
)

3/2 σ2(t)
∫ t
u

ds
σ2(s)

4/2 σ2(t)
(∫ t

u
σ2(s)ds,

∫ t
u

ds
σ2(s)

)

Table 2: Model parameter sets

Heston model
S(0) k θ v σ2(0) ρ r T

H1 100 6.21 0.019 0.61 0.010201 -0.7 3.19% 1
H2 100 2 0.09 1 0.09 -0.3 5% 5
H3 100 0.5 0.04 1 0.04 -0.9 3% 1
H4 100 0.3 0.04 0.9 0.04 -0.5 3% 1
H5 100 1 0.09 1 0.09 -0.3 3% 1
H6 100 6.2 0.02 0.6 0.02 -0.7 3% 1

SABR model
S(0) β v σ(0) ρ r T

SABR1 0.05 0.3 0.6 0.4 0 0 1
SABR2 0.05 0.3 0.6 0.4 0 0 3
SABR3 0.05 0.3 0.6 0.4 0 0 5
SABR4 0.5 0.5 0.4 0.5 0 0 4
SABR5 0.04 1 0.3 0.2 -0.5 0 5
SABR6 1 0.6 0.3 0.25 -0.5 0 20

OU-SV model
S(0) k θ v σ2(0) ρ r T

OU-SV1 100 4 0.02 0.1 0.04 -0.7 9.53% 1
OU-SV2 100 4 0.02 0.1 0.04 -0.7 9.53% 3
OU-SV3 100 4 0.02 0.1 0.04 -0.7 9.53% 5

Double Heston model
S(0) k1,2 θ1,2 v1,2 σ2

1,2(0) ρ1,2 r T

DH1 100
0.9
1.2

0.1
0.15

0.36
0.2

0.36
0.2

-0.5
-0.5

3.00% 1

DH2 100
1.0738
0.0326

0.1026
0.7078

0.826
1.5355

0.0028
0.0059

-0.2819
-0.687

3.00% 1

3/2 model
S(0) k θ v σ2(0) ρ β r T

3/2-1 100 1.8 0.04 0.2 0.04 -0.7 0.025 2% 1
3/2-2 100 1.1705 0.6853 0.398 0.8992 -0.8637 0.0192 2% 1

4/2 model
S(0) k θ v σ2(0) ρ β α r T

4/2-1 100 1.8 0.04 0.2 0.04 -0.7 0.025 0.3 2% 1
4/2-2 100 1.1705 0.6853 0.398 0.8992 -0.8637 0.0192 0.0218 2% 1

Bates model
S(0) k θ v σ2(0) ρ λ µ̄ σs r T

B1 100 3.99 0.014 0.2700 0.008836 -0.79 0.11 -0.12 0.15 3.19% 5

DPS model
S(0) k θ v σ2(0) ρ λ µ̄ σs µv ρJ r T

DPS1 100 3.46 0.008 0.1400 0.007569 -0.82 0.47 -0.1 0.0001 0.05 -0.38 3.19% 1

NIGCIR model
S(0) k θ v σ2(0) θ k σ r T

NIGCIR1 100 3.99 0.014 0.27 0.008836 -11.00604 0.00294 0.84059 4% 1

SECIRJD model
S(0) λ(0) kλ θλ σλ β σ2 µJ σJ r T

SECIRJD1 100 2.935 2.266 2.935 0.585 1.782 0.041 -0.018 0.002 3.19% 1

Notes. Parameter sets H1–2, B1, DPS1 and H3–6 are from Broadie and Kaya (2006) and Glasserman and Kim
(2011), DH1–2 from Gauthier and Possamäı (2010) and Zhang and Feng (2019), SABR1–3 and SABR4–6 from Cai
et al. (2017) and Leitao et al. (2017), OU-SV1–3 from Li and Wu (2019), 3/2-1 and 4/2-1 from Grasselli (2017) and
Callegaro et al. (2019), 3/2-2 and 4/2-2 from Gnoatto et al. (2016), NIGCIR1 from Corsaro et al. (2019, Table 2)
and SECIRJD1 from Fulop and Li (2019, Table 8).
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Table 3: True option prices and biases (with standard errors) of Monte Carlo price estimates for each model and
different parameter sets for at-the-money European plain vanilla, arithmetic Asian and barrier call options

Plain vanilla option
H1 H2 H3 H4 H5 H6

True option price 6.8061 34.9998 6.7304 7.0972 11.3743 7.0737
Bias 0.0001 -0.0029 -0.0002 0.0007 -0.0006 -0.0014
Standard error 0.0007 0.0058 0.0005 0.0011 0.0020 0.0008

SABR1 SABR2 SABR3 OU-SV1 OU-SV2 OU-SV3

True option price 0.0394 0.0436 0.0447 13.2149 40.7977 62.7631
Bias 1.72e-06 -2.3e-06 1.16e-07 0.0013 -0.0014 0.0012
Standard error 4.11e-07 3.99e-07 3.91e-07 0.0015 0.0043 0.0067

DH1 DH2 3/2-1 3/2-2 4/2-1 4/2-2

True option price 26.9504 9.3663 6.3991 2.1537 8.6592 9.8629
Bias -0.0002 -0.0005 -0.0003 0.0002 0.0060 0.0010
Standard error 0.0020 0.0002 0.0008 0.0002 0.0015 0.0017

B1 DPS1 NIGCIR1 SECIRJD1

True option price 20.1645 6.8619 6.6425 9.7639
Bias 0.0001 0.0027 -3.87E-05 0.0004
Standard error 7.09E-04 2.32E-04 2.35E-04 4.63E-04

Asian option
H1 H2 H3 H4 H5 H6

True option price 3.5665 18.1576 4.1061 4.3222 6.6513 3.8590
Bias -0.0001 -0.0028 0.0003 0.0003 0.0005 -0.0007
Standard error 0.0004 0.0027 0.0003 0.0006 0.0011 0.0004

Barrier option
H1 H2 H3 H4 H5 H6

True option price 4.9142 0.1803 6.3748 4.5714 2.6489 4.2925
Bias -0.0004 1.34e-05 -0.0004 -0.0004 -7.1e-05 0.0008
Standard error 0.0006 0.0001 0.0004 0.0005 0.0005 0.0006
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Table 4: Speed-accuracy profiles of Algorithm 2 and some competent benchmarks (Broadie and Kaya, 2006, Glasser-
man and Kim, 2011, Cai et al., 2017, Li and Wu, 2019) for different models and parameter sets: the case of European
plain vanilla option

Broadie–Kaya Algorithm 2 Broadie–Kaya Algorithm 2 Glasserman–Kim Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H1 H2 H3
4 0.0373 273.45 0.0372 0.21 0.2904 160.85 0.3000 0.23 0.0246 0.49 0.0244 0.25
16 0.0186 1076.72 0.0186 0.82 0.1464 643.97 0.1440 0.84 0.0123 1.95 0.0122 0.81
64 0.0093 4028.62 0.0093 3.29 0.0726 2458.06 0.0734 3.15 0.0061 7.74 0.0061 3.33
256 0.0046 16884.00 0.0046 13.21 0.0362 10467.25 0.0367 14.28 0.0031 31.96 0.0031 12.95

Glasserman–Kim Algorithm 2 Glasserman–Kim Algorithm 2 Glasserman–Kim Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H4 H5 H6
4 0.0507 0.56 0.0513 0.25 0.0973 0.86 0.1018 0.28 0.0394 0.82 0.0411 0.31
16 0.0257 2.30 0.0262 0.94 0.0489 3.44 0.0489 0.92 0.0198 3.28 0.0205 0.80
64 0.0132 9.38 0.0132 3.14 0.0248 13.86 0.0249 3.39 0.0099 13.11 0.0103 3.14
256 0.0068 35.94 0.0066 13.11 0.0124 55.43 0.0123 13.09 0.0050 52.94 0.0053 12.28

Cai–Song–Chen Algorithm 2 Cai–Song–Chen Algorithm 2 Cai–Song–Chen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

SABR1 SABR2 SABR3
4 2.04e-05 1.65 2.07e-05 0.23 1.98e-05 1.55 2.00e-05 0.2 1.93e-05 1.53 1.97e-05 0.19
16 1.03e-05 6.34 1.05e-05 0.87 9.96e-06 6.28 1.02e-05 0.79 9.76e-06 6.3 9.83e-06 0.78
64 5.14e-06 25.39 5.42e-06 3.35 4.99e-06 25.12 5.50e-06 3.04 4.89e-06 25.07 4.90e-06 2.95
256 2.57e-06 100.7 3.09e-06 13.7 2.50e-06 99.64 3.39e-06 12.41 2.45e-06 99.41 2.45e-06 12.29

Li–Wu Algorithm 2 Li–Wu Algorithm 2 Li–Wu Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

OU-SV1 OU-SV2 OU-SV3
4 0.0764 15.60 0.0757 0.11 0.2345 21.66 0.2002 0.11 0.3774 21.64 0.3382 0.10
16 0.0382 63.20 0.0377 0.38 0.1176 82.87 0.1024 0.39 0.1891 85.25 0.1687 0.40
64 0.0192 253.55 0.0188 1.49 0.0591 332.22 0.0550 1.51 0.0951 341.73 0.0839 1.49
256 0.0096 1013.31 0.0095 6.47 0.0295 1328.01 0.0339 6.22 0.0475 1366.03 0.0421 6.14

Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

DH1 DH2 3/2-1 3/2-2 4/2-1 4/2-2
4 0.0989 0.83 0.0107 0.74 0.0392 0.70 0.0989 0.75 0.0740 2.12 0.0872 2.18
16 0.0497 3.01 0.0053 2.96 0.0197 2.93 0.0497 3.11 0.0375 9.17 0.0432 9.75
64 0.0248 12.29 0.0027 12.11 0.0098 12.09 0.0248 12.39 0.0195 36.85 0.0216 37.29
256 0.0124 48.15 0.0014 47.89 0.0049 50.75 0.0124 51.42 0.0110 147.47 0.0108 149.12

Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time

B1 DPS1 NIGCIR1 SECIRJD1
4 0.1117 0.18 0.0368 7.96 0.0372 0.26 0.0731 12.22
16 0.0559 0.58 0.0186 32.23 0.0186 0.81 0.0366 51.30
64 0.0281 2.26 0.0096 138.43 0.0093 2.84 0.0183 203.79
256 0.0141 8.82 0.0054 527.43 0.0046 11.38 0.0092 849.69

Notes. All computing times are in seconds. For convenience, out of scale Monte Carlo benchmarks for the DH, 3/2,
4/2, Bates, DPS, NIGCIR and SECIRJD models are not reported.
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Table 5: Speed-accuracy profiles of Algorithm 2 and Andersen’s (2008) method in the Heston model and different
parameter sets: the case of path-dependent derivatives

Asian option

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H1 H2 H3
4 0.0261 0.98 0.0192 3.42 0.9372 5.03 0.9213 15.78 0.0239 0.86 0.0158 3.01
16 0.0201 5.06 0.0096 12.48 0.5350 27.89 0.5066 59.80 0.0195 3.91 0.0078 12.08
64 0.0183 34.74 0.0048 50.45 0.2908 331.26 0.2343 238.44 0.0183 17.69 0.0039 56.55
256 0.0179 213.71 0.0024 201.43 0.2083 3312.59 0.1172 953.92 0.0180 192.28 0.0020 272.12

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H4 H5 H6
4 0.0334 0.86 0.0282 3.27 0.0595 1.07 0.0523 3.51 0.0284 0.95 0.0220 3.94
16 0.0231 3.93 0.0145 12.50 0.0386 4.90 0.0260 14.62 0.0211 5.12 0.0111 15.50
64 0.0194 18.22 0.0072 53.84 0.0314 21.62 0.0132 66.83 0.0188 20.08 0.0056 59.86
256 0.0184 198.61 0.0036 279.79 0.0292 186.54 0.0066 355.53 0.0182 196.87 0.0029 235.37

Barrier option

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H1 H2 H3
4 0.0338 0.98 0.0289 3.42 0.0054 5.03 0.0023 15.78 0.0220 0.86 0.0222 3.01
16 0.0233 5.07 0.0145 12.48 0.0031 27.90 0.0012 59.80 0.0111 3.92 0.0110 12.08
64 0.0199 34.76 0.0072 50.46 0.0022 331.17 0.0006 238.46 0.0058 17.71 0.0055 56.56
256 0.0189 213.74 0.0036 201.46 0.0019 3311.68 0.0003 954.00 0.0033 192.29 0.0028 272.15

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H4 H5 H6
4 0.0242 0.87 0.0243 3.27 0.0274 1.07 0.0243 3.51 0.0336 0.95 0.0284 3.95
16 0.0128 3.94 0.0121 12.51 0.0194 4.90 0.0122 14.62 0.0241 5.13 0.0142 15.50
64 0.0076 18.23 0.0060 53.85 0.0169 21.64 0.0061 66.83 0.0210 20.11 0.0071 59.87
256 0.0056 198.62 0.0030 279.82 0.0161 186.63 0.0030 355.57 0.0202 197.01 0.0036 235.40

Notes. All computing times are in seconds.

Table 6: Barrier option prices (with standard errors, s.e.) in the SABR model

Method price s.e. time price s.e. time price s.e. time

SABR4 SABR5 SABR6
mSABR 0.0384 – – 0.00523 – – 0.1078 – –

Chen et al. 0.0380 1.12e-02 3.77 0.00520 8.43e-04 4.47 0.1022 2.12e-02 21.81
Algorithm 2 0.0385 1.13e-02 21.91 0.00523 8.41e-04 25.72 0.1079 2.12e-02 102.24

Notes. All computing times are in seconds and correspond to M = 106 simulations and quarterly monitoring (as
in Leitao et al., 2017, Section 4). Benchmarks: mSABR (Leitao et al., 2017); Chen et al. (2012). Barrier levels:
U = 1.2 (SABR4); U = 0.08 (SABR5); U = 2 (SABR6).

Table 7: Simulation of E
(
X2(3)

)
(with standard errors, s.e.) in the stochastic Ginzburg–Landau model

σ = 2 σ = 4 σ = 5 σ = 6 σ = 7
E
(
X2(3)

)
s.e. E

(
X2(3)

)
s.e. E

(
X2(3)

)
s.e. E

(
X2(3)

)
s.e. E

(
X2(3)

)
s.e.

Algorithm 3 0.4689 4.12e-04 0.9138 1.18e-03 1.1455 1.66e-03 1.3693 2.18e-03 1.5989 2.75e-03

Euler approximation
Batch 1 0.4556 4.10e-03 0.7553 1.10e-02 0.7106 1.33e-02 NaN NaN NaN NaN
Batch 2 0.4514 4.09e-03 0.7551 1.12e-02 0.6964 1.32e-02 NaN NaN NaN NaN
Batch 3 0.4576 4.16e-03 0.7582 1.10e-02 0.7065 1.33e-02 0.5191 1.43e-02 NaN NaN
Batch 4 0.4572 4.08e-03 0.7417 1.08e-02 0.7126 1.39e-02 0.5353 1.43e-02 NaN NaN
Batch 5 0.4608 4.09e-03 0.7274 1.05e-02 0.7043 1.36e-02 NaN NaN NaN NaN
Batch 6 0.4491 4.07e-03 0.7308 1.05e-02 0.7224 1.36e-02 0.5415 1.47e-02 NaN NaN
Batch 7 0.4595 4.08e-03 0.7393 1.08e-02 0.7310 1.42e-02 NaN NaN NaN NaN
Batch 8 0.4592 4.03e-03 0.7333 1.07e-02 0.7344 1.43e-02 NaN NaN NaN NaN
Batch 9 0.4589 4.10e-03 0.7539 1.11e-02 0.7108 1.34e-02 NaN NaN NaN NaN
Batch 10 0.4626 4.12e-03 0.7555 1.08e-02 0.7096 1.34e-02 0.5366 1.41e-02 NaN NaN

Notes. The number of Monte Carlo simulations used for each estimate is 105 for the Euler approximation (based on
1, 000 time steps) and 107 for Algorithm 3. Parameters are from Hutzenthaler et al. (2010): X(0) = 1, α = 0, β = 1,
σ = {2, 4, 5, 6, 7}.
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Figure 1: True moments of the integrated variance in the Heston model (parameter set H1) conditional on the 25,
50, 75th percentiles of the terminal variance and corresponding moments based on fitted Pearson distribution
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Figure 2: True and fitted Pearson cumulative distribution functions, G and G̃, of the integrated variance in the
Heston model (parameter sets H1 and H5) conditional on the 50th percentile of the terminal variance
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Figure 3: Entropy bound
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Notes. Top plots: absolute difference |H (x)−G (x)| bounds (12) for true distribution G and approximation

H ∈
{
Ĝ, G̃

}
, where Ĝ corresponds to the entropy-maximizing distribution with m moments and G̃ to the four-

moment fitted Pearson distribution, corresponding to the integrated variance in the Heston model (parameter set

H1) conditional on the 25, 50, 75th percentiles of the terminal variance. Bottom plots: corresponding entropies

H[Ĝ], H[G̃] and H[G].
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Figure 4: Speed-accuracy comparisons of Algorithm 2 and competent benchmarks for different models and parameter
sets: the case of European plain vanilla option
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Notes. Algorithm 2: plots with diamond markers; benchmarks: plots with circle markers. Benchmarks: Glasserman
and Kim (2011) (H3–4); Cai et al. (2017) (SABR1–2); Li and Wu (2019) (OU-SV1–2). For convenience, out of scale
Monte Carlo benchmarks for the DH, 3/2, 4/2 models are not reported. All computing times are in seconds.
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Figure 5: Speed-accuracy profiles of Algorithm 2 in the Bates, DPS, NIGCIR and SECIRJD models: the case of
European plain vanilla option
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Figure 6: Speed-accuracy comparisons of Algorithm 2 and multi-level Monte Carlo (MLMC) methods for different
parameter sets in the Heston model: the case of European plain vanilla option.

-1 0 1 2
-2.4

-2.2

-2

-1.8

-1.6

-1.4

0 1 2 3
-2

-1.8

-1.6

-1.4

-1.2

-1

0 1 2 3 4
-2.5

-2

-1.5

0 1 2 3 4

-2.5

-2

-1.5

0 1 2 3 4

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1 0 1 2
-2.5

-2

-1.5

-1

Notes. Algorithm 2: plots with red diamond markers; benchmarks: plots with blue circle (green square) markers
correspond to MLMC (antithetic MLMC). MLMC: geometric sequence of time step sizes hl = M−lT , l = 0, 1, . . . , L,
for M = 4 and L = 6, optimal initial number of simulations M0 = 104 (see Giles, 2008), target RMSE
= {0.05, 0.02, 0.005} and simulation performed based on Euler scheme. Antithetic MLMC: based on a Milstein
numerical approximation of the Heston SDE with use of antithetic variables (see Giles and Szpruch, 2014). All
computing times are in seconds.
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Figure 7: Speed-accuracy profiles of Algorithm 2 and Andersen’s (2008) method in the Heston model and different
parameter sets: the case of path-dependent derivatives
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Notes. Algorithm 2: plots with diamond markers; benchmark: plots with circle markers. Benchmark: Andersen
(2008) (H1–2). All computing times are in seconds.

Figure 8: Stochastic logistic model for tumor volume

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

data

fitted logistic

95th percentile

5th percentile

mean

Notes. Historical daily tumor growth; fitted deterministic Verhulst equation; probabilistic forecasts for tumor growth
generated by the model (37): 95% and 5% confidence bands (upper and lower lines) based on 105 simulated trajec-
tories; mean value estimate (medium line).
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Figure 9: Tumor growth

Notes. Tumor size (3D & 2D) (left & central plots) and probability density estimates of % tumor volume with
respect to estimated maximum limit (right plots) at the three different phases (top to bottom): T1 (completion of
initial growth), T2 (aggressive tumor growth) and T3 (terminal growth).
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Figure 10: Impact of varying fishing effort E on population size of Pacific halibut and fishing profit
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Notes. Population size (top plots) and profit (central plots): 95% and 5% confidence bands (upper and lower
lines) and mean value estimate (medium line) based on 105 simulated trajectories. Probability density estimates of
terminal profit (bottom plots). Parameter estimates are from Hanson and Ryan (1998): r = 0.71, K = 8.05 × 107

kg, q = 3.30 × 10−6, p = 1.59, c = 96 × 10−6 + 0.10 × 10−6E. In addition, X(0) = 1.5 × 107 kg, σ = 0.2 and
E∗ = 104, 540 (optimal sustainable effort).
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E-companion to “Unified moment-based modelling of integrated

stochastic processes”

EC.1. Proofs

Proof of Proposition 1. From (1),∫
R
eiuxg̃ (x) dx =

[
eiux

(
c1 + c2x+ c3x

2
)
g̃ (x)

]∞
−∞

−
∫
R
eiux

{
iu
(
c1 + c2x+ c3x

2
)

+ (c2 + 2c3x)
}
g̃ (x) dx

= − (iuc1 + c2)

∫
R
eiuxg̃ (x) dx− (iuc2 + 2c3)

∫
R
eiuxxg̃ (x) dx (EC.1)

−iuc3

∫
R
eiuxx2g̃ (x) dx,

where in the first equality
[
eiux

(
c1 + c2x+ c3x

2
)
g̃ (x)

]∞
−∞ = 0 by µ2 < ∞. Differentiation of

ϕG̃ (u) under the integral sign is allowed because eiuxg̃ (x) is twice continuously differentiable in

u and once in x. Hence, we obtain ϕ′
G̃

(u) = i
∫
R e

iuxxg̃ (x) dx and ϕ′′
G̃

(u) = −
∫
R e

iuxx2g̃ (x) dx,

based on which (EC.1) can be written as

iuc3ϕ
′′
G̃

(u) + (−uc2 + 2ic3 − i)ϕ′G̃ (u) + (c0 − iuc1 − c2)ϕG̃ (u) = 0.

From this, (5) follows for c0 − c2 = 0 by construction.

Proof of Proposition 2. We have that∫ t

0
Y (s; a, b, γ)ds =

∫ t

0
exp

(
γ

(
a− 1

2
b2
)
s+ γbW (s)

)
ds

(law)
=

4

γ2b2

∫ γ2b2t/4

0
exp

(
4

γ

(
a

b2
− 1

2

)
s+ 2W (s)

)
ds

=
4

γ2b2

∫ γ2b2t/4

0
exp

(
2W (µ)(s)

)
ds,

where the second equality follows from the scaling property of the Brownian motion for γ, b > 0

and µ := 2a/(γb2)− 1/γ. In addition, by considering the condition in (34), we get

w = W (µ)

(
γ2b2t

4

)
(law)
= µ

γ2b2t

4
+
γb

2
W (t) =

lnY (t; a, b, γ)

2
.

Expression (35) then follows and the proposition is proved.

EC.2. More on moment-based metrics

A sharpened version of Klebanov and Mkrtchyan’s (1986) inequality is

L
(
G, G̃

)
≤ C

γ
1/(2k+2)
k,m−1

(k + 1)2

∣∣∣∣ln (2k)!

γk,m−1

∣∣∣∣

1



for 0 ≤ k ≤ m− 1, where γk,m = min

{
2µ2k, µ2k

2+
√
µ2k+2
µ2k√

βk,m

}
for k ≤ m− 1

γm,m = µ2m

.

Although by construction we are exactly matching the first four integer moments, Rachev

et al. (2013, Theorem 10.3.4) allows us to restate Klebanov and Mkrtchyan’s (1986) inequality

when additional moments of the two distributions are not coinciding but are only fairly close.

Therefore, for G and G̃ with finite moments up to order 2m and∣∣∣µn (G)− µ̃n
(
G̃
)∣∣∣ ≤ δG,G̃, n = 1, . . . , 2m,

where 0 < δG,G̃ ≤ 1, we have that

L
(
G, G̃

)
≤ 2

ln
(

1 + δ
−1/2

G,G̃

) +

(
2µ2m

(2m)!

) 1
2m+1

.

Finally, related to the distance between distribution functions is also Esseen’s inequality

recorded next. Consider first some non-negative function H (x) and h (u) :=
∫
R e

iuxH (x) dx

satisfying { ∫
RH (x) dx = 1; b =

∫
R |x|H (x) dx <∞

h (0) = 1; h (u) = 0 for |u| ≥ 1; 0 ≤ |h (u)| ≤ 1 for |u| ≤ 1
. (EC.2)

A possible choice for H, as suggested by Esseen (1945), is H (x) = (3/ (8π)) (4 sin (x/4) /x)4.

Then, for the Pearson distribution function G̃ (x) which is differentiable almost everywhere, has

bounded variation and finite % (see Lemma 3 in the paper), Theorem 2a from Esseen (1945)

applies. More specifically, to every arbitrary k > 1, there correspond 0 < m̄ (k) < 1 and α (k)

so that

(2− m̄ (k))

∫ (1−m̄(k))α(k)

−m̄(k)α(k)
H (x) dx =

k + 1

k
, (EC.3)

where H satisfies the conditions in (EC.2), and∣∣∣G (x)− G̃ (x)
∣∣∣ ≤ max

{
kε

2π
+
kb%

T
,
α (k) %

T

}
≤ kε

2π
+

(kb+ α (k)) %

T

with (T , ε) satisfying ∫ T
−T

∣∣∣∣ϕG (u)− ϕG̃ (u)

u

∣∣∣∣ du = ε.

We can always choose m̄ (k) sufficiently small and α (k) sufficiently large so that (EC.3) is

fulfilled.

EC.3. Laplace transforms

The conditional Laplace transforms for the Heston, SABR, OU-SV and 4/2 models follow,

respectively, from Broadie and Kaya (2006), Cai et al. (2017), Li and Wu (2019) and Grasselli

(2017, Proposition A.4).
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EC.3.1. Heston model

The Laplace transform of the conditional integrated variance is

L(a) = E

[
exp

(
−a
∫ t

u
σ2(s)ds

)∣∣∣∣σ(u), σ(t)

]
=
γ(a)e−(γ(a)−k)(t−u)/2(1− e−k(t−u))

k(1− e−γ(a)(t−u))
×

exp

{
σ2(u) + σ2(t)

v2

(
k(1 + e−k(t−u))

1− e−k(t−u)
− γ(a)(1 + e−γ(a)(t−u))

1− e−γ(a)(t−u)

)}
×

Id/2−1

(
σ(u)σ(t)4γ(a)e−γ(a)(t−u)/2

v2(1−e−γ(a)(t−u))

)
Id/2−1

(
σ(u)σ(t) 4ke−k(t−u)/2

v2(1−e−k(t−u))

) , (EC.4)

where γ(a) :=
√
k2 + 2v2a and Iν(·) denotes the modified Bessel function of the first kind.

EC.3.2. SABR model

The Laplace transform of the conditional reciprocal of the integrated variance is

L(a) = E

[
exp

{
−a
(∫ t

u
σ2(s)ds

)−1
}∣∣∣∣∣σ(u), σ(t)

]

= exp

−
g
(

ln σ(t)
σ(u) ,

av2

σ2(u)

)2
− ln

(
σ(t)
σ(u)

)2

2v2(t− u)

 , (EC.5)

where g(x, λ) := arcosh(λe−x + coshx).

EC.3.3. OU-SV model

The Laplace transform of the conditional integrated variance is

L(a) = E

[
exp

(
−a
∫ t

u
σ2(s)ds

)∣∣∣∣σ(u), σ(t),

∫ t

u
σ(s)ds

]
=
f(γ(a))

f(k)
, (EC.6)

where

f(x) :=
x2

2π
√
η(x)

exp

{
− 1

2η(x)v2

[
2x2

(
(σ(t) + σ(u))

∫ t

u
σ(s)ds− σ(u)σ(t)(t− u)

)
+

x2

(
(σ2(t) + σ2(u))(t− u)− 2(σ(t) + σ(u))

∫ t

u
σ(s)ds

)
cosh(x(t− u))+

x

(
x2

(∫ t

u
σ(s)ds

)2

− (σ(t)− σ(u))2

)
sinh(x(t− u))

]}

and

η(x) := 2− 2 cosh(x(t− u)) + x(t− u) sinh(x(t− u)).

EC.3.4. 4/2 and 3/2 models

The joint Laplace transform of
(∫ t

u σ
2(s)ds,

∫ t
u

ds
σ2(s)

∣∣∣σ2(u), σ2(t)
)

is
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E

[
exp

(
−a
∫ t

u
σ2(s)ds− b

∫ t

u

ds

σ2(s)

)∣∣∣∣σ2(u), σ2(t)

]

=

√
γ(a) sinh

(
k(t−u)

2

)
k sinh

(√
γ(a)(t−u)

2

) eσ2(u)+σ2(t)v2

(
k coth

(
k(t−u)

2

)
−
√
γ(a) coth

(√
γ(a)(t−u)

2

))

×

I√(2θk−v2)2+8v2b

v2

 2
√
γ(a)σ2(u)σ2(u)

v2 sinh

(√
γ(a)(t−u)

2

)


I 2θk
v2
−1

(
2k
√
σ2(u)σ2(t)

v2 sinh
(
k(t−u)

2

)
) . (EC.7)

The Laplace transform of
(∫ t

u
ds

σ2(s)

∣∣∣σ2(u), σ2(t)
)

in the 3/2 model follows as special case by

setting a = 0 in (EC.7).

EC.4. Sampling from the Pearson family of distributions

In what follows, we present the different Pearson distribution types and corresponding gen-

erators of random numbers Ŷ with zero mean, unitary variance β = 1, skewness
√
γ and kurtosis

ε. To this end, we consider first a few quantities that will be used next:

z := −
√
γ(ε+ 3) + sgn(

√
γ(ε+ 3))

√
γ1/2(ε+ 3)2 − 4(4ε− 3γ)(2ε− 3γ − 6)

2
, a1 :=

z

2ε− 3γ − 6
,

a2 :=
4ε− 3γ

z
, c0 :=

4ε− 3γ

10ε− 12γ − 18
, c1 :=

√
γ(ε+ 3)

10ε− 12γ − 18
, c2 :=

2ε− 3γ − 6

10ε− 12γ − 18
,

where sgn(x) := x/ |x| for x 6= 0 and sgn(0) := 0. Then:

Type I (four-parameter beta)

Ŷ ≡ a1 + (a2 − a1)B
(

c1 + a1

c2(a2 − a1)
+ 1,− c1 + a2

c2(a2 − a1)
+ 1

)
,

where B(a, b) denotes a random number generator from a beta distribution with parame-

ters a and b (see Devroye, 1986);

Type II (symmetric four-parameter beta)

Ŷ ≡ a1 + 2|a1|B
(
c1 + a1

2c2|a1|
+ 1,

c1 + a1

2c2|a1|
+ 1

)
;

Type III (three-parameter gamma)

Ŷ ≡ c1Γ

( c0
c1
− c1

c1
+ 1, 1

)
+ a1,

where Γ(a, b) denotes a random number generator from a gamma distribution with shape

parameter a and scale parameter b (see Marsaglia and Tsang, 2000);
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Type IV (density proportional to exp
(
−ν arctan(x−λa )

)
/
(
1 + (x−λa )2

)m
)

Ŷ ≡ PIV (m, ν, a, λ),

where PIV (m, ν, a, λ) is a random number generator from a Pearson Type IV based on

the exponential rejection method for log-concave densities of Devroye (1986, Section 7.2)

and adapted to this case by Heinrich (2004), with

m :=
1

2c2
, ν :=

2c1(1−m)√
4c0c2 − c2

1

, b := 2(m− 1), a :=

√
b2(b− 1)

b2 + ν2
, λ :=

aν

b
;

Type V (inverse gamma location-scale)

Ŷ ≡ −
c1 − c1

2c2

c2Γ( 1
c2
− 1, 1)

− c1

2c2
;

Type VI (F location-scale)

Ŷ ≡
(
a2 +

2(m2 + 1)(a2 − a1)

−2(m1 +m2 + 1)
F(2(m2 + 1),−2(m1 +m2 + 1))

)
1{a2<0}

+

(
a2 +

2(m1 + 1)(a2 − a1)

−2(m1 +m2 + 1)
F(2(m1 + 1),−2(m1 +m2 + 1))

)
1{a2≥0},

where 1{·} denotes the indicator of the event {·},

m1 :=
a1 + c1

c2(a2 − a1)
, m2 := − a2 + c1

c2(a2 − a1)

and F(a, b) is a random number generator from a Snedecor F distribution with numerator

and denominator degrees of freedom a and b respectively (see Devroye, 1986); and

Type VII (t location-scale)

Ŷ ≡
√

c0

1− c2
T
(

1

c2
− 1

)
,

where T (a) is a random number generator from a Student’s t distribution with a degrees

of freedom (see Devroye, 1986).

EC.5. Sampling from
(∫ t
u σ

2(s)ds,
∫ t
u

ds
σ2(s)

)
in the 4/2 model using a bivariate Pear-

son distribution approach

In this section, we focus on the special case of sampling from the couple
(∫ t

u σ
2(s)ds,

∫ t
u

ds
σ2(s)

∣∣∣σ2(t)
)
≡

(Ψ(u, t)|Φ(u, t)) in the 4/2 model (see also Section 4.5 of the paper).

Parrish (1987, 1990) propose a conditional nested factorization approach to simulating from

a multivariate Pearson distribution; for our purposes, we consider here the bivariate case and

the couple
(∫ t

u σ
2(s)ds,

∫ t
u

ds
σ2(s)

)
in the 4/2 model. To this end, define the cross-moments

µr1,r2 = E

[(∫ t

u
σ2(s)ds

)r1 (∫ t

u

ds

σ2(s)

)r2∣∣∣∣σ2(t)

]
=
∂r1+r2L (−a,−b)

∂ar1∂br2

∣∣∣∣
a=b=0

,
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where r1, r2 = {0, 1, 2, 3, 4}, r1 + r2 ≤ 4 and

L (a, b) = E

[
e
−a
∫ t
u σ

2(s)ds−b
∫ t
u

ds
σ2(s)

∣∣∣∣σ2(t)

]
is given by (EC.7). The simulation is then summarized in the following steps:

1. Simulate
(
σ2(t)

∣∣σ2(u)
)

based on σ2(t)
(law)
= χ′2d (λ) v2(1 − e−k(t−u))/4k, where χ′2d (λ) is

the noncentral chi-squared random variable with d = 4θk/v2 degrees of freedom and

noncentrality parameter λ = 4kv−2e−k(t−u)σ2(u)/(1− e−k(t−u))

2. Simulate
(∫ t

u
ds

σ2(s)

∣∣∣σ2(t)
)

having first fitted a Pearson curve by moments µ0,1, µ0,2, µ0,3, µ0,4

3. Compute µr1 := E
[(∫ t

u σ
2(s)ds

)r1∣∣∣ ∫ tu ds
σ2(s)

, σ2(t)
]

via equations (EC.8)–(EC.9)

4. Simulate
(∫ t

u σ
2(s)ds

∣∣∣ ∫ tu ds
σ2(s)

, σ2(t)
)

which follows a Pearson distribution law, if(∫ t
u σ

2(s)ds,
∫ t
u

ds
σ2(s)

∣∣∣σ2(t)
)

has a bivariate Pearson distribution (see Parrish, 1987 for a

proof of this).

Focusing on step 2, we have from Parrish (1990, equations 4–5) that

µ1 :=
b?1 − a?0
1− 2b?11

, µ2 :=
(2b?1 − a?0)µ1 + b?0

1− 3b?11

, (EC.8)

µ3 :=
(3b?1 − a?0)µ2 + 2b?0µ1

1− 4b?11

, µ4 :=
(4b?1 − a?0)µ3 + 3b?0µ2

1− 5b?11

(EC.9)

for

a?0 := a0 + a1x1, b?0 := −
(
b0 + b1x1 + b11x

2
1

)
,

b?1 := − (b2 + b12x1) , b?11 := −b22

with x1 a random sample from
(∫ t

u
ds

σ2(s)

∣∣∣σ2(t)
)

and a0, a1, b0, b1, b2, b11, b12, b22 satisfying the

system of linear equations (see Parrish, 1987, Figure 3)

µ0,0 µ1,0 0 0 µ0,0 0 µ1,0 2µ0,1

µ1,0 µ2,0 0 0 µ1,0 0 µ2,0 2µ1,1

µ0,1 µ1,1 µ0,0 µ1,0 2µ0,1 µ2,0 2µ1,1 3µ0,2

µ2,0 µ3,0 0 0 µ2,0 0 µ3,0 2µ2,1

µ1,1 µ2,1 µ1,0 µ2,0 2µ1,1 µ3,0 2µ2,1 3µ1,2

µ0,2 µ1,2 2µ0,1 2µ1,1 3µ0,2 2µ2,1 3µ1,2 4µ0,3

µ3,0 µ4,0 0 0 µ3,0 0 µ4,0 2µ3,1

µ2,1 µ3,1 µ2,0 µ3,0 2µ2,1 µ4,0 2µ3,1 3µ2,2

µ1,2 µ2,2 2µ1,1 2µ2,1 3µ1,2 2µ3,1 3µ2,2 4µ1,3

µ0,3 µ1,3 3µ0,2 3µ1,2 4µ0,3 3µ2,2 4µ1,3 5µ0,4





a0

a1

b0

b1

b2

b11

b12

b22


= −



µ0,1

µ1,1

µ0,2

µ2,1

µ1,2

µ0,3

µ3,1

µ2,2

µ1,3

µ0,4



.
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EC.6 More experimental results
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Figure 1: Computing times (in seconds) corresponding to each implementation step of Algorithm 2 as described
in Section 7.1 of the paper.
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Figure 2: Computing total times (in seconds) for the first four moments of the conditional integrated variance in
the Heston model

Table 1: Examples of differences between n-th analytical moments and moments of
(∫ T

0
σ2(s)ds

∣∣∣σ2(T )
)

com-

puted using Algorithm 1 conditional on the 25, 50, 75th percentiles of the terminal variance

H1 H5

n σ2(T ) = 0.003 σ2(T ) = 0.010 σ2(T ) = 0.026 σ2(T ) = 0.001 σ2(T ) = 0.008 σ2(T ) = 0.081

1 3.20e-11 -5.10e-11 2.27e-11 2.16e-11 3.68e-11 3.41e-12

2 2.41e-15 -2.00e-14 -1.30e-14 1.32e-13 -1.40e-13 -2.60e-13

3 6.18e-16 -5.20e-17 -7.30e-16 -2.80e-14 8.77e-14 -1.10e-14

4 -1.10e-17 -2.10e-17 1.54e-17 1.21e-14 3.15e-14 5.41e-15

EC.7. Advancing conditional Monte Carlo valuation

In this section, we present conditional Monte Carlo methods to improve the efficiency of

the simulation estimators for the prices of both path-independent options and path-dependent

options with payoffs dependent on the maximum (or minimum) of the trajectory of the underly-

ing asset’s price, such as barriers and lookbacks. Conditional option prices often have closed or

7



semi-closed-form representations and contribute to reducing the estimation error by eliminating

sources of noise via the conditioning (justified by Jensen’s inequality). By further developing a

line of work initiated by Willard (1997) for path-independent options in the Heston model, we

pave the way to a more general application which comprises different stochastic volatility mod-

els but also path-dependent and early-exercisable contracts. Although the principle is general,

the application is problem-specific as we show in the following sections.

EC.7.1. European path-independent options

Aiming to improve the efficiency of the simulation estimators under stochastic volatility

models, Willard (1997) proposed a conditional Monte Carlo approach. Let Π(T ) be a generic

payoff function which depends on the price of the underlying asset at some terminal time T > 0.

By conditioning on FσT , that is, the σ-algebra generated by {σ (t)}0≤t≤T , the derivative’s price

at time 0 is given by

E[e−rTΠ(T )] = E[e−rTE[Π(T )|FσT ]]

(e.g., see Billingsley, 1995, Theorem 33.3). Thereby, the volatility can be treated as a deter-

ministic quantity and the conditional derivative’s price then boils down to that in the simplified

model framework.

EC.7.1.1. Conditional Black–Scholes framework

For any of the Heston, SABR (β = 1), OU-SV, double Heston, 3/2 and 4/2 models, we

have shown in Section 4 of the paper that, under FσT , the asset price process is governed by a

lognormal model. Thereby, the conditional price of a European plain vanilla call option with

strike price K and maturity time T has the following Black–Scholes representation

E
[
e−rT (S(T )−K)+

∣∣FσT ] = e−rT

[
em0,T+ 1

2 s
2
0,TN

(
m0,T + s20,T − lnK

s0,T

)
−KN

(
m0,T − lnK

s0,T

)]
,

(EC.10)

where N (·) := (2π)−1/2 ∫ ·
−∞ exp

(
−z2/2

)
dz and

m0,T := E [ lnS(T )| FσT ] and s2
0,T := Var [ lnS(T )| FσT ] (EC.11)

are given for the different models in Section 4 of the paper.

EC.7.1.2. SABR model (β 6= 1)

Conditional lognormality does not hold in this case; instead, we avail ourselves of condition-

ing arguments and results from Cai et al. (2017, Theorem 5.1). Assuming that (S(t), t ≥ 0) has

an absorbing boundary at 0 and β 6= 1, we get

E
[
(S(T )−K)+

∣∣FσT ] (EC.12) = C0(1)
− 1

2(1−β)A
1+γ0

2
0 (1−Qχ′2(C0(K); 3 + γ0, A0))−KQχ′2(A0; 1 + γ0, C0(K)), ρ = 0

≈ C(1)
− 1

2(1−β)A
1+γρ

2 Ξ
(
−ρ2γρ

2 , C(K), 3 + γρ, A
)
−KQχ′2(A; 1 + γρ, C(K)), ρ 6= 0

,
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where Qχ′2(·; d, λ) is the noncentral chi-squared cumulative distribution function,

A0 :=

(∫ t

u
σ2(s)ds

)−1(
S(u)1−β

1− β

)2

, C0(y) :=

(∫ t

u
σ2(s)ds

)−1(
y1−β

1− β

)2

,

A :=

(
S(u)1−β

1−β + ρ
v (σ(t)− σ(u))

)2

(1− ρ2)
∫ t
u σ

2(s)ds
, C(y) :=

(
y1−β

1−β

)2

(1− ρ2)
∫ t
u σ

2(s)ds

for any y > 0,

γρ :=
β

(1− β)(1− ρ2)
, Ξ(p, k, δ, α) := 2p

∞∑
n=0

e−
α
2

(α
2

)n Γ̄(δ/2 + p+ n, k/2)

n!Γ̃(δ/2 + n)
,

Γ̃ is the gamma function, and Γ̄ the complementary incomplete gamma function.

EC.7.2. Option payoffs dependent on extreme asset values

Next, we show that the original methodology for plain vanilla options applies more generally

to exotic payoff structures, which are sensitive to extremal values of the underlying asset, and

obtain pricing expressions that can be related to their counterparts in the Black–Scholes model.

This is important as it removes a layer of complexity originating from the more sophisticated

driving model and the induced curse of dimensionality when considering, for example, alterna-

tive transform techniques, and offers a speed advantage and increased precision by reducing the

sampling uncertainty. This application highlights the significance of Monte Carlo valuation in

covering notably more complex models and payouts.

EC.7.2.1. Conditional Black–Scholes framework

Conditional on the information of the volatility path generated up until time T , the deriva-

tive’s (forward) price is given by

E[Π(T )|FσT ], (EC.13)

where Π(T ) depends on the maximum or minimum value of the underlying asset price up to T ,

like an up-and-out barrier call or lookback put (see Section 6 of the paper for the payoffs). As in

the path-independent case, for any of the Heston, SABR (β = 1), OU-SV, double Heston, 3/2

and 4/2 models, the computation of (EC.13) reduces to a more standard Black–Scholes type

problem. To this end, define

M(T ) = max
0≤t≤T

ln
S(t)

S(0)
and M(T ) = min

0≤t≤T
ln
S(t)

S(0)
.

To compute (EC.13) under FσT , we require, depending on the exact payoff specification, quan-

tities (e.g., from De Gennaro Aquino and Bernard, 2019) including the conditional joint prob-

ability density function of (ln (S(t)/S(0)) ,M(T )) and
(
ln (S(t)/S(0)) ,M(T )

)
given by

f± (y, x) =
±
√

2(2x− y)√
πs3

0,T

e
−

(2x−y)2−2m0,T y+m
2
0,T

2s2
0,T ,
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where in ± the top case applies for M(T ) and the bottom for M(T ), and m0,T and s2
0,T are as

in (EC.11). In addition, the conditional marginal density of M(T ) and M(T ) is

f±(x) =

√
2√

πs0,T
e
−

(m0,T−x)
2

2s2
0,T ∓

2m0,T

s2
0,T

e

2m0,T x

s2
0,T N

(
∓
x+m0,T

s0,T

)
,

where, in ± and ∓, the top case applies for M(T ) and the bottom for M(T ). For example, for

an up-and-out barrier call option with a fixed strike K and barrier U we have

E[Π(T )|FσT ] =

∫ ln U
S(0)

−∞

∫ x

ln K
S(0)

(S(0)ex −K)f+ (y, x) dydx (EC.14)

or, for a lookback put with fixed strike K,

E[Π(T )|FσT ] =

∫ ln K
S(0)

−∞
(K − S(0)ex)f− (x) dx, (EC.15)

where K := min (K,S0).

In the interest of space, we refrain from presenting here analytical solutions to (EC.14) and

(EC.15), which can be obtained easily with the aid of a symbolic toolbox such as Mathematica.

We also do not present expressions for other contracts, such as down-and-out barrier or floating-

strike lookback options, as they follow trivially based on the same arguments, but we can provide

these upon request.

EC.7.2.2. SABR (β 6= 1, ρ = 0) model

As explained earlier, the case of the SABR model requires a more special treatment. By

conditioning with respect to the variance path, the SABR model with ρ = 0 reduces to a CEV

diffusion, therefore conditional Monte Carlo methods for lookback and barrier options are still

feasible. For example, for a lookback put option we get by conditional CEV diffusion from

Davydov and Linetsky (2001, Lemma 1) that

E[Π(T )|FσT ] =


∫K

0 F
(
y;S(0),

∫ T
0 σ2(s)ds

)
dy, S(0) ≥ K

K − S(0) +
∫ S(0)

0 F
(
y;S(0),

∫ T
0 σ2(s)ds

)
dy, S(0) < K

, (EC.16)

where F (·; ·, ·) satisfies for any a > 0

∫ ∞
0

e−awF (y;x,w)dw =
1

a

√
x

y

Kv

(√
2ax1−β

|β−1|

)
Kv

(√
2ay1−β

|β−1|

) , 0 < y ≤ x (EC.17)

and Kv(·) is the modified Bessel function of the second kind with v := 1/(2 |β − 1|) degrees of

freedom. Relevant results for knock-out barrier options are available in Davydov and Linetsky

(2001, Proposition 3). It is worth noting that (EC.16) depends just on the unconditional∫ T
0 σ2(s)ds, which can still be simulated using the method prescribed in this paper. Finally, the

integrals in (EC.16) can be computed by quadrature and F (·; ·, ·) using, for example, the Euler

inversion algorithm of Abate and Whitt (1995).
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We conclude this part by applying the mixing Monte Carlo moment-based approach with

the semi-analytical formula (EC.16) to price a fixed-strike continuously monitored lookback put

option in the SABR model. This way we also bypass the simulation of the intermediate values of

the process. We compare with the method of Chen et al. (2012) implemented over a refined time

grid. From Table 2, the prices from the two methods are comparable but the variance reduction

brought in by the mixing approach is substantial. Despite the seemingly high computing time,

it is worth noting that our mixing approach is considerably faster than a continuous-monitoring

approximation based on a very dense time grid for an especially power-demanding simulation

such as that of the SABR model (see Section 4.2 of the paper). In addition, the path-dependent

SABR case is the most intensive one (see equation EC.17), whilst any other model case in

Section EC.7.2 is significantly simpler and faster.

Table 2: Lookback option prices (with standard errors, s.e.) in the SABR model

Method price s.e. time price s.e. time price s.e. time

SABR1 SABR2 SABR4

Chen et al. 0.0446 1.22e-05 490.72 0.04685 9.70e-06 1605.72 0.3542 1.59e-04 2421.91

Hybrid 0.0448 2.10e-06 345.31 0.04688 2.00e-06 347.17 0.3543 6.56e-05 296.11

Notes. Hybrid analytical (formula EC.16)-conditional Monte Carlo (based on fitted Pearson to the integrated

variance). Benchmark: Chen et al. (2012) with 104 time steps per year. All computing times are in seconds and

correspond to M = 106 simulations.

EC.8. The CGMY model

As explained, for example, in Ballotta and Kyriakou (2014), similarly to other popular

Lévy models, like the variance gamma or normal inverse Gaussian, the Carr–Geman–Madan–

Yor (CGMY) model can be represented as a subordinated arithmetic Brownian motion; unlike

those though, the subordinator is only known via its Laplace transform.

More specifically, the CGMY process is given by

X(t) = θZ(t) +W (Z(t)), (EC.18)

where W is a standard Brownian motion, θ := (G−M) /2 and Z is a subordinator independent

of W with Laplace transform

E
[
e−aZ(t)

]
= exp

(
(t− u)CΓ (−Y )

(
2 (2a+GM)Y/2 cos (ξ (a;G,M)Y )−MY −GY

))
, u < t,

(EC.19)

where ξ(a;G,M) := arctan
(
θ̃−1
√

2a− θ2
)

and θ̃ := (G+M) /2.

In view of the above, our moment-based random number generator can be adapted to the

efficient simulation of the CGMY model trajectories as follows:

1. Compute the moments of Z (t) (via, for example, Choudhury and Lucantoni, 1996) based

on (EC.19)

2. Simulate Z (t) using a fitted a Pearson curve to the corresponding theoretical distribution

3. Simulate W subject to time-change Z (t) and, consequently, X (t) according to (EC.18).
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In addition, in financial modelling, the related asset price process under the risk neutral

measure is

S (t) = S (u) exp ((r + ω) (t− u) +X (t)) ,

where ω := −CΓ (−Y )
(

(G+ 1)Y −GY + (M − 1)Y −MY
)

. Conditionally on Z (t), we also

have that

( lnS(t)| lnS(u), Z(t)) ∼ N (m, s2),

where m := lnS(u) + (r + ω)(t − u) + ((G −M)/2)Z(t) and s2 := Z(t). By analogy to the

exposition in Section EC.7.1.1, we get, based on the relevant conditioning argument on this

occasion, that

E
[
e−r(t−u) (S(t)−K)+

∣∣∣Z(t)
]

= e−r(t−u)

[
em+ 1

2
s2N

(
m+ s2 − lnK

s

)
−KN

(
m− lnK

s

)]
.

(EC.20)

Some numerical results are reported in Table 3. The simulation of the CGMY process is

remarkably fast as its increments are independent and we no longer face a conditional Laplace

transform of Z, which also does not involve special functions that can severely slow down the

overall execution, simplifying considerably the simulation task. Similarly to the other models

in the paper, our scheme clearly converges also in this case as shown in Figure 3.

Table 3: European plain vanilla call option prices (with standard errors, s.e.) in the CGMY model

True option price 20.1965 Bias (s.e.) 0.0005 (0.001)

M× 104 4 16 64 256

RMSE 0.1726 0.0866 0.0432 0.0216

Time 0.01 0.02 0.08 0.32

Notes. True (reference) prices via the method of Fang and Oosterlee (2008) based on parameters S(0) = K = 100,

C = 0.9795, G = 3.512, M = 10.96, Y = 0.8, r = 4%, T = 1 (Černý and Kyriakou, 2011, Table 2). Hybrid

analytical (formula EC.20)-conditional Monte Carlo (based on fitted Pearson to Z(T )) based on M simulation

trials for use in RMSE and bias computed as in Section 7.2 of the paper. All computing times are in seconds.

Figure 3: Convergence of our hybrid-conditional Monte Carlo method in the CGMY model: the case of European
plain vanilla call option
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EC.9. Mean-reverting normal model with Heston stochastic volatility

Evidence of mean-reversion is abundant in various markets including commodities, curren-

cies, energy and temperature. In particular, a mean-reverting model for commodity (such as

gas and electricity) log-spot prices with stochastic volatility is postulated by Geman (2005) but

also more recent researches such as Kyriakou et al. (2016):

dS(t) = αS(t)(β − lnS(t))dt+ σ(t)S(t)
(
ρdW2(t) +

√
1− ρ2dW1(t)

)
, (EC.21)

dσ2(t) = k(θ − σ2(t))dt+ vσ(t)dW2(t), (EC.22)

where α and k are the speeds at which each of processes S and σ revert to their equilibrium

levels. The correlation ρ allows for possible inverse leverage effect, i.e., high prices associated

with high volatility translating to ρ > 0. Substituting (EC.22) in (EC.21) yields on the log-scale

d lnS(t) = α

(
β − σ2(t)

2α
− lnS(t)

)
dt+

ρ

v
dσ2(t)− ρk

v
(θ − σ2(t))dt+ σ(t)

√
1− ρ2dW1(t),

(EC.23)

from which

lnS(t) = lnS(u) +

(
αβ − ρkθ

v

)
(t− u) +

(
ρk

v
− 1

2

)∫ t

u
σ2(s)ds

+
ρ

v

(
σ2(t)− σ2(u)

)
− α

∫ t

u
lnS(s)ds+

√
1− ρ2

∫ t

u
σ(s)dW1(s).

In its form (EC.23), for lnS ≡ r the short-term interest rate, the model reflects the well-known

Fong and Vasicek (1992) two-factor model of the term structure, which explicitly recognizes the

interest rate volatility as a stochastic factor.

The main challenge here is the loss of analytical tractability due to the mean-reversion in

the lnS dynamics which leads to the extra lnS time integral in the expression above. In this

case, we find that a combinatory solution of our Pearson fit for the integrated variance and

a central discretization of the lnS time integral along the lines of Andersen (2008) is so far

the best compromise between accuracy, complexity and computational speed. The proposed

method also improves upon the Monte Carlo valuation based on SDE discretization of Clewlow

and Strickland (1997) for interest rate derivatives.

EC.10. Simple corrections for early exercise and discrete path-dependence

EC.10.1. Early-exercisable contracts

In this paper, we also consider a simple, yet efficient, way for pricing American-style con-

tracts based on standard Monte Carlo valuation, bypassing the use of a bridge for sampling in

reverse time or least-squares Monte Carlo. By suitable conditioning arguments based on the

generated path of the volatility process, we wind up in more simplified frameworks, such as a

conditional lognormal, which endow us with easily computable, even if approximate, solutions

for American options, such as the basic Barone-Adesi and Whaley (1987). In Table 4, we present

some results from this application. Better solutions in a model setting with conditionally deter-

ministic parameters can be potentially obtained based on transform techniques (e.g., see Fang
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and Oosterlee, 2009), but combined with Monte Carlo valuation they can be quite prolonged

and sensitive to grid parameters. An approximate solution is likely to lead to a biased price

estimate, where any bias is due to the basal American option price solution, still it offers an ad-

equate runtime–accuracy balance to be an effective counterforce to a two-dimensional transform

technique.

Table 4: American and European plain vanilla option prices in the Heston model

S(0) 8 9 10 11 12

European (hybrid method) 1.8388 1.0483 0.5015 0.2080 0.0804

American (hybrid method) 1.9999 1.1096 0.5200 0.2149 0.0834

American ref. value 2.0000 1.1076 0.5200 0.2137 0.0820

Error 1.19e-04 2.02e-03 1.02e-05 1.22e-03 1.34e-03

Notes. Hybrid analytical approach (formula EC.10 for Europeans; Barone-Adesi and Whaley, 1987 for

Americans)-conditional Monte Carlo (based on fitted Pearson distribution to the integrated variance). American

reference values: Fang and Oosterlee (2011) based on parameters S(0) = {8, 9, 10, 11, 12},K = 10, T = 0.25, r =

0.1, k = 5, θ = 0.9, v = 0.16, σ2(0) = 0.0625, ρ = 0.1.

EC.10.2. Connecting discrete and continuous path-dependence

As discussed in Section EC.7, apart from simplifying the valuation process by reducing

to a more basic underlying model, conditional Monte Carlo valuation brings in considerable

variance reduction. Therefore, having in hand an accurate price estimate for a continuous path-

dependent option, such as a lookback or a barrier, as we studied in Section EC.7, enables us to

obtain the discrete counterpart using relevant corrections as in Broadie et al. (1999). This is

very convenient as the accuracy of the continuous price estimate is transferred to the discrete

counterpart, subject to the error of the correction, and eventually gives us access to option

prices under more sophisticated stochastic volatility models which otherwise would be hard, if

not impossible, to compute.

EC.11. Greeks

Unbiased estimation of option Greeks using Monte Carlo simulation is not as straightforward

as the computation of option prices due to potential discontinuities in the option payoff function,

such as, for example, in the case of barrier and digital options. In general, the standard

two methods for the sensitivities are the pathwise (PW) and likelihood ratio (LR) method

introduced by Broadie and Glasserman (1996). Both rely on an interchange of integration and

differentiation under certain regularity conditions which are easier to justify for the LR method,

as density functions are usually smooth functions of their parameters whereas payoff functions

are not. Conditioning arguments simplify the problem as they offer us direct access to standard

densities. For more details, refer to Broadie and Kaya (2004, 2006).
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