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ABSTRACT
◥

Purpose: No evidence exists as to whether type 2 diabetes
mellitus (T2DM) impairs clinical outcome from immune check-
point inhibitors (ICI) in patients with solid tumors.

Experimental Design: In a large cohort of ICI recipients treated
at 21 institutions from June 2014 to June 2020, we studied whether
patients on glucose-lowering medications (GLM) for T2DM had
shorter overall survival (OS) and progression-free survival (PFS).
We used targeted transcriptomics in a subset of patients to explore
differences in the tumor microenvironment (TME) of patients with
or without diabetes.

Results: A total of 1,395 patients were included. Primary tumors
included non–small cell lung cancer (NSCLC; 54.7%), melanoma
(24.7%), renal cell (15.0%), and other carcinomas (5.6%). After
multivariable analysis, patients on GLM (n¼ 226, 16.2%) displayed
an increased risk of death [HR, 1.29; 95% confidence interval
(CI),1.07–1.56] and disease progression/death (HR, 1.21; 95% CI,

1.03–1.43) independent of number of GLM received. We matched
92metformin-exposed patientswith 363 controls and 78 patients on
other oral GLM or insulin with 299 control patients. Exposure to
metformin, but not other GLM, was associated with an increased
risk of death (HR, 1.53; 95%CI, 1.16–2.03) and disease progression/
death (HR, 1.34; 95% CI, 1.04–1.72). Patients with T2DM with
higher pretreatment glycemia had higher neutrophil-to-
lymphocyte ratio (P ¼ 0.04), while exploratory tumoral transcrip-
tomic profiling in a subset of patients (n¼ 22) revealed differential
regulation of innate and adaptive immune pathways in patients with
T2DM.

Conclusions: In this study, patients on GLM experienced worse
outcomes from immunotherapy, independent of baseline features.
Prospective studies are warranted to clarify the relative impact of
metformin over a preexisting diagnosis of T2DM in influencing
poorer outcomes in this population.
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Introduction
Immune checkpoint inhibitors (ICI) have led to a significant

increase in the survival of patients affected by a widening variety of
malignancies (1). Although reinvigoration of an immune-exhausted
effector T-cell response is at the basis of the mechanism of action of
ICI, several host characteristics have been increasingly recognized for
their capacity to enhance or blunt ICI efficacy (2–4). Concomitant
medications, patients’ body mass index (BMI), and the presence of a
subclinical proinflammatory response are among the accumulating
traits to have emerged in the recent past as key modulators of
immunotherapy efficacy (2, 5).

The complex relationship existing between metabolic syndrome,
type 2 diabetes mellitus (T2DM), and cancer has been known for a long
time (6). T2DM is a highly prevalent comorbidity affecting up to 15% of
patients at the time of cancer diagnosis (7). In an increasingly aging and
more comorbid population, cancer and T2DM share common risk
factors (8) and mechanistic evidence has highlighted an increased risk
of cancer among patients with a preexisting diagnosis of diabetes (9).

On the other hand, the complexmetabolic changes that characterize
the progression of diabetes may exert multiple immune-suppressive
effects potentially impairing anticancer immunity (10). Studies on
peripheral blood mononuclear cells (PBMC) have shown how hyper-
glycemia leads to loss of Interleukin-10 (IL-10) secretion by myeloid
cells and reduced production of IFN-g and TNF-a by T cells (11),
along with lower production of IL-12 and IFN-g in PBMC cultures
after exposure to pathogens (12). Hyperglycemia can also cause
neutrophil dysfunction, including defects in reactive oxygen species
(ROS) production, Ig-mediated opsonization, and degranulation
(13–15). The role of diabetes in promoting immune dysfunction is
further supported by the finding that hyperglycemia can induce
macrophage polarization toward a protumorigenic M2 pheno-
type (16, 17) alongside functional defects in natural killer (NK) cells’
degranulation capacity (18).

In a therapeutic landscape characterized by a continuously expand-
ing list of indications where ICIs have been proven effective (19), it is of
the utmost importance to establishwhether a concomitant diagnosis of
T2DM carries a negative impact on ICI efficacy, to identify patients at
risk of worse outcome and inform clinical practice.

In this study, we analyzed a largemulticenter cohort of patients with
advanced cancers treated with chemotherapy-free ICI-based regimens
to evaluate whether use of glucose-lowering medications (GLM) as a
surrogate for a prior history of T2DMmight be associated with clinical
outcome from ICIs in patients with solid tumors.

Materials and Methods
Study objectives and design

The aim of this analysis was to describe the potential impact of
preexisting T2DM on clinical outcomes from ICI-based treatments in
a large multicenter cohort of patients with advanced solid tumors
treated outside clinical trials (20–27).

Overall, 21 institutions from Italy and the United Kingdom par-
ticipated in the data collection (Supplementary Table S1) and retro-
spectively included patients with stage IVmalignancy treatedwith ICIs
as first- or subsequent line therapy from June 2014 to June 2020, with a
data cut-off period of December 31, 2020. Patients on ICI-based
combinations, such as chemo-immunotherapy and targeted therapy
ICIs, were excluded.

Programmed death-1/programmed death-ligand 1 (PD-1/PD-L1)
and CTLA-4 inhibitors were administered at doses and schedules
indicated in the respective summary of product characteristics.

Clinical outcomes of interest included progression-free survival
(PFS), defined as the time from treatment initiation to disease pro-
gression or death (whichever occurred first) and overall survival (OS),
defined as the time from treatment initiation to patients’ death or loss
to follow-up. Periodic tumor reassessment was performed at the
discretion of treating clinicians with frequency ranging from 12 to
16 weeks. Investigators were asked to provide disease progression
information according to RECIST (V. 1.1) criteria (28). For PFS as well
as for OS, patients without events were considered as censored at the
time of the last follow-up.

To reproducibly assess the effect of T2DMon ICI outcomes, we used
the receipt of any GLMs at the moment of ICI initiation as a surrogate
of a diagnosis of T2DM and define the population of interest. GLMs
started at any time prior to and taken until immunotherapy initiation
were grouped in accordance to the international guidelines and
recommendations (29) as metformin, other oral diabetes medications
(including sulfonylureas, meglitinides, thiazolidinediones, a-glucosi-
dase inhibitors, DPP-4 inhibitors, SGLT2 inhibitors, and cycloset) and
insulin therapy.

We first assessed the impact of diabetes on OS and PFS with
univariable and multivariable analyses. In addition, considering the
differential distribution of baseline patients’ characteristics between
patients with and without diabetes, we also performed a propensity
score matching (PSM) between the two groups and explored OS and
PFS across the matched populations.

Subsequently, we conducted two additional PSM subanalyses
among patients with non–small cell lung cancer (NSCLC) and mel-
anoma, to explore the association between the receipt of baseline
GLMs and OS/PFS in the two matched cohorts.

Baseline exposure to each class of antidiabetic medication was also
verified for their association with OS and PFS following ICI therapy.
We then stratified patients with diabetes according to the receipt of one
class versus multiple classes of GLMs at the time of ICI commence-
ment, a methodology that allowed us to infer potential association
between oncologic outcomes and surrogates of diabetes severity and
duration.

In an attempt to verify the independence between the diagnosis of
diabetes and type of antidiabetic treatment received, we performed two
separate PSM procedures between metformin-exposed patients (after
the exclusion of patients on any non-metformin antidiabetic drug),
patients on other oral antidiabetic drugs/insulin therapy only (after the
exclusion of patients on metformin) and those without diabetes.

To investigate whether chronic hyperglycemia is associated with
systemic inflammation in patients with cancer, we computed the

Translational Relevance

In this study, we highlight how patients with advanced solid
tumors and concomitant type 2 diabetes mellitus (T2DM) expe-
rience worse outcome from immune checkpoint inhibitors (ICI)
independent of baseline clinicopathologic characteristics. In view
of the increasing global burden of T2DM and the constantly
expanding clinical indications of ICI-based therapies, the identi-
fication of metabolic host factors as determinants of immune
response in patients with cancer has relevant implications for
clinical practice. Prospective studies should investigate whether
receipt of certain glucose-lowering medications such as metformin
as opposed to quality of diabetes control might be modifiable
factors to improve outcomes from immunotherapy.
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median baseline glycemia (MBG) from up to three random blood
sugar test samples performed within 3 months prior to ICI initiation.
We described the association between MBG and the pretreatment
neutrophil-to-lymphocyte ratio computed from routine full blood
counts test taken within 30 days prior to ICI therapy initiation.

In an ancillary translational analysis and to complement our clinical
findings, we intended to establish whether the tumor microenviron-
ment (TME) of patients with preexisting diabetes was associated with
significantly different features in the intratumoral immune infiltrate.
After total RNA extraction of macrodissected unstained sections
containing >20% of tumor tissue, targeted transcriptome profiling
was performed on a subset of primary tumor samples of patients with
diabetes and nondiabetic controls extracted from the Imperial College
London (London, England) cohort, using the NanoString PanCancer
Immune Profiling panel on an nCounter Analysis System (NanoString
Technologies). Methodology of targeted transcriptomic analysis fol-
low established protocols (30) with details reported in Supplementary
Methods.

The procedures followed were in accordance with the precepts of
good clinical practice and the Declaration of Helsinki. Written
informed consent was obtained from alive patients at the moment of
data collection, although it was waived by competent authorities due to
anonymized nature of patient data and retrospective design of the
study for deceased patients. The study was approved by the respective
local ethical committees on human experimentation of each institu-
tion, after previous approval by the coordinating center (University of
L’Aquila, L’Aquila, Italy, internal review board protocol no. 32865,
approved on July 24, 2018).

Statistical analysis
Baseline patients’ characteristics were reported with descriptive

statistics as appropriate. The x2 and test was used to compare
categorical variables. PFS/OS were evaluated and compared using the
Kaplan–Meier method and the log-rank test. Duration of follow-up
was calculated according to the reverse Kaplan–Meier method. Cox
proportional hazards regression was used for the univariable and
multivariable analysis of the risk of disease progression/death and
death, and to compute the HR with 95% CIs.

Fixed multivariable models were used including all the variables
already known to significantly impact clinical outcomes in the cohort
including primary tumor types [NSCLC, melanoma, renal cell carci-
noma (RCC), and others], age (continuous), biological sex (male vs.
female), Eastern Cooperative Oncology Group-Performance Status
(ECOG-PS; 0–1 vs. ≥ 2), burden of disease (number of metastatic sites
≤ 2 vs. > 2), treatment line (first vs. second vs. further lines), BMI –
continuous, corticosteroids at immunotherapy initiation (dose≥10mg
prednisone daily or equivalent—yes vs. no), and systemic antibiotics at
immunotherapy initiation (yes vs. no; both taken within 30 days prior
to ICIs initiation; refs. 20–26, 31).

Acknowledging that data source consisted of 21 different institu-
tions, which could represent a source of bias, a center-specific con-
ditional interpretation by using frailtymodels was applied to correct all
the 95% CIs from multivariable Cox regressions.

To respectively compare the outcome of patients onmetformin only
and those on other oral antidiabetic drugs/insulin therapy only with
those without diabetes, separated PSM procedures with nearest meth-
od, 1:4 ratio and a caliper of 0.2 were performed, including all the above
mentioned clinical characteristics (32). The balancing ability of the
PSM were estimated through the standardized mean differences
(SMD) of the matched characteristics. Considering differences in
sample size and prevalence of patients with diabetes between different

primary tumor groups, a 1:1 ratio, 0.1 caliper and 1:3 ratio, 0.1 caliper
were used for the PSM in the NSCLC and melanoma cohorts,
respectively (33).

The Kruskal–Wallis test was used to compare MBG between
patients with diabetes and nondiabetes. Linear regression and logistic
regression with ORs and 95% CIs were used to the associations
between the MBG and the neutrophil-to-lymphocyte ratio (NLR).

All P values were two-sided and CIs set at the 95% level, with
significance predefined to be at < 0.05. Analyses were performed using
the R-studio software [R Core Team (2021). R: A language and
environment for statistical computing. R Foundation for Statistical
Computing] and the MedCalc Statistical Software version 20 (Med-
Calc Software Ltd, 2021; https://www.medcalc.org).

Data availability statements
The datasets used during this study are available from the corre-

sponding author upon formal reasonable request and after approval of
the study steering committee.

Results
Patients’ characteristics

Overall, 1,395 consecutive patients with advanced solid tumors
treated with nivolumab (766, 54.9%), pembrolizumab (499, 35.8%),
atezolizumab (71, 5.1%), ipilimumab (35, 2.5%), and other ICIs (24,
1.7%)were included in the analysis. As reported inTable 1, median age
was 68 years (range: 21–91), male/female ratio was 888/507 and
primary tumors were: NSCLC (54.7%), melanoma (24.7%), RCC
(15.0%), and others (5.6%). In total, 226 patients (16.2%) were on
GLMs, of which 147 (65.0%) on metformin, 125 (55.3%) on other oral
diabetes medication, and 76 (33.6%) patients on insulin therapy.
Details of diabetes medications are summarized in Supplementary
Table S2. Of note, 41 patients had preexisting autoimmune disorders
(8 cases of thyroid dysfunction, 10 skin disorders, 4 inflammatory
bowel disease, 2 vasculitis, 2 neurologic disorders, and 15 others).
There were no cases of preexisting type 1 diabetes.

Patients with diabetes were older (median age 71 vs. 68 years; P <
0.0001), more likely males (73.9% vs. 61.7%; P ¼ 0.0005), with higher
BMI (median 25.6 vs. 24.9; P ¼ 0.0075). Patients with diabetes more
frequently presented with a low-burden disease (≤ 2 metastatic sites
41.2% vs. 49.3%; P ¼ 0.0253).

At the median follow-up of 32.5 months (95% CI, 31.1–34.0) the
median OS and PFS for the overall population were 17.7 months (95%
CI, 15.5–19.5; 832 events) and 8.2 months (95% CI, 7.3–9.2; 1,057
events).

Preexisting T2DM is associated with worse outcome from ICIs
In the overall population, patients receiving GLMs displayed an

increased risk of death (HR, 1.23; 95% CI,1.03–1.47; Fig. 1A) but not
of disease progression/death (HR, 1.14; 95% CI, 0.97–1.33; Fig. 1B) in
comparison with the control group. Considering the differential
distribution of baseline features between the two groups, multivariable
analyses were performed for both the clinical endpoints. After adjust-
ment for all the available confounders (Table 2), receipt of GLMs
resulted to be independently associated with an increased risk of death
(HR, 1.29; 95%CI,1.07–1.56) and disease progression/death (HR, 1.21;
95% CI, 1.03–1.43).

After the PSMprocedure, 225 patients onGLMswerematched with
808 patients from the control group, with an optimal balancing ability
(Supplementary Table S3). Within the matched cohorts, the receipt of
GLMs was associated with an increased risk of death (HR, 1.25; 95%

Diabetes and Immune Checkpoint Inhibitors
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CI,1.04–1.50; Fig. 1C) and a tendence toward and increased risk of
disease progression/death (HR, 1.17; 95% CI, 0.99–1.38; Fig. 1D).

Among 763 patients with NSCLC, 138 (18.1%) were on baseline
GLMs. After PSM, 135 of them were matched with 135 patients from
the control group with a good balancing ability (Supplementary
Table S4). Within the matched NSCLC cohorts, the receipt of baseline
GLMs was associated with an increased risk of death (HR, 1.49; 95%
CI, 1.11–2.01; Supplementary Fig. S1A), alongside a nonsignificant
effect on the risk of disease progression/death (HR, 1.17; 95%CI, 0.89–
1.33; Supplementary Fig. S1B).

Among 345 patients with melanoma, 49 (16.5%) were on baseline
GLMs. These were propensity score matched with 128 patients from
the control group with a good balancing ability (Supplementary
Table S5).

The median OS of patients receiving GLM was 22.9 months (95%
CI, 12.0–NR; 25 events) while the OS of the control group was not
reached (52 events) with a tendence toward an increased risk of death

(HR, 1.39; 95% CI, 0.86–2.23; Supplementary Fig. S1C). Similarly, the
median PFS of patients exposed to GLMs was 11.4 months (95% CI,
4.9–23.4; 37 events) while that of the control group was 13.8 months
(95% CI, 8.7–26.0; 77 events; HR, 1.35; 95% CI,0.91–2.01; Supple-
mentary Fig. S1D).

Increasing GLM burden does not impact clinical outcome from
immunotherapy

Among 226 patients on treatment for diabetes, 102 (45.1%) were
receiving GLM monotherapy, whereas 124 (54.9%) were receiving
a combination treatment. We sought to determine whether dia-
betes medication burden was associated with a progressive detri-
mental impact on clinical outcomes. However, we found that only
patients on monotherapy experienced an increased risk of death in
comparison with the control group (HR, 1.29; 95% CI,1.01–1.65),
while no significant effect was associated with being on multiple
diabetes medications (Supplementary Fig. S2A). Similarly, neither

Table 1. Baseline patients’ characteristics for the overall population and according to the receipt of diabetes medications.

Total (N ¼ 1,395) No GLM (n ¼ 1,169) GLM (n ¼ 226)
n� (%) n (%) n (%) P

Age (years) — — — P < 0.0001
Median 68 68 71 —
Range 21–91 21–91 22–88 —

Sex — — — P ¼ 0.0005
Male 888 (63.7) 721 (61.7) 167 (73.9) —

Female 507 (36.3) 448 (38.3) 59 (26.1) —

ECOG-PS — — — P ¼ 0.7963
0–1 1,205 (86.4) 1011 (86.5) 194 (85.8) —

≥2 190 (13.6) 158 (13.5) 32 (14.2) —

Primary tumor — — — P ¼ 0.0730
NSCLC 763 (54.7) 625 (53.5) 138 (61.1)
Melanoma 345 (24.7) 296 (25.3) 49 (21.7) —

RCC 209 (15.0) 185 (15.8) 24 (10.6) —

Others 78 (5.6) 63 (5.4) 15 (6.6) —

No. of metastatic sites — — — P ¼ 0.0253
≤2 726 (52.0) 593 (50.7) 133 (58.8) —

>2 669 (48.0) 576 (49.3) 93 (41.2) —

Treatment line of immunotherapy P ¼ 0.0522
First 519 (37.2) 422 (36.1) 97 (42.9) —

Nonfirst 876 (62.8) 747 (63.9) 129 (57.1) —
BMI (kg/m2) — — — P ¼ 0.0075

Median (range) 25.1 (13.6–50.8) 24.9 (13.6–50.8) 25.6 (16.4–43.2) —

Underweight (≤18.5) 59 (4.2) 54 (4.6) 5 (2.2) —

Normal weight (18.5–25) 628 (45.0) 538 (46.0) 90 (39.8) P ¼ 0.0711
Overweight (25-30) 508 (36.4) 415 (35.5) 93 (41.2) —

Obese (≥ 30) 200 (14.3) 162 (13.9) 38 (16.8) —

Baseline steroids P ¼ 0.3135
No 1,043 (74.8) 868 (74.3) 175 (77.4) —

Yes 352 (25.1) 301 (25.7) 51 (22.6) —

Baseline systemic antibiotics — — — P ¼ 0.0502
No 1,043 (74.8) 1,076 (92.0) 199 (88.1) —

Yes 352 (25.1) 93 (8.0) 27 (11.9) —

Metformin — — — —

No 1,248 (89.5) — 147 (65.0) —

Yes 147 (10.5) — — —

Other oral diabetes medications — — — —

No 1,270 (91.0) — 125 (55.3) —

Yes 125 (9.0) — — —
Insulin therapy — — —

No 1,319 (94.6) — 76 (33.6) —

Yes 76 (5.4) — — —
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monotherapy, nor combination therapy were associated with worse
PFS (Supplementary Fig. S2B).

Differential effect of metformin and other antidiabetes
medications on clinical outcomes

Overall, 147 patients were on metformin and 134 were on other
oral antidiabetic drugs/insulin therapy. On univariable analysis,
receipt of metformin therapy was associated with an increased risk
of death (HR, 1.35; 95% CI,1.09–1.66; Supplementary Fig. S3A) and
disease progression/death (HR, 1.23; 95% CI,1.02–1.49; Supplemen-
tary Fig. S3B). On the contrary, being on other oral antidiabetic
drugs/insulin therapy was not associated with both the OS and PFS
(Supplementary Fig. S4).

Stratifying patients into those who were on baseline metformin
either alone or in combination and those who were on diabetes
medications other than metformin only, we reported similar trends
for OS (log-rank P¼ 0.018) and PFS (log-rank P¼ 0.086) but without
significant differences between exposure to metformin and other
diabetes medications only (Supplementary Fig. S5).

After the exclusion of 54 patients (23.9%) on metformin, other
oral hypoglycemic and insulin therapy combinations, and one
patient (0.4%) on metformin and insulin therapy combination, 92
patients (40.7%) on metformin monotherapy and 79 (34.9%) on
other antidiabetic medications (of which 21% –26.6% on other oral
hypoglycemic medications, 11% –13.9% on insulin monotherapy,

and 47%–59.5% on combinations of both) were included in the
respective PSM analysis.

Compared with patients who were not taking diabetes medications,
those on metformin only were older (median age 71 vs. 68 years; P ¼
0.0035) and more frequently males (66.3% vs. 61.7%; P ¼ 0.0384;
Supplementary Table S6). After the PSM procedure, 92 patients on
metformin only were matched with 363 patients from the control
group, with an optimal balancing ability (Supplementary Table S7).
Within the matched cohorts, being on metformin only was associated
with an increased risk of death (HR, 1.53; 95% CI, 1.16–2.03; Fig. 2A)
and disease progression/death (HR, 1.34; 95% CI, 1.04–1.72; Fig. 2B).

Compared with the control group, patients on other oral antidia-
betic drugs/insulin therapy onlywere older (median age 72 vs. 68 years;
P < 0.0001), with a higher BMI (median 25.9 vs. 24.9; P¼ 0.0108) and a
higher burden of metastatic sites (63.3% vs. 50.7%; P ¼ 0.0306); they
also were more likely males (78.5% vs. 61.7%; P ¼ 0.0028) and with a
higher proportion of NSCLC (72.2% vs. 53.5%; P ¼ 0.0143; Supple-
mentary Table S8).

After the PSM procedure, 78 patients on other oral antidiabetic
drugs/insulin therapy only were matched with 299 patients from the
control group, with an optimal balancing ability (Supplementary
Table S9). Within the matched cohorts, being on other oral antidi-
abetic drugs/insulin therapy only was not associated with either the
risk of death (HR, 1.03; 95%CI, 0.75–1.41; Fig. 2C), nor that of disease
progression/death (HR, 0.99; 95% CI, 0.75–1.31; Fig. 2D).

Figure 1.

Kaplan–Meier survival estimates according to the receipt of any diabetesmedication.A,OSwhole cohort; patients on any diabetes medication: 14.5 months (95% CI,
11.1–18.3; 148 events), patients not receiving diabetes medications: 18.9 months (95% CI, 15.9–21.5; 684 events). B, PFS whole cohort; patients on any diabetes
medication: 8.0 months (95% CI, 6.2–10.4; 185 events), patients not receiving diabetes medications: 8.2 months (95% CI,7.1–9.4; 872 events). C, OS PSM cohort;
patients on any diabetes medication: 14.4 months (95% CI,11.2–18.7; 148 events), patients not receiving diabetes medications: 18.7 months (95% CI, 16.1–22.1; 466
events).D, PFS PSM cohort; patients on any diabetes medication: 8.0months (95%CI, 6.2–10.6; 185 events), patients not receiving diabetesmedications: 8.4months
(95% CI, 7.5–10.1; 593 events).
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Diabetes and poor glycemic control are associated with
unopposed systemic inflammation and distinctive immune-
suppressive features within the TME

Overall, MBG data were available for 133 patients (Supplementary
Table S10).

The median MBG value for the overall cohort was 5.7 mmol/L
(range 4.1–19.9) and significantly different among diabetic (n ¼ 19;
median 8.0 mmol/L; range: 5.6–19.9) and nondiabetic patients (n ¼
114; median 5.6 mmol/L; range: 5.6: 4.1–8.7; P < 0.0001). Median NLR
for the 133 patients evaluable for MBG was 3.8 (range 0.1–36.5).
Increasing levels of MBG were significantly associated with increasing
NLR values [F (1, 131) ¼ 4.09; P ¼ 0.04] with an R2 of 0.030
(Supplementary Fig. S6). To discriminate the effect of concomitant
corticosteroid therapy in influencing the relationship between MBG
and NLR, we performed a multivariable logistic regression using the
median NLR value as cutoff. This model confirmed that baseline
corticosteroid therapy was not associatedwith pretreatment NLR (OR,
1.87; 95%CI, 0.51–6.87), whereas increasingMBGwas confirmed to be
significantly associatedwith a highNLR (OR, 1.58; 95%CI, 1.17–2.14).

In view of the negative association between T2DM and outcome
from immunotherapy we performed an exploratory targeted tran-
scriptomic profiling experiment in a small subset of 22 primary tumor

samples selected from the Imperial College London cohort, including
11 controls and 11 diabetic patients. Clinical features of included
patients are summarized in Supplementary Table S11. Using a bulk
transcriptomic approach of macrodissected tumor tissue, we found
that samples from patients with diabetes were characterized by dis-
tinctive characteristics suggestive of more profound immune suppres-
sion compared with nondiabetic controls (Supplementary Fig. S7). In
particular, directed gene-set enrichment analysis (GSEA) suggested
significant downregulation of a number of gene signatures involved
in adaptive and innate immune responses in diabetic samples
(Supplementary Fig. S3). Analysis of candidate genes highlighted
the decreased expression of single transcripts belonging to the
inflammatory response (CXCL9, CXCL11, and BIRC5) and to the
modulation of T-cell function (LAG3; Supplementary Fig. S8A and
S8B) in diabetic samples (34, 35).

Discussion
The wide therapeutic index of ICI has broadened the reach of

systemic therapy in solid tumors, making it possible to safely treat
elderly and multiply comorbid patients who may not qualify for
cytotoxic or targeted therapies (36, 37). Polypharmacy and comorbid-
ities can, however, affect efficacy of ICI (25). Despite being a highly
prevalent comorbidity in patients with cancer (38–40), and some
preliminary descriptive findings in patients with lung cancer (41),
there is no convincing evidence to suggest whether a coexisting
diagnosis of diabetes leads to worse outcomes from immunotherapy.

In our large observational study of approximately 1,400 ICI reci-
pients, we were able to demonstrate that a concomitant diagnosis of
T2DM at ICI initiation was independently associated with inferior
outcomes from immunotherapy—a finding that relies on the use of
multivariable models and PSM analyses.

While hyperglycemia and T2DM are hallmarks of the metabolic
syndrome, together with dyslipidemia, increased waist circumfer-
ence, and arterial hypertension (42), our study is the first to suggest
an opposite effect of T2DM compared with obesity in shaping
ICI-mediated immune reconstitution. Obesity has been paradoxi-
cally associated with improved outcomes from ICIs (2), with
preclinical and clinical evidence suggesting the presence of an
obesity-related T-cell dysfunction that can be rapidly reversed upon
checkpoint blockade (20, 43).

Although we reported an association between GLM exposure and
increasing BMI, our understanding of the relationship between obesity
and response to ICIs has significantly evolved, calling into question a
number of concurrent host factors (20). Distribution of adiposity and
body composition are more complex factors in dictating outcomes
from immunotherapy, all imperfectly recapitulated by simple BMI
computation. Obesity, dyslipidemia (2, 44), chronic hyperglycemia,
and the development of peripheral insulin resistance could be inter-
preted as a progressive, time-dependent derangement of the host
metabolic response, where high body weight and accumulation of
subcutaneous fat precedes an increase in visceral adiposity, accumu-
lation of intramuscular adipose tissue and secretion of adipocytokines,
ultimately leading to progressive weight loss (45) in the context of
active malignancy. Higher subcutaneous fat distribution is in fact
associated with better outcomes from immunotherapy, whereas the
opposite is true for intermuscular fat and sarcopenic-obesity, traits that
are increasingly associated with unopposed systemic inflammation
and worse outcomes from ICIs (46–50).

In our study, patients with diabetes experienced worse outcome
independent of common clinicopathologic features of their oncologic

Table 2. Fixed multivariable analyses for the risk of death and
disease progression/death within the whole cohort.

Multivariate analysis

Risk of death
Risk of disease
progression/death

Variables HR (95% CI) HR (95%CI)
GLM

No 1 1
Yes 1.29 (1.07–1.56) 1.21 (1.03–1.43)

BMI
Continuous 0.97 (0.96–0.99) 0.98 (0.97–0.99)

Age
Continuous 0.99 (0.99–1.00) 0.99 (0.99–1.00)

Primary tumor
NSCLC 1 1
Melanoma 0.72 (0.56–0.93) 0.87 (0.68–1.10)
Kidney 0.55 (0.43–0.71) 0.74 (0.59–0.92)
Others 0.89 (0.64–1.23) 1.09 (0.82–1.44)

Sex
Female 1 1
Male 1.14 (0.98–1.32) 1.13 (0.99–1.29)

Treatment line
First 1 1
Nonfirst 1.24 (1.05–1.46) 1.24 (1.07–1.44)

No. of metastatic sites
≤2 1 1
>2 1.57 (1.36–1.83) 1.41 (1.24–1.62)

ECOG PS
0–1 1 1
≥2 2.32 (1.91–2.80) 1.92 (1.61–2.30)

Baseline corticosteroids
No 1 1
Yes 1.64 (1.39–1.93) 1.51 (1.30–1.75)

Baseline antibiotics
No 1 1
Yes 1.44 (1.15–1.81) 1.35 (1.09–1.68)

Note: A center-specific conditional interpretation by using frailty models was
applied to correct all the 95% CIs.
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disease, including tumor site of origin and disease burden, giving
credence to the hypothesis that diabetes may exert a preconditioning
effect against ICI efficacy (10). Despite the limited sample size and
different prevalence of diabetes across different primary tumors,
results of the survival analysis performed among the NSCLC and
melanoma matched cohorts seem to support this, confirming a
detrimental effect of preexisting T2DM on OS for patients with
NSCLC and a similar trend for patients with melanoma.

T2DM leads to an exquisitely immune-suppressive state. Patients
with diabetes are less reactive to pathogens (12), with chronic hyper-
glycemia leading to dysfunctional innate immune responses (13–15)
and functional repercussions on all major immune cell subsets,
including macrophages, dendritic cells, T cells, and NK cells (51).
Hyperglycemia has also been associatedwith the increase of circulating
CD8þPD-1þT cells in patients with T2DM, which show reduced
glycolysis and impaired cytokine secretion (52).

Lack of detailed peripheral immune cell characterization limits our
ability to establish mechanistic links between T2DM and outcome.
However, our study highlights a linear relationship between MBG and
the patients’ NLR, a solid and reproducible measure of systemic inflam-
mation (53), postulating a link between T2DMand impaired ICI efficacy
through defective modulation of innate immune pathways (54, 55).

Figure 2.

Kaplan–Meier survival estimates according to the receipt ofmetformin only after the exclusion of patients on other diabetes medications and insulin therapy.A,OS PSM
cohort; patients onmetformin only: 11.4months (95% CI, 9.3–15.9; 66 events), patients not receivingmetformin: 20.4months (95% CI, 17.5 – 26.3; 363 events).B,PFS PSM
cohort; patients onmetformin only: 7.9 months (95% CI, 4.3–11.4; 79 events), patients not receiving metformin: 8.9 months (95% CI, 7.3–10.9; 260 events). Kaplan–Meier
survival estimates according to the receipt of other DM/insulin therapy only after the exclusion of patients onmetformin.C,OS PSM cohort; patients on other DM/insulin
therapyonly: 19.3months (95%CI, 14.7–24.8; 48events), patients not receivingDM/insulin therapy: 18.1months (95%CI, 14.8–21.9; 174 events).D,PFSPSMcohort; patients
on other DM/insulin therapy only: 10.1 months (95% CI, 6.9–16.5; 61 events), patients not receiving DM/insulin therapy: 8.2 months (95% CI, 6.6 – 11.6; 222 events).

Figure 3.

Gene-set analysis showing the differential regulation of 22 gene expression
signatures on the basis of diabetic status. Targeted transcriptomic analysis using
NanoString PanCancer immune profilingwas performed to compare patientswith
diabetes (n¼ 11) with nondiabetic controls (n¼ 11). Methodologic information for
the GSEA and its interpretation is provided as Supplementary Methods.
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To provide further insight as to the mechanisms linked to inferior
outcome from immunotherapy in ICI recipients, we performed an
exploratory analysis of a small cohort of patients with and without
diabetes with available pretreatment archival tissue. While limited by
small sample size and exploratory intent, targeted transcriptomic
analyses highlight downregulation of gene expression programs
involved in the innate and adaptive immune response in the TME
of patients with diabetes (56), in line with previous evidence showing
worse T-cell exhaustion in diabetic patients with melanoma treated
with ipilimumab (57).

The transcriptomic data presented in this study are hypothesis
generating and cannot be viewed as exhaustive of all plausible expla-
nations justifying inferior survival of patients with T2DM. Compo-
sitional changes in the gut microbiota can additionally be mentioned
among potential underlying mechanisms to our findings, given that
complex interplay existing between T2DM, metabolic dysfunction,
and perturbation of gut homeostasis (58). A significant increase in the
bacteroidetes/firmicutes ratio (59) and reduction in the presence of
commensal bacterial species specifically associated with improved ICI
efficacy, such as Akkermansia muciniphila (60–62), have been
reported among patients with diabetes.

The increasingly appreciated role of concomitant medications as an
alternative or perhaps complimentary cause of altered responsiveness
to ICI raises the question of whether individual GLM classes may be
important in influencing prognosis.

While the number of GLMs was not associated with prognosis,
stratification of outcome by GLM class suggested that the detrimental
effect on clinical outcomes we observed was restricted to metformin
recipients.

While we cannot conclude whether the negative prognostic effect
for metformin exposure is causative rather than associative, it is
important to highlight that a consistent body of evidence supports
metformin as preferred initial therapy for T2DM, along with a
substantial patient–provider resistance to start diabetes combina-
tion treatments at metformin failure and poor adherence to insulin
in Western countries (63–67). When these considerations are taken
into account, it might be assumed that metformin exposure may
capture patients with long-standing and potentially suboptimally
controlled diabetes. In fact, metformin was mainly given as mono-
therapy in our cohort, whereas other GLMs were mostly coadmi-
nistered with insulin: a finding that makes it impossible to fully
disentangle the effect of improved T2DM control associated with
insulin therapy as opposed to a true mechanistic detrimental effect
from metformin alone.

On the other hand, tumor-modulating role of metformin has been
described for a long time in patients with cancer (68, 69), although
evidence in support of an immune-modulating effect of metformin in
the context of immunotherapy of cancer is scantly and mostly limited
to the preclinical setting (70–72)

Metformin may have immune-suppressive properties, through
targeted inhibitory effect on leukocyte function including AMPK-
induced mTORC1 inhibition and the reduction of mitochondrial ROS
production (73, 74). In addition, multiple studies confirmed that
metformin can lead to gut dysbiosis and gut microbial perturbation
in healthy volunteers (75), which in turn are associated with gastro-
intestinal adverse effects following metformin intake (76). A recent
deep-learning multi-omics phenotyping study of 789 patients with
newly diagnosed T2DM (77) reported an association between met-
formin and dysregulation of CXCL8 andCD177, which are involved in
both the innate and adaptive anticancer immune response (78, 79),
alongside with a distinctive shift in gut metagenomics data.

Taken together, our data suggest a statistically significant and
clinically meaningful difference in survival for patients receiving
GLMs for diabetes prior to ICI, with a greater effect observed for
those exposed to metformin. Although hypothesis generating, these
data require validation in prospective clinical studies before solid
clinical recommendations are made, so that the relative contribution
of metformin over adequacy and quality of T2DM control can be
evaluated for their putative mechanistic linkage with outcome from
immunotherapy.

In addition, further research efforts should provide a more
comprehensive evaluation of diabetes severity, including prevalence
of micro and macrovascular complications, dietary habits, treat-
ment adherence, and baseline HbA1c levels (80, 81) factors that
cannot be reconstructed from our data due to the retrospective
nature of our study.

Primary analyses in the whole study population were adjusted for
primary tumor type, resulting in an optimal balancing ability. How-
ever, we acknowledge that the inclusion of different tumors is a
significant source of heterogeneity. The separate PSM performed
among the NSCLC andmelanoma cohorts suggest similar detrimental
effects for preexisting T2DM across different malignancies, even
though the reduced sample size and a lower proportion of patients
with diabetes within the melanoma group limited the analysis, which
did not reach the statistical significance threshold.

In addition, despite the concordant trend of a reduced PFS for
diabetic patients at the matched analysis, the lack of a statistically
significant increase in the risk of disease progression/death (HR,
1.17; 95% CI, 0.99–1.38; P ¼ 0.056) needs to be mentioned and
might be related to the relatively small number of events across
groups. Small sample size of the cohort included in the MBG and
targeted transcriptomic analyses should also be considered in
interpreting the results, which – although provocative – do not
allow us to infer conclusive considerations about differential role of
systemic inflammation and expression of immune-related genes in
the TME of patients with diabetes.

Despite these limitations and the preliminary nature of our findings,
our study is the first to our knowledge to report a clear detrimental
effect of diabetes on clinical outcomes from ICIs in patients with solid
tumors. In view of the constantly expanding clinical indications of ICI-
based therapies across different cancer types (19) and the increasing
global burden ofmetabolic syndrome, obesity, and T2DM (82, 83), our
findings are of clinical importance and need to be carefully considered
in the provision of cancer immunotherapy.

Further prospective research efforts are needed to fully elucidate the
underlying mechanisms in support of our findings, to assess the
putative detrimental role of metformin therapy and other GLM, and
to investigate whether patients with cancer requiring an ICI-based
treatment should be prioritized for optimization of T2DM therapy.
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