Review

Fetal Diagnosis

Fetal Diagn Ther 2019;45:1–12 DOI: 10.1159/000491788 Received: May 3, 2018 Accepted after revision: July 2, 2018 Published online: September 17, 2018

The Recurrence Risk of Fetomaternal Hemorrhage

Libera Troìa^a Huda B. Al-Kouatly^b Rebekah McCurdy^b Peter S. Konchak^c Stuart Weiner^b Vincenzo Berghella^b

^aObstetrics and Gynecology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; ^bDivision of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA; ^cDepartment of Obstetrics and Gynecology, Inspira Medical Center, Vineland, NJ, USA

Keywords

Fetomaternal hemorrhage · Massive fetomaternal hemorrhage · Fetomaternal transfusion · Intrauterine transfusion · Fetal anemia

Abstract

Massive fetomaternal hemorrhage (FMH) can cause devastating pregnancy outcomes. Perinatal prognosis may be improved by intrauterine transfusion, but the appropriate management for these pregnancies remains unclear. To determine the recurrence risk of FMH after intrauterine transfusion, we performed a systematic review of all case reports/ series of patients with proven FMH treated with intrauterine transfusion and who had subsequent follow-up of at least 72 h until delivery. This revealed 13 cases, with 1 additional case from our institution. Ten patients (71.4%) had a second episode of FMH requiring a second intrauterine transfusion. Five patients (35.7%) required at least 3 intrauterine transfusions. The time interval between intrauterine transfusions was progressively reduced. The gestational age at the onset of signs/symptoms was 26.6 \pm 2.1 weeks, and gestational

KARGER

© 2018 S. Karger AG, Basel

E-Mail karger@karger.com www.karger.com/fdt age at delivery was 34.2 ± 4.2 weeks. Two cases of fetal demise (14.3%) and no neonatal deaths were recorded. Limited postnatal follow-up on 8 neonates was normal. The mean neonatal hemoglobin and transfusion rates were 13.2 ± 5.7 g/dL and 33.3%, respectively. Close fetal monitoring, likely daily, is necessary to recognize FMH recurrence. Several transfusions may be necessary once FMH is diagnosed if pregnancy is allowed to continue >72 h.

© 2018 S. Karger AG, Basel

Background

Fetomaternal hemorrhage (FMH) is defined by the transfer of fetal blood into the maternal circulation during pregnancy. It occurs in the majority of pregnancies, usually without any maternal or fetal risk factors or consequences [1]. There is no standard definition for FMH, and the incidence varies depending on the fetal blood volume that is considered significant. If all degrees of FMH are included, the incidence increases during pregnancy: 4% in the first trimester, 12% in the second trimester, 45%

Vincenzo Berghella, MD Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology Thomas Jefferson University 833 Chestnut, Philadelphia, PA 19107 (USA) E-Mail vincenzo.berghella@jefferson.edu in the third trimester, and 60% during delivery [1, 2]. Massive FMH is defined at 30 or 80 mL with an incidence of 0.3 or 0.1%, respectively [3].

Pathophysiologically, FMH disrupts the fetomaternal circulatory interface and trophoblast damage due to inflammatory and mechanical factors, although understanding the etiology remains incomplete [4]. It has been known that FMH can result from invasive obstetrical procedures (e.g., amniocentesis), trauma, placental abruption, and labor augmentation with oxytocin, among others [3, 5]. Case reports have described a possible association of FMH with other pregnancy and intrapartum events like preeclampsia [6] or the placement of intrauterine pressure catheter [7]. Massive FMH may recur in a subsequent pregnancy [8, 9].

Massive FMH often leads to adverse pregnancy outcomes, including stillbirth, hypoxic-ischemic encephalopathy, prematurity, and severe neonatal anemia [3]. Nearly half of the cases of massive FMH are only diagnosed in the early neonatal period or present as fetal death, but precise estimates of adverse outcomes are unknown [10].

Early detection of FMH is critical [10]. Clinical examination, nonstress test (NST), and routine ultrasonography are often ineffective. Decreased fetal movement is nonspecific for fetal anemia [11]. NST can show nonspecific patterns of decelerations. Sinusoidal pattern clearly indicates that fetal anemia must be suspected and managed [12, 13]. Middle cerebral artery peak systolic velocity (MCA-PSV) Doppler measurement may have a role in the evaluation and monitoring of suspected fetal anemia [14–16]. The detection of fetal cells in the maternal blood is necessary for the confirmation of FMH. The most widely used test remains the Kleihauer-Betke test; another methods are flow cytometry and liquid chromatography [12].

The management of massive FMH mainly depends on the gestational age of diagnosis, availability of cordocentesis that allows for fetal blood sampling to diagnose fetal anemia and perform fetal transfusion if needed, and the capability of the neonatal intensive care unit (NICU). When the fetus is at 32–34 weeks and in the presence of fetal compromise, delivery may be justified. Before 32 weeks of gestation, correction of the anemia in utero should be considered. After 32 weeks, the risk of complications of intrauterine transfusion (IUT) should be balanced with the risk of prematurity and/or neonatal transfusion [16]. When FMH occurs before 32 weeks, IUT is a well-established procedure to treat fetal anemia [17], but it is still unclear what is the proper monitoring of these pregnancies after the first IUT and what is the recurrence rate. The objective of our study was to determine the recurrence rate of FMH after IUT in order to understand the natural history of FMH and therefore improve fetal outcomes.

Data Sources

This review was performed according to a protocol designed a priori and recommended for systematic review and meta-analysis [18]. Electronic databases (i.e., MEDLINE, Scopus, OVID, Web of Science) were searched from their inception until December 2017. Search terms used were a combination of keywords: "fetomaternal hemorrhage," "massive fetomaternal hemorrhage," "severe fetomaternal hemorrhage," "fetomaternal transfusion," "intrauterine transfusion," "in utero transfusion," "in utero treatment," "fetal anemia," "non-immune hydrops fetalis." No restrictions for language or geographic location were applied. In addition, the reference lists of all identified articles were examined to identify studies not captured by electronic searches. The electronic search and eligibility of the studies were independently assessed and reviewed by two authors (L.T., V.B.). Differences were discussed, and consensus was reached.

We included all case reports and case series of proven FMH in singleton gestation treated with IUT with subsequent delay until delivery of at least 72 h. Proven FMH was defined as a pregnancy with a positive laboratory test (Kleihauer-Betke test or liquid chromatography method) and a diagnosis of fetal anemia and lack of other etiologies for fetal anemia. Fetal anemia was defined as a hemoglobin of <10 g/dL and/or hematocrit of <30% on cordocentesis [19]. One additional case at our institution was included. The Institutional Review Board approval was obtained, and the patient provided documented informed consent.

Exclusion criteria included: FMH diagnosed after delivery or during pregnancy that did not require IUT, massive FMH followed by immediate delivery, FMH treated with 1 course of IUT and subsequent delivery within 72 h, and FMH not confirmed by laboratory tests. Cases in which delivery occurred within 72 h of the first IUT for FMH were excluded in an effort to allow sufficient time to establish a natural history of recurrence.

Fetuses receiving IUT for severe fetal anemia associated with other causes, such as red cell alloimmunization, congenital infection, congenital anomalies and genetic disorders were excluded. Multiple gestations were excluded. Maternal and neonatal characteristics were extracted. Details of the IUT were also obtained. Histopathological examination of placenta was reviewed.

The primary outcome was the recurrence rate of FMH after IUT. Secondary outcomes were: latency period from FMH onset to birth, time interval between IUTs, total amount of blood volume transfused before birth, gestational age at birth, mode of delivery, incidence of perinatal/neonatal death, admission to NICU, 1- and 5-min Apgar <7, number of neonates transfused, postnatal follow-up, and the rate of placental abnormalities.

Statistical Analysis

The Cochrane handbook for systematic reviews of interventions, version 5.1.0 (update March 2011) [18] was followed for systematic review of observational studies. Statistical analysis was

First author [Ref.],	Age, wears	GA at admission	Presenting signs/	Confirmation of FMH	Intrauterin	e transfusic	u			GA at delivery	Gender	Mode	Indication	Neonatal weight	Hb/Hct, a/d1 /%	Neonatal trans-	Neonatal
).cu) caro	weeks + days	at admission		estimated fetal blood loss, mL	GA, weeks + days	volume transfused, mL	Hb pre, g/dL	Hct pre, %	weeks + days		delivery	delivery	00 M	2 Junio Sol	fusion	
Rouse [20], 1990	28	33+5	FH	FH	230	33+5 34+0	185 130	2.2 5.4	6.5 16	34+1	ц	UCS	Persistent FMH	2,380	3.7/11	Yes	Cardiomegaly, hepatitis
Elliott [21], 1991	31	30+3	DFM Sinusoidal FHR	KB test pos.	150	30+3	100	3.2	12.1	30+3	NR	UCS	Prolonged bradycardia	1,760	NR/38	Yes	HMD, hyperbilirubinemia
Elliott [21], 1991	33	31+5	DFM Sinusoidal FHR	KB test pos.	65	31+5	40	2.4	7.0	31+5	NR	UCS	Prolonged bradycardia	1,480	NR/NR	Yes	Mild RSD, moderate hearing loss
Baschat [22], 1998	37	29+3	Sinusoidal FHR ↑ MCA-PSV UC	KB test pos.	180	29+3 29+3 ^a	50 NR	NR NR	<11 NR	29+4	NR	UCS	NRFHR DFM	1,250	NR/NR	Yes	IVH, moderate RDS
Weisberg [23], 2004	27	36	FH DFM Sinusoidal FHR ↑MCA-PSV	KB test pos.	288	36	130	2.7	NR	36+1	ц	PCS	Planned decision with parents	2,540	12.8/NR	No	No
Amann [24], 2011	NR	NR	↑MCA-PSV	KB test pos.	NR	29+1 29+3 29+4	NR NR NR	3.3 4.3 7.3	NR NR NR	29+4	NR	NR	Significant Hb drop	1,255	15.1/NR	No	NR
Amann [24], 2011	NR	NR	FH ↑MCA-PSV	KB test pos.	NR	29+2 29+3	NR NR	3.1 5	NR NR	29+3	NR	NR	Significant Hb drop	1,570	8.0/NR	Yes	NR
Amann [24], 2011	NR	NR	↑MCA-PSV	KB test pos.	NR	29+6 30	NR NR	6.5 11.3	NR NR	30	NR	UCS	Bradycardia	1,490	12.6	Yes	NR
DFM, decreased cerebral artery peak s second IUT was perfi	fetal mo ystolic ve ormed 5]	vements; FH, 1 slocity; NR, nc h after the first	fetal hydrops; FHR, 1 ot reported; NRFHR, t with the intention o	fetal heart rate; G. , nonreassuring fo of further raising	A, gestation etal heart rai the fetal her	al age; Hb, :e; pos., po; natocrit.	hemoglobin; l sitive; UC, ute	Hct, hem rine con	atocrit; HI tractions;	MD, hyaliı UCS, unpl	ne membr anned ces	ane disease arean secti	;; IVH, intraventric on; PCS, planned c	ular hemoi cesarean sec	rrhage; KB, l ction; RDS, i	Kleihauer-B respiratory c	etke; MCA-PSV, middle listress syndrome. ^a The

Table 1. FMH treated with IUT followed by delivery within 72 h

The Recurrence Risk of Fetomaternal Hemorrhage

First author [Ref.], year	Age, years	Gravidity and parity	Blood group	Antibody screen	Genetic testing	Infection screening	Hemo- globino- paties	Pregnancy course	Karyo- type	MSAFP at admission, ng/ml ^a
Cardwell [25], 1988	24	G3 P1011	0, Rh- positive	Neg	NR	Neg	Neg	Normal	NR	NR
Tannirandorn [26], 1990	32	G1 P0	A, Rh- positive	Neg	NR	Neg	Neg	Normal	NR	483
Fischer [27], 1990	34	G1 P0	0, Rh- positive	Neg	Amniocentesis at 16 weeks	Neg	NR	First-trimester vaginal bleeding	NR	13,473 (normal <430)
Thorp [28], 1992	26	G3 P1011	0, Rh- positive	Neg	NR	Neg	NR	Normal	46,XX ^b	NR
Kohlenberg [29], 1994	36	G2 P1001	0, Rh- positive	Neg	Amniocentesis at 15 weeks	Neg	Neg	Normal	46,XX ^c	NR
Montgomery [30], 1995	26	G1 P0	A, Rh- positive	Neg	NR	Neg	NR	Normal	46,XX ^c	NR
Lipitz [31], 1997	29	G1 P0	0, Rh- positive	Neg	NR	NR	NR	Normal	NR	NR
Hartung [32], 2000	35	G1 P0	B, Rh- positive	Neg	NR	NR	NR	Normal	46,XX ^b	NR
Rubod [16], 2006	34	G5 P4004	A, Rh- positive	NR	NR	Neg	Neg	Normal	46,XX ^b	NR
Votino [33], 2008	33	G1 P0	0, Rh- positive	Neg	NR	Neg	Neg	Normal	46,XX ^b	NR
Sifakis [34], 2010	37	G5 P2113	Blood type NR, Rh- positive	NR	Amniocentesis at 16 weeks	Neg	Neg	Normal	46,XX ^c	NR
Friszer [35], 2010	26	G2 P1001	NR	Neg	NR	Neg	Neg	1.4 g protein- uria/24 h at 28 weeks	NR	NR
Stefanovic [36], 2013	34	G1 P0	AB, Rh- positive	Neg	NR	Neg	Neg	Normal	NR	NR
Our case, 2017	33	G3 P2002	A, Rh- negative	Pos ^d	NIPT neg	Neg	Neg	Fever at 30 weeks	Not done	Not done
Mean ± SD	31.3±4.3									

Table 2. Maternal characteristics

MSAFP, maternal serum alpha fetoprotein; Neg, negative; NIPT, noninvasive prenatal test; NR, not reported; SD, standard deviation. ^a The values were not recorded as MOM. ^b Karyoptype obtained from fetal blood. ^c Karyotype obtained from amniotic fluid. ^d For anti-D s/p Rhogam administration.

performed for continuous variables by calculating the median or the mean and standard deviation. Categorical outcomes were reported as percentages.

Results

A total of 22 cases of FMH treated with IUT were identified. No randomized controlled trials were identified. Eight cases of FMH (Table 1) were excluded from our review because delivery occurred within 72 h from the first IUT [20–24].

Maternal characteristics of the 14 cases of FMH with subsequent follow-up of at least 72 h are noted in Table 2 [16, 25–36]. Mean maternal age was 31.3 ± 4.3 years, and 50% (7/14) of patients were nulliparous. Karyotype was performed on 7 fetuses (all normal). Cell-free fetal DNA was reported for only 1 patient, and it was normal. Workup for infection was reported negative in 12 patients screened. Hemoglobinopathy screening was done on 9

Table 3. Features at admission

First author [Ref.],	GA onset	Presenting	GA at	Ultrasound			MCA-PSV,	Indication	KB test	Estimated	NST
year	of signs/ symptoms	signs/symptoms	admission, weeks + days	AF	FH	other features	cm/s (MoM)	for cordocentesis		volume of FMH, mL	
Cardwell [25], 1988	21	Asymptomatic	21	Polyhydramnios	Yes	Placentomegaly	NR	KB test	Pos	20	NR
Tannirandorn [26], 1990	27+4	DFM	28	Polyhydramnios	Yes	Placentomegaly	NR	KB test	Pos	113	Normal
Fischer [27], 1990	29	DFM for 2 weeks and AFM for 3 days	31	Normal	No	Enlarged fetal liver, normal placenta	NR	KB test	Pos	180	Sinusoidal FHR
Thorp [28], 1992	26	Asymptomatic	26	NR	Yes	Placentomegaly	NR	KB test	Pos	100	Poor variability and intermittent prolonged decelerations
Kohlenberg [29], 1994	26	DFM	26+2	Normal	No	AFM, large placen- tal venous lake	NR	KB test	Pos	50	130 FHR with reduced variability
Montgomery [30], 1995	27	Uterine size greater than GA	27	Polyhydramnios	Yes	NR	NR	KB test	Pos	300	NR
Lipitz [31], 1997	27	Abdominal trauma	27	Normal	No	Normal BPP, normal placenta	NR	KB test	Pos	250	Normal
Hartung [32], 2000	28	Asymptomatic	28	NR	Yes	Thickened placenta	NR	FH	Pos	250	NR
Rubod [16], 2006	28+2	DFM	28+5	NR	Yes	Placental edema	77 (2.10)	FH and sinusoidal FHR	Pos	240	140 FHR with isolated decelerations
Votino [33], 2008	25+5	DFM	26+5	NR	Yes	Placental edema	73 (2.16)	KB test	Pos	90	Very low short-term variability and no accelerations
Sifakis [34], 2010	24	Asymptomatic	24	Polyhydramnios	Yes	Placental edema	84 (2.73)	KB test	Pos	32	NR
Friszer [35], 2010	28	Asymptomatic, proteinuria	29+2	NR	Yes	NFM	71 (1.83)	KB test	Pos	75	Normal
Stefanovic [36], 2013	26+5	DFM	27+1	Reduced	No	AFM	55 (1.55)	LCM pos	Pos	>80	Sinusoidal FHR with variable decelerations
Our case, 2017	29+6	DFM	31+5	Normal	No	Fetal ascites and hepatomegaly	63.4 (1.48)	KB test, increased MCA-PSV	Pos	35	Nonreactive
Mean ± SD	26.6±2.1		27.1±2.4				70.6±10.7 (1.95±0.45)			129.6±94.9	

AF, amniotic fluid; AFM, absent fetal movements; BPP, biophysical profile; DFM, decreased fetal movements; FH, fetal hydrops; FHR, fetal heart rate; Ga, gestational age; KB, Kleihauer-Betke; LCM, liquid chromatography method; MCA-PSV, middle cerebral artery peak systolic velocity; NFM, normal fetal movements; NST, nonstress test; NR, not reported; Pos, positive; SD, standard deviation.

patients, and results were negative. One case had a febrile illness at 30 weeks with a negative parvovirus infection workup.

The gestational age at the onset of signs and/or symptoms was 26.6 ± 2.1 weeks, and the gestational age at admission was 27.1 ± 2.4 weeks (Table 3). Indications for referral were: decreased fetal movements alone (35.7%, 5/14), fetal hydrops alone (28.6%, 4/14), fetal hydrops plus decreased fetal movements (14.3%, 2/14), fetal hydrops plus proteinuria (7.1%, 1/14), maternal abdominal trauma (7.1%, 1/14), and uterine size greater than gestational age (7.1%, 1/14). Five patients (35.7%) were asymptomatic and signs of fetal hydrops were revealed only with routine ultrasound evaluation. Ultrasound assessment at admission showed fetal hydrops in 64.3% (9/14), abnormal placental size in 53.8% (7/13) and polyhydramnios in 44.4% of patients (4/9). The MCA-PSV at admission was

available in 6 patients; the mean of multiple of the medians (MoM) was 1.95 ± 0.45 . FMH was confirmed by laboratory testing in all cases (13 with Kleihauer-Betke test and 1 with liquid chromatography method). The mean estimated volume of FMH was 129.6 ± 94.9 mL. The decision to perform cordocentesis was triggered by a positive Kleihauer-Betke test in 78.6% (11/14). NST upon admission was described in 10 patients and was categorized as nonreactive, with reduced variability and decelerations in 5 (50%), normal in 3 (30%), and sinusoidal in 2 (20%).

A total of 39 successful IUTs were performed (Table 4) on the 14 patients. The first IUT was performed at 27.1 ± 2.4 weeks, and this occurred 4.5 ± 4.3 days from the onset of sign/symptoms suggestive of FMH. The detection of fetal anemia before the first IUT was triggered most by the following features: fetal hydrops plus positive laboratory testing (42.8%, 6/14) and decreased fetal movements

First author [Ref.], year	Intra	uterine transfi	usion									Monitoring
	n n	GA, weeks + days	MCA-PSV before IUT, cm/s (MoM)	MCA-PSV after IUT, cm/s (MoM)	indication	Hb pre, g/dL	Hct pre, %	Hb post, g/dL	Hct post, %	transfused volume, mL	total volume transfused in all IUTs, mL	
Cardwell [25], 1988	1	21	NR	NR	FH with KB test pos.	NR	NR	NR	NR	50^{a}	50	Serial KB testing and US
Tannirandorn [26], 1990	-	28 ^b 29	NR	NR	DFM with KB test pos. Scheduled, no fetal anemia, no IUT ^d	5.8 12.6	17.2 37	NR	36.7	65 ^c 0	65	NR
Fischer [27], 1990	5	31 31+5	NR	NR	DFM with KB test pos. DFM and sinusoidal FHR	2.2 4.2	7.6 13.5	12.4 12.2	39.2 37.9	96 100	196	NR
Thorp [28], 1992	7	26 27 29	NR	NR	Massive FH with KB test pos. DFM and sinusoidal FHR Scheduled, no fetal anemia, no lUT ^d	2.7 9.8 14.1	7 28 41	14.2 13.8	42 42	75 35 0	110	Twice weekly US, twice weekly NST, weekly KB testing
Kohlenberg [29], 1994	7	26+2 26+6 30 33	NR	NR	DFM with KB test pos. Scheduled, fetal anemia, no IUT ^d DFM with KB test pos. Scheduled, no fetal anemia, no IUT ^d	2.7 8.4 3.7 10.6	NR NR NR	8.3 11.3	NR NR	35 0 50	85	Daily fetal movement count and NST, serial KB testing
Montgomery [30], 1995	ŝ	27 27+5 29+5 30+2	NR	NR	Fetal anasarca with KB test pos. KB test pos. Scheduled, fetal anemia, IUT ^d Scheduled, fetal anemia, IUT ^d Scheduled, no fetal anemia, IUT ^d	5.5 6.1 6.1 8 11.1	16.4 18 18 23.7 32.7	NR NR NR NR NR	28.5 28 31.5 34.8 40.3	26 40 46+80† 35+20† 22	269	Biweekly BPP
Lipitz [31], 1997	1	27+5	NR	NR	KB test pos. for a week	8.8	26	NR	40.6	30	30	Weekly KB testing
Hartung [32], 2000	2	28 28+2 29 to 31	NR	NR	FH FH 3 scheduled, anemia NR, IUT ^d	4 NR NR	NR NR NR	7.6 10.4 NR	NR NR NR	40 50 NR	Not possible to estimate	DailyUS and NST, weekly cordocentesis
Rubod [16], 2006	5	28+6 30 31+3	77 (2.10) 60 (1.48) 48 (1.13)	NR NR	FH, sinusoidal FHR, AFM DFM and sinusoidal FHR Scheduled, no fetal anemia, no lUT ^d	2.2 4.4 11.7	NR NR NR	9.9 11.8	NR NR	140 162 0	302	Fetal movement count, twice daily NST, twice a week MCA-PSV
Votino [33], 2008	4	26+5 27+3 29+3 29+6 33+1	73 (2.16) NR 80 (2.06) NR 52 (1.10)	NR NR 51 (1.31) NR	FH with KB test pos. Scheduled, anemia NR, IUT ^d DFM and sinusoidal PHR Scheduled, freal anemia, IUT ^d DFM	2.9 NR 3.7 7.7 NR	7 NR 23 NR	NR 12.4 9.4 NR	41 37 27 50	83 40 86 62 0	271	Fetal movement count, twice daily NSTand daily MCA-PSV
Sifakis [34], 2010	œ	24+5 24+6 25 25+3 25+3 25+3 26+5 26+5 26+5 27+2	84 (2.73) NR 52 (1.61) 42 (1.30) 64 (1.99) 59 (1.75) 53 (1.57) 51 (1.16)	41.2 (1.34) 49.2 (1.60) NR NR 49 (1.52) 43.9 (1.30) 37.8 (1.12) NR	Severe FH with KB test pos. Scheduled, fetal anemia, 1UT ^d Scheduled, fetal anemia, 1UT ^d	2. 2. 5 2. 5 5. 5 8. 5 8. 5 8. 5 8. 5 8. 5 8. 5 8	<u> </u>	5.6 6.9 8.3 8.8 9.2 9.2 9.2	NR NN NN NN NN NN NN	NN NN NN NN NN NN NN	350	NR
Friszer [35], 2010	ŝ	29+3 30+4 31+4	71 (1.83) 80 (1.88) 66 (1.50)	55 (1.42) 35 (0.82) 35 (0.82)	Severe FH with KB test pos. 1MCA-PSV 1MCA-PSV	4.5 4.2 6.3	NR NR NR	12.5 16.2 15.5	NR NR NR	NR NR NR	NR	Twice daily NST and daily MCA-PSV
Stefanovic [36], 2013	5	27+2 28	55 (1.55) 77 (2.08)	NR NR	DFM with LCM pos. DFM and sinusoidal FHR	1.8 3.2	NR	11.9 10.5	NR	35 40	75	NR
Our case, 2017	1	32+1	63.4(1.48)	42.8 (0.95)	DFM, KB test pos., fetal ascites and 1MCA-PSV	6.1	21.6	13.1	44.6	35	35	Twice weekly NST, MCA-PSV and hydrops checks
Total	39											
AFM, absent fetal mov tography method; MCA-PS' fusion. ^d Cordocentesis was.	ements; l V, middle done base	BPP, biophysik 3 cerebral arter ed on the pref	cal profile; DFM, de ry peak systolic velo erence of the provid	creased fetal move scity; NST, nonstre lers with no worse	ments, FH, fetal hydrops, FHR, fetal heart rate; GA, g ss test; NR, not reported; Pos, positive; US, ultrasoun wine of ciens or exumtoms	gestational a _i nd. ^a Intrapeı	ge; Hb, hemo ritoneal tran:	oglobin; Hct,] sfusion. ^b Afte	hematocrit; I er IUT, onset	UT, intrauteri of maternal h	ne transfusion; KB, K ypertension with 3+]	leihauer-Betke; LCM, liquid chroma proteinuria. ^c Intrahepatic vein trans

Fetal Diagn Ther 2019;45:1–12 DOI: 10.1159/000491788 Troìa/Al-Kouatly/McCurdy/Konchak/ Weiner/Berghella

	Patients	Hb pre, g/dL	Hct pre, %	Hb post, g/dL	Hct post, %	MCA-PSV pre, MoM	MCA-PSV post, MoM	Volume transfused, mL	Time interval between IUTs, days	Symptomatic patients
First IUT	14 (100)	4.0±2.1	14.7±7.7	10.6±2.9	38.9±5.2	1.95±0.45	1.24±0.25	59.2±35.0	NA	7/14 (50)
Second IUT	10 (71.4)	4.8±2.3	19.8 ± 7.4	11.6±2.7	36.2±5.9	1.81±0.30	1.21±0.55	64.6±44.5	7.2±7.0	6/10 (60)
Third IUT	5 (35.7)	5.4±1.2	23.0±16.1	10.6 ± 4.4	29.2±3.2	1.72±0.30	1.06 ± 0.34	106.0±64.4	7.2±4.8	1/5 (20)
Fourth IUT	4 (28.6)	5.7±3.8	23.3±0.5	8.3 ^a	42.4±10.7	1.3 ^a	NR	58.5±33.9	4.5±1.9	0/4(0)
Fifth IUT	3 (21.4)	9.7±2.0	32.7 ^a	10.8 ^a	40.3 ^a	1.99 ^a	1.52 ^a	22 ^a	2.0±2.8	0/3 (0)
Sixth IUT	1 (7.1)	5	NR	8.8	NR	1.75	1.30	NR	4	0/1(0)
Seventh IUT	1 (7.1)	6.4	NR	9.2	NR	1.57	1.12	NR	5	0/1(0)
Eighth IUT	1 (7.1)	8.5	NR	9.8	NR	1.16	NR	NR	4	0/1 (0)

Data are presented as total number of patients (%) or as mean \pm SD. NR, not reported; Hb, hemoglobin; Hct, hematocrit; IUT, intrauterine transfusion; MCA-PSV, middle cerebral artery peak systolic velocity; NA, not available.^a Data are available for only 1 patient.

plus positive laboratory testing (28.6%, 4/14). The fetal hemoglobin and hematocrit before the first IUT were 4.0 \pm 2.1 g/dL and 14.7 \pm 7.7%, respectively; after the procedure, they were 10.6 \pm 2.9 g/dL and 38.9 \pm 5.2%, respectively (Table 5). The mean transfused volume was 59.2 \pm 35.0 mL. The MCA-PSV measurements before and after the transfusion were 1.95 \pm 0.45 MoM (available for 6 of the 14 patients) and 1.24 \pm 0.25 MoM (available for only 3 of the 14 patients).

The second IUT was performed in 10 cases (71.4%) with a time interval from the first IUT of 7.2 \pm 7.0 days, and the mean transfused volume was 64.6 ± 44.5 mL (available for 8 of the 10 patients). The fetal hemoglobin and hematocrit before the second IUT were 4.8 ± 2.3 g/ dL and 19.8 \pm 7.4%, respectively; after the procedure, these values were 11.6 \pm 2.7 g/dL and 36.2 \pm 5.9%, respectively. The MCA-PSV values were available only in few cases and were 1.81 ± 0.30 MoM (3 out of 10 cases) and 1.21 ± 0.55 MoM (2 out of 10 cases) before and after the procedure (Table 5). The detection of the recurrence of fetal anemia after the first IUT was triggered by the following features: decreased fetal movements plus sinusoidal pattern (40%, 4/10), scheduled cordocentesis without symptoms (20%, 2/10), decreased fetal movements plus Kleihauer-Betke test positive (10%, 1/10), Kleihauer-Betke test positive alone (10%, 1/10), recurrence of fetal hydrops (10%, 1/10), and increased MCA-PSV (10%, 1/10) (Table 4). A second cordocentesis without IUT was performed in only 2 cases; these patients were asymptomatic, and fetal hemoglobin was 12.6 and 8.4 g/dL.

Five patients (35.7%) underwent a third IUT with a time interval from the second of 7.2 ± 4.8 days and a mean transfused volume of 106.0 ± 64.4 mL (available for only 2 of the 5 patients). The fetal hemoglobin and hematocrit

before the third IUT were 5.4 ± 1.2 g/dL and $23 \pm 16.1\%$, respectively; after the procedure, these values were 10.6 ± 4.4 g/dL and $29.2 \pm 3.2\%$, respectively. The MCA-PSV values were 1.72 ± 0.30 MoM before the IUT (4 out of 5 cases) and 1.06 ± 0.34 MoM (2 out of 5 cases) after the procedure (Table 5). The most common indication for the third IUT was scheduled cordocentesis without symptoms (60%, 3/5) (Table 4).

The fourth and fifth IUTs were performed for 4 (28.6%) and 3 (21.4%) patients, respectively, after 4.5 \pm 1.9 days from the third IUT and 2.0 \pm 2.8 days from the fourth IUT. The fetal hemoglobin and hematocrit before the fourth IUT were 5.7 \pm 3.8 g/dL and 23.3 \pm 0.5%, respectively; after the procedure, these values were 8.3 g/dL (1 out of 4 cases) and 42.4 \pm 10.7% (2 out of 4 cases), respectively. In only 1 patient, another 3 IUTs were carried out 4 or 5 days apart from each other (Table 5).

In 8 patients, cordocentesis was performed for no presenting signs or symptoms, but seemingly only for the physician's preference and absent abnormal ultrasound findings or nonreassuring fetal testing. In 4 (50%) of these 8 patients, fetal anemia was detected, 3 of which had IUT (Table 4).

After the first successful IUT, monitoring was reported in 10 cases (71.4%) and included: serial Kleihauer-Betke testing (4 cases); NST twice daily (3 cases), daily (2 cases) or twice weekly (2 cases); daily fetal movement count (3 cases); MCA-PSV daily (2 cases) or twice weekly (2 cases); biophysical profile twice weekly (1 case); ultrasound evaluation twice weekly (2 cases), daily (1 case) or serially (1 case); weekly cordocentesis (1 case) (Table 4).

The mean gestational age at delivery was 34.2 ± 4.2 weeks, and the time interval between the first IUT and delivery was 53.6 ± 54.8 days (Table 6). A cesarean section

First author [Ref.], year	GA at delivery, weeks + days	Days since first IUT and delivery	Gen- der	Mode of delivery	Indication	Out- come	Apgar score ^a	Weight, g	Hb, g/dL	Hct, %	Assisted venti- lation	Neonatal trans- fusion	NICU course	Postnatal follow-up
Cardwell [25], 1988	38+4	193	н	PCS	Previous CS	Alive	NR	2,750	17.2	51.3	NR	No	NR	NR
Fischer [27], 1990	31+6	9	NR	UCS	Sinusoidal FHR and breech	Alive	9/10	1,750	6.6	20.6	No	Yes, twice	Phototherapy for hyperbilirubinemia	Normal
Thorp [28], 1992	39	91	щ	ΔŊ	Spontaneous onset of labor	Alive	6/6	3,263	17.1	52	No	No	Uncomplicated	Normal at 8 weeks
Kohlenberg [29], 1994	38	82	ц	CS	NR	Alive	NR	NR	15.5	NR	No	No	Uncomplicated	NR
Montgomery [30], 1995	30+4	25	M	CS	Maternal fever, uterine contractions and breech	Alive	4/8	1,740	18.2	56.7	Yes	No	Uncomplicated	NR
Lipitz [31], 1997	39	79	ц	VD	PROM	Alive	9/10	2,800	13.9	41	No	No	Uncomplicated	NR
Hartung [32], 2000	31	21	щ	CS	NR	Alive	6/2	1,850	10.2	28	Yes	Yes, once	Phototherapy for hyperbilirubinemia	Normal at 1 year
Rubod [16], 2006	38	64	М	PCS	Breech	Alive	10/10	3,400	14.2	NR	No	No	Uncomplicated	Normal at 1 month
Votino [33], 2008	33+1	45	ц	CS	DFM and suspected recurrent FMH	Alive	10/10	2,075	13.6	46	No	No	Uncomplicated	Normal at 8 months
Friszer [35], 2010	31+5	16	щ	UCS	Rapid increase in MCA-PSV	Alive	8/7	1,530	10.2	NR	Yes	Yes, once	Uncomplicated	Normal at 6 months
Stefanovic [36], 2013	28+2	7	щ	PCS	Planned	Alive	3/NR	1,060	6.0	NR	Yes	Yes, four times	Uncomplicated	Normal at 2 years
Our case, 2017	34+1	14	щ	PCS	Previous CS	Alive	6/2	2,280	17.3	52.1	No	No	Uncomplicated	Normal at 3 months
Mean ± SD	34.2± 4.2	53.6± 54.8						2,227.1± 743.7	13.3± 4.2	$43.5\pm$ 12.9	4 ^b	4 ^b		
CS, cesarean secti DSV middle cerebral	ion; DFM, d	lecreased feta	l mover city: NIc	nents; F, fer OII neonati	nale; FHR, fetal heart ra	ate; GA, g	gestational	l age; Hb, ho S nlannee	emoglobi I cesarear	n; Hct, h section	ematocrit;] PROM nr	IUT, intraute	erine transfusion; M, m thre of the membrane	iale; MCA-
TOA , IIIIMUIC CCI COINT	ative year	A System very	-11 y 1 1 1	~~, IILVIIII	מן ווורנווטוער למו ל שנויט א	11/1 TICLE	- thus we are	oo, piainoo	ד ררפמדרמי	עווייייייי	T INVERT P	כווומותו עישי		, CCC, uu

planned cesarean section; VD, vaginal delivery. ^a Reported at 1 and 5 min after birth. ^b Total.

Table 6. Neonatal characteristics

Fetal Diagn Ther 2019;45:1–12 DOI: 10.1159/000491788

Table 7. Placental characteristics

First author [Ref.], year	Histological abnormali- ties	Hydropic changes/ placen- tomegaly	Nucleated red blood cells within villous capillaries	Fibrous lesions	Chorio- angiosis	Placental abruption	Thrombosis of fetal vessels	Retro- placental hematomas	Chorio- amnionitis	Defect on the chorionic epithelium
Cardwell [25], 1988	No	No	No	No	No	No	No	No	No	No
Tannirandorn [26], 1990	Yes	Yes	No	No	No	No	No	No	No	No
Fischer [27], 1990	Yes	No	No	No	No	Yes	Yes	Yes	No	No
Thorp [28], 1992	No	No	No	No	No	No	No	No	No	No
Kohlenberg [29], 1994	Yes	No	No	Yes	No	No	No	No	No	No
Montgomery [30], 1995	Yes	Yes	No	No	No	No	No	No	No	No
Hartung [32], 2000	Yes	No	No	No	No	No	No	No	No	Yes
Rubod [16], 2006	No	No	No	No	No	No	No	No	No	No
Votino [33], 2008	Yes	Yes	No	Yes	Yes	No	Yes	No	No	No
Sifakis [34], 2010	Yes	No	Yes	No	No	No	No	No	Yes	No
Friszer [35], 2010	No	No	No	No	No	No	No	No	No	No
Stefanovic [36], 2013	Yes	No	Yes	No	No	No	No	No	No	No
Our case, 2017	No	No	NR	No	No	No	No	No	No	No
Total	8/13	3/13	2/13	2/13	1/13	1/13	2/13	1/13	1/13	1/13
NR, not reported	1.									

was performed in 10 patients (71.4%) and spontaneous vaginal birth occurred in 3 cases (21.4%).

There were 2 cases of fetal demise (14.3%). The first was at 30 weeks after 1 IUT; placental pathology revealed hydropic changes and autopsy showed no specific abnormality of the infant [26]. The second was at 28 + 2 weeks after 8 IUTs; hypoxic-ischemic damage of the brain and multiorgan inflammatory infiltrates were reported on autopsy, and placental pathology revealed hydropic changes, diffuse placentitis with chronic villitis and chorioamnionitis [34]. The hemoglobin prior to the first IUT was 5.8 and 2.5 g/dL, respectively, and in both cases fetal hydrops and polyhydramnios were present. The estimated fetal blood loss was 113 and 32 mL, respectively. Fetal death occurred 14 and 7 days after the last IUT, respectively.

Regarding neonatal outcomes (Table 6), the mean Apgar scores at 1 and 5 min were 7.6 \pm 2.4 and 9.1 \pm 1.1, respectively, and the mean birth weight was 2,227.1 \pm 743.7 g. Neonates had an initial hemoglobin of 13.3 ± 4.2 g/dL and hematocrit of $43.5 \pm 12.9\%$. Four out of 12 neonates (33.3%) were transfused after birth. Hyperbilirubinemia treated with phototherapy was required for 2 neonates (16.7%). Follow-up was available for 8 (66.7%) neonates (range 1 month to 2 years), and all infants were reported to be in good condition with a normal neurological status (Table 6). No neonatal deaths occurred.

Placental characteristics were available in 13 cases, and histological abnormalities were reported in 61.5% (8/13) (Table 7). The features described included placental hydropic changes/placentomegaly (23.1%, 3/13), nucleated erythrocytes within villous capillaries (15.4%, 2/13), fibrous lesions (15.4%, 2/13), thrombosis of the fetal vessels (15.4%, 2/13), placental abruption (7.7%, 1/13), and retroplacental hematoma (7.7%, 1/13) among others. No neoplastic features, placental or vasa previa, anomalous cord insertion, or placental infarcts were reported.

Our systematic review retrieved 14 cases of FMH with proven fetal anemia treated with IUT who had subsequent follow-up of >72 h. Our data demonstrate a 71.4% recurrence rate of FMH after the first IUT. The FMH recurrence necessitated a second IUT about 7 days after the first IUT procedure. The recurrence of FMH continued after the second IUT with progressive reduction in time between transfusions.

Cases of FMH with proven fetal anemia usually presented with either fetal hydrops or decreased fetal movements in the late second trimester. Most cases had fetal hydrops on ultrasound, and these findings were often incidental, so the diagnosis of FMH should be considered in the workup of nonimmune hydrops. It is surprising that maternal history of trauma that could be associated with FMH was absent in all patients, except 1 [31]. All FMH cases were confirmed by either the Kleihauer-Betke or the liquid chromatography method. The MCA-PSV recorded at admission in our cases with signs/symptoms of proven fetal anemia was abnormal in all cases, except 1. This confirms that MCA-PSV is a good indicator of severe fetal anemia independent of the etiology [14, 37, 38]. Furthermore, the mean value of MCA-PSV before each new episode of FMH was increasingly lower from the first to the third IUT. The sensitivity and specificity of this technique may be excellent for the first IUT but may not be as sensitive in guiding timing of the subsequent procedures [39]. Several authors studied MCA-PSV value in the aftermath of a first IUT [35, 40]. After an initial transfusion, the Society for Maternal-Fetal Medicine recommends higher threshold (MoM >1.69) for the diagnosis of fetal anemia requiring a second transfusion [19]. The 1.69 cutoff as suggested by the Society for Maternal-Fetal Medicine would not have identified all the anemic fetuses that received the second and third IUTs.

A majority had a second episode of FMH requiring subsequent IUTs, typically within 1 week. IUT is a wellestablished method to correct fetal anemia and prolong gestation until a more mature gestational age is reached [17]. Our review confirms that the management strategy of IUTs for FMH resulted in significant gains in gestational age, although multiple transfusions were typically needed. Fetal demise occurred in 2 patients (14%) [26, 34]. In general, these 2 cases of fetal demises were associated with very severe fetal anemia at presentation (hemoglobin <6 g/dL). No neonatal deaths were recorded and the successful IUTs led to a mean neonatal hemoglobin of 13.3 \pm 4.2 and a 33% rate of neonatal transfusion.

Given the need for serial IUTs for recurrent fetal anemia and the risk of fetal demise, fetal monitoring is of paramount importance. As the data are limited, and each case was followed with somewhat different fetal monitoring schedules, proposing a specific monitoring plan based on this review is challenging. In general, we suggest at least 2-3 times a week ultrasound examination (for hydrops assessment, biophysical profile, and MCA-PSV) and NST daily or twice daily. In fact, given the frequency and severity of the FMH recurrences, inpatient daily monitoring should be considered. The timing of planned delivery could reasonably be around 34 weeks, or even earlier if frequent FMH recurrences more than weekly are seen, steroids have been given, and the gestational age is >30 weeks. These management decisions should be via shared decision making involving a multidisciplinary approach with the goal of minimizing fetal and neonatal complications.

The long-term neurodevelopmental outcome of children born after IUT for red cell alloimmunization is considered to be favorable, and severe hydrops has been identified as a strong predictor of neurodevelopment impairment [41]. However, the long-term outcome of survivors of IUT for FMH is not well known [41, 42]. Follow-up studies are limited by small sample sizes, lack of controls and lack of established criteria for the diagnosis of neurodevelopment delay. Our data of long-term outcome after FMH treated with IUT revealed the same limitations.

The placental pathology in our review revealed histological abnormalities in 61.5% of the cases, with a wide spectrum of pathological changes. Intervillous thrombosis and increased nucleated red blood cells have been described in fetal and neonatal deaths due to FMH: the first feature was present in half of the cases, while the second was almost always present [43, 44]. High rate of placentomegaly (41%) was also reported [43]. Ravishankar et al. [45] demonstrated that some macro- and microscopic placental pathology parameters, such as parenchymal pallor, intervillous thrombi, and increased nucleated red blood cells, are significantly higher in placentas with FMH, which was confirmed by the Kleihauer-Betke test, both in liveborns and stillborns. Although our limited data reveal a reduced incidence of these features, it is difficult to establish if the treatment of FMH with IUTs is able to reduce these placental features. However, no other data on placental histological characteristic of FMH patients treated with IUTs are currently available.

The strengths of our study include that it is the first systematic review, to our knowledge, to review all cases of FMH with proven fetal anemia treated with IUT and who had subsequent follow-up of >72 h. Therefore, we were able to estimate for the first time the rate of recurrence of FMH.

The limitation of our study is the nature of a systematic review and the limited information within the published cases. The only publications examining monitoring of FMH cases treated with IUTs were case reports. Publication bias may certainly be present, probably favoring successful cases. The frequency and number of IUTs analyzed in this review may be an overestimation of the rates of recurrence and need for IUT.

In addition, we assumed that anemia after IUT is due to recurrence of FMH and not other causes. This is likely correct as other etiologies of the original anemia were evaluated and not found, and the recurrence of anemia within a short timeframe made it unlikely that another cause of anemia would have occurred.

Expectantly managed FMH patients with proven fetal anemia treated with IUT and subsequent follow-up of >72 h have a 71% rate of recurrence, and 14% rate of fetal demise. Once the diagnosis is confirmed by signs/symptoms and a positive maternal laboratory exam, MCA- PSV should be used to evaluate for severe fetal anemia. Given the high rate of recurrence of FMH, usually within 1 week of IUT, we suggest ultrasound examination at least 2–3 times a week and NST daily or twice daily with inpatient management.

Conclusion

Massive FMH can cause devastating pregnancy outcomes. Although the recurrence rate of FMH was high, IUT is a safe and effective tool to improve fetal and neonatal outcomes. Most fetuses will require at least 2 IUTs to achieve an advanced gestational age. Close monitoring of these patients is necessary to recognize the early signs and symptoms of FMH recurrence. However, further research is required in order to standardize pregnancy management protocol including timing of delivery.

Disclosure Statement

The authors report no conflict of interests.

References

- Sebring ES, Polesky HF. Fetomaternal hemorrhage: incidence, risk factors, time of occurrence, and clinical effects. Transfusion. 1990 May;30(4):344–57.
- 2 Kecskes Z. Large fetomaternal hemorrhage: clinical presentation and outcome. J Matern Fetal Neonatal Med. 2003 Feb;13(2):128–32.
- 3 Wylie BJ, D'Alton ME. Fetomaternal hemorrhage. Obstet Gynecol. 2010 May;115(5): 1039–51.
- 4 Scholz C, Hermann C, Kachler A, Kainer F, Friese K, Makrigiannakis A, et al. Association of placental inflammation with fetomaternal hemorrhage and loss of placental mucin-1. Arch Gynecol Obstet. 2012 Mar;285(3):605– 12.
- 5 Meleti D, De Oliveira LG, Araujo Júnior E, Caetano AC, Boute T, Nardozza LM, et al. Evaluation of passage of fetal erythrocytes into maternal circulation after invasive obstetric procedures. J Obstet Gynaecol Res. 2013 Sep;39(9):1374–82.
- 6 Faber VJ, Klumper FJ, Scherjon S, van Wijngaarden WJ. Severe pre-eclampsia and HELLP syndrome after massive fetomaternal hemorrhage following blunt abdominal trauma. Pregnancy Hypertens. 2011 Jul-Oct;1(3-4):197–9.

- 7 Mirza FG, Thaker HM, Flejter WL, D'Alton ME. Fetomaternal Hemorrhage following Placement of an Intrauterine Pressure Catheter: Report of a New Association. Case Rep Obstet Gynecol. 2015;2015:348279.
- 8 Maass B, Würfel B, Fusch C. Recurrent fetomaternal transfusion in two consecutive pregnancies. Prenat Diagn. 2001 Sep;21(9):791–3.
- 9 Catalano PM, Capeless EL. Fetomaternal bleeding as a cause of recurrent fetal morbidity and mortality. Obstet Gynecol. 1990 Nov; 76(5 Pt 2):972–3.
- 10 Maier JT, Schalinski E, Schneider W, Gottschalk U, Hellmeyer L. Fetomaternal hemorrhage (FMH), an update: review of literature and an illustrative case. Arch Gynecol Obstet. 2015 Sep;292(3):595–602.
- 11 Cozzolino M, Magro Malosso ER, Perelli F, Franchi C, Coccia ME. Keep in mind foetomaternal haemorrage in case of reduced foetal movements: a successful obstetric management. J Obstet Gynaecol. 2017 Jan;37(1):100–2.
- 12 Stefanovic V. Fetomaternal hemorrhage complicated pregnancy: risks, identification, and management. Curr Opin Obstet Gynecol. 2016 Apr;28(2):86–94.

- 13 Giacoia GP. Severe fetomaternal hemorrhage: a review. Obstet Gynecol Surv. 1997 Jun; 52(6):372-80.
- 14 Mari G, Deter RL, Carpenter RL, Rahman F, Zimmerman R, Moise KJ Jr, et al. Noninvasive diagnosis of fetal anemia by Doppler ultrasonography. N Engl J Med. 2000;343(1): 66–8.
- 15 Eichbaum M, Gast AS, Sohn C. Doppler sonography of the fetal middle cerebral artery in the management of massive fetomaternal hemorrhage. Fetal Diagn Ther. 2006;21(4): 334–8.
- 16 Rubod C, Houfflin V, Belot F, Ardiet E, Dufour P, Subtil D, et al. Successful in utero treatment of chronic and massive fetomaternal hemorrhage with fetal hydrops. Fetal Diagn Ther. 2006;21(5):410–3.
- 17 Lindenburg IT, van Kamp IL, Oepkes D. Intrauterine blood transfusion: current indications and associated risks. Fetal Diagn Ther. 2014;36(4):263–71.
- 18 Higgins JP, Green SE. Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. https://handbook-5-1.cochrane.org/ (accessed May 20, 2015).

- 19 Mari G, Norton ME, Stone J, Berghella V, Sciscione AC, Tate D, et al.; Society for Maternal-Fetal Medicine (SMFM). Electronic address: pubs@smfm.org. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline #8: the fetus at risk for anemia—diagnosis and management. Am J Obstet Gynecol. 2015 Jun; 212(6):697–710.
- 20 Rouse D, Weiner C. Ongoing fetomaternal hemorrhage treated by serial fetal intravascular transfusions. Obstet Gynecol. 1990 Nov; 76(5 Pt 2):974–5.
- 21 Elliott JP. Massive fetomaternal hemorrhage treated by fetal intravascular transfusion. Obstet Gynecol. 1991 Sep;78(3 Pt 2):520–3.
- 22 Baschat AA, Harman CR, Alger LS, Weiner CP. Fetal coronary and cerebral blood flow in acute fetomaternal hemorrhage. Ultrasound Obstet Gynecol. 1998 Aug;12(2):128–31.
- 23 Weisberg L, Kingdom J, Keating S, Ryan G, Seaward G, Kelly E, et al. Treatment options in fetomaternal hemorrhage: four case studies. J Obstet Gynaecol Can. 2004 Oct;26(10): 893–8.
- 24 Amann C, Geipel A, Müller A, Heep A, Ritgen J, Stressig R, et al. Fetal anemia of unknown cause—a diagnostic challenge. Ultraschall Med. 2011 Dec;32(S 02 Suppl 2):E134–40.
- 25 Cardwell MS. Successful treatment of hydrops fetalis caused by fetomaternal hemorrhage: a case report. Am J Obstet Gynecol. 1988 Jan;158(1):131–2.
- 26 Tannirandorn Y, Nicolini U, Nicolaidis P, Nasrat H, Letsky EA, Rodeck CH. Intrauterine death due to fetomaternal hemorrhage despite successful treatment of fetal anemia. J Perinat Med. 1990;18(3):233–5.
- 27 Fischer RL, Kuhlman K, Grover J, Montgomery O, Wapner RJ. Chronic, massive fetomaternal hemorrhage treated with repeated fetal intravascular transfusions. Am J Obstet Gynecol. 1990 Jan;162(1):203–4.
- 28 Thorp JA, Cohen GR, Yeast JD, Perryman D, Welsh C, Honssinger N, et al. Nonimmune hydrops caused by massive fetomaternal hemorrhage and treated by intravascular transfusion. Am J Perinatol. 1992 Jan;9(1): 22–4.

- 29 Kohlenberg CF, Ellwood DA. Fetomaternal haemorrhage treated with intravascular transfusion: a late complication of amniocentesis? Br J Obstet Gynaecol. 1994 Oct;101(10): 912–3.
- 30 Montgomery LD, Belfort MA, Adam K. Massive fetomaternal hemorrhage treated with serial combined intravascular and intraperitoneal fetal transfusions. Am J Obstet Gynecol. 1995 Jul;173(1):234–5.
- 31 Lipitz S, Achiron R, Horoshovski D, Rotstein Z, Sherman D, Schiff E. Fetomaternal haemorrhage discovered after trauma and treated by fetal intravascular transfusion. Eur J Obstet Gynecol Reprod Biol. 1997 Jan;71(1):21–2.
- 32 Hartung J, Chaoui R, Bollmann R. Nonimmune hydrops from fetomaternal hemorrhage treated with serial fetal intravascular transfusion. Obstet Gynecol. 2000 Nov;96(5 Pt 2):844.
- 33 Votino C, Mirlesse V, Gourand L, Parnet-Mathieu F, Bessières B, Daffos F. Successful treatment of a severe second trimester fetomaternal hemorrhage by repeated fetal intravascular transfusions. Fetal Diagn Ther. 2008; 24(4):503–5.
- 34 Sifakis S, Koukoura O, Konstantinidou AE, Kikidi K, Prezerakou M, Kaminopetros P. Sonographic findings in severe fetomaternal transfusion. Arch Gynecol Obstet. 2010 Feb; 281(2):241–5.
- 35 Friszer S, Cortey A, Pierre F, Carbonne B. Using middle cerebral artery peak systolic velocity to time in utero transfusions in fetomaternal hemorrhage. Obstet Gynecol. 2010 May; 115(5):1036–8.
- 36 Stefanovic V, Paavonen J, Halmesmäki E, Luukkainen P, Tikkanen M, Nuutila M, et al. Two intrauterine rescue transfusions in treatment of severe fetomaternal hemorrhage in the early third trimester. Clin Case Rep. 2013 Dec;1(2):59–62.

- 37 Moise KJ Jr. The usefulness of middle cerebral artery Doppler assessment in the treatment of the fetus at risk for anemia. Am J Obstet Gynecol. 2008 Feb;198(2):161.e1–4.
- 38 Bellussi F, Perolo A, Ghi T, Youssef A, Pilu G, Simonazzi G. Diagnosis of Severe Fetomaternal Hemorrhage with Fetal Cerebral Doppler: Case Series and Systematic Review. Fetal Diagn Ther. 2017;41(1):1–7.
- 39 Deren O, Onderoglu L. The value of middle cerebral artery systolic velocity for initial and subsequent management in fetal anemia. Eur J Obstet Gynecol Reprod Biol. 2002 Feb; 101(1):26–30.
- 40 Detti L, Oz U, Guney I, Ferguson JE, Bahado-Singh RO, Mari G; Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. Doppler ultrasound velocimetry for timing the second intrauterine transfusion in fetuses with anemia from red cell alloimmunization. Am J Obstet Gynecol. 2001 Nov;185(5):1048–51.
- 41 Lindenburg IT, van Klink JM, Smits-Wintjens VE, van Kamp IL, Oepkes D, Lopriore E. Long-term neurodevelopmental and cardiovascular outcome after intrauterine transfusions for fetal anaemia: a review. Prenat Diagn. 2013 Sep;33(9):815–22.
- 42 van Klink JM, Koopman HM, Oepkes D, Walther FJ, Lopriore E. Long-term neurodevelopmental outcome after intrauterine transfusion for fetal anemia. Early Hum Dev. 2011 Sep;87(9):589–93.
- 43 Carles D, André G, Pelluard F, Martin O, Sauvestre F. Pathological Findings in Feto-maternal Hemorrhage. Pediatr Dev Pathol. 2014 Mar-Apr;17(2):102–6.
- 44 Biankin SA, Arbuckle SM, Graf NS. Autopsy findings in a series of five cases of fetomaternal haemorrhages. Pathology. 2003 Aug; 35(4):319–24.
- 45 Ravishankar S, Migliori A, Struminsky J, Has P, Sung CJ, He M. Placental findings in fetomaternal hemorrhage in livebirth and stillbirth. Pathol Res Pract. 2017 Apr;213(4):301– 4.