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Water is not only a commercial product, but also a common good and a limited re-
source that must be protected and used sustainably, in terms of both quality and quantity.
However, its use in a wide range of sectors, such as agriculture, industry, tourism, transport
and energy, puts pressure on this resource [1–5]. For example, the European community has
established two main legal frameworks for the protection and management of freshwater
and marine water resources through a holistic ecosystem-based approach, namely the
Water Framework Directive and the Marine Strategy Framework Directive [6,7]. These
regulations establish a framework for the protection of inland surface waters, transitional
waters, coastal waters and groundwater. This framework aims to prevent and reduce
pollution, promote sustainable use, protect and enhance the aquatic environment and
mitigate the effects of floods and droughts. The main objective is to ensure that all waters
achieve a good ecological status. To this end, new minimum drinking water quality require-
ments have been established, emphasizing the importance of the presence of new emerging
pollutants [8]. It is therefore important to implement methodological approaches to assess
the ecological risk poses by chemical pollutants discharged into different aquatic environ-
ments [9]. Furthermore, the environmental risk management approach requires that the
cumulative effect of all impacting anthropogenic activities be considered at different levels
of an organization [10,11]. The need to detect the biological effects of emerging pollutants
even at low concentrations and in complex mixtures has increased the need for studies on
the relationships between exposure to contaminants and alterations to various biochemical
and cellular processes in organisms, in order to use them as biomarkers of exposure and
early responses to different classes of new emerging contaminants [12–16]. Biomarker
measurements in bioindicator organisms have become valuable tools for environmental
monitoring from the perspective of surveillance, hazard assessment or documentation of
the remediation of aquatic environments [12,17]. Moreover, biomarkers are an essential
component of aquatic environment monitoring programs in several countries, supporting
commonly used chemical monitoring techniques [18–20].

Biomarkers include a variety of measures of the molecular, biochemical, cellular and
physiological responses of specimens of key species to exposure to contaminants or physical
stressors [21]. They act at the individual level, as for the classic ecotoxicological bioassays,
but also provide mechanistic information on the effects of pollutants. For this purpose,
certain criteria must be fulfilled: sensitivity, modulability, dose dependence and robustness
to natural fluctuations [17]. Biomarkers must respond to pollutants within the expected
environmental concentration range [17,19,21]. The validity of any biomarker thus depends
on its ability to accurately separate the influence of natural variability from the toxic effects
of different pollutant classes or from the generic stress caused by different anthropogenic
factors [22]. To detect the effects caused by different stressors in bioindicators, one should
not measure a single parameter, but a suite of biomarkers [21]. Biomarkers should not
only be diagnostic but also prognostic of such high-level effects to provide a reliable early
warning of the health status of a selected bioindicator [12].
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Predictive toxicology has largely adopted the Adverse Outcome Pathways (AOP)
model [19], a toxicological conceptual framework in which different orders of information
are interlinked: from the chemical properties of pollutants to biochemical, cellular, and
physiological effects, and high-level consequences such as reproduction and mortality. The
future, therefore, lies in allocating suites of robust biomarkers in specific AOP frameworks.
To this end, in recent years, new techniques have been developed for environmental applica-
tions [17]. Molecular techniques such as genomics, proteomics and metabolomics are being
used to develop new biomarkers [23]. Furthermore, according to the theory of molecular
systems biology [17], organisms react to all kinds of perturbations, including environmental
changes and thus chemical pollution, through a cascade of high-throughput molecular
processes, such as global gene expression, proteome, and metabolome remodeling [23]. The
particular set of genes and/or proteins and/or metabolites involved will depend, at least in
part, on the type of chemical. The particular response pattern may represent a fingerprint
for a exposure to a specific pollutant, allowing a simple identification of the biomarker, but
also providing information on all cellular processes taking place during the environmental
perturbation [24,25]. The measurement of biomarkers is also important due to the use
of sentinel species or key bioindicator species [12]. Indeed, the selection of a sentinel or
bio-indicator species must be justified by a recognized link with the structure or functioning
of the ecosystem being monitored. Various factors must therefore also be considered, such
as the importance of the selected species within trophic chains, also in the light of the
emergence of new problems such as the increase in invasive and highly competitive species
that alter aquatic ecosystems. Measuring biomarker suites has been shown to be useful
in assessing the impact of alien species in aquatic environments [24] and for detecting
the health status of endangered species living in the impacted environment [19]. The use
of an integrated approach of bio-indicators and biomarkers in ecological risk assessment
nowadays makes it possible to investigate possible stress situations related to different
time scales. The use of such investigative methodologies in an integrated ecotoxicological
approach toward the biomonitoring of aquatic ecosystems offers a sensitive and specific
tool for assessing exposure to emerging pollutants and the potential damage they exert
on organisms living in each environment, allowing for short-term interventions and the
development of appropriate sustainable environmental management programs [19,20,25].
The implementation of an integrated approach poses the need to improve the ability to
discriminate contaminants (particularly the emerging ones) and to investigate the link
between biomarker response and adverse effects at the organism level, including processes
such as growth, reproduction, and mortality.
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