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Abstract: Background: The management of neurodegenerative diseases can be frustrating for clini-

cians, given the limited progress of conventional medicine in this context. 

Aim: For this reason, a more comprehensive, integrative approach is urgently needed. Among various 

emerging focuses for intervention, the modulation of central nervous system energetics, oxidative

stress, and inflammation is becoming more and more promising.

Methods: In particular, electrons leakage involved in the mitochondrial energetics can generate reac-

tive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology 

of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, 

stroke, and amyotrophic lateral sclerosis (ALS). 

Results: In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial sup-

port, reduces oxidative stress, and improves synaptic transmission. 

Conclusion: This narrative review aims to update the existing literature on ALCAR molecular profile, 

tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.
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1. INTRODUCTION

1.1. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS), also known as

Charcot's or Lou Gehrig's disease, is a neurodegenerative

disease characterized by a progressive deterioration of upper

(UMN) and lower (LMN) motoneurons. Therefore, ALS 

falls within the spectrum of motor neuron diseases (MNDs), 

and it is the most frequent form in adults. ALS has a preva-

lence of 4.1-8.4/100.000 and an incidence between 0.6 and 3, 

8/100.000 [1]; the average survival ranges vary from 20 to 

48 months. However, there is a broad distribution of indi-

vidual patient survival [2]. Its typical clinical features in-

clude a combination of UMN and LMN signs in the cranial

(e.g., dysarthria and dysphagia) and in the spinal (e.g., mus-

cle atrophy, fasciculations, gait abnormalities) regions. Up

to 50% of ALS patients may have symptoms of cognitive
impairment [3-6].
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The pathogenesis and the underlying mechanisms related 
to neurodegeneration, especially in sporadic forms of ALS, 
are only partially understood. However, multiple mecha-
nisms have been proposed to account for progressive MN
degeneration, including oxidative stress [7], misfolded pro-
tein aggregation [8], neurofilament damage, mitochondrial 
abnormalities, glutamatergic excitotoxicity [9], immunolog-
ical alteration, and altered responses to hypoxia. Further-
more, increasing evidence also highlights a significant con-
tribution of the peripheral nervous system and muscles in
disease progression [10, 11].

To date, no therapy can invert the natural history of the 
disease, and riluzole, the only available drug, has only a
modest effect [12]. Several studies on drug therapies for
ALS have been published in recent years, often with con-
trasting and inconclusive results; thus, a curative treatment 
for ALS is yet to be discovered, with the available drug op-
tions only for symptomatic vantages [13, 14]. So, searching 
for an ALS therapy is one of themain stumbling blocks for
researchers in this area.

Given the lack of effective drugs and the ALS severity, 
most patients consider trying complementary and alternative 
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therapies, such as special diets, nutritional integrators, can-
nabis, and energy healing [15]. Among these, the use of
acetyl L-carnitine (ALCAR) is undoubtedly relevant.

This narrative review aimed to update the existing litera-
ture on ALCAR molecular profile, tolerability, and transla-
tional clinical potential use in neurodegeneration, focusing
on ALS. We have described the molecular andpharmacologi-
cal properties of ALCAR, the disease mechanisms on which 
the molecule could act, and the clinical implications in ALS.

2. ROLE OF GENETICS IN ALS MECHANISMS

Technological advancement and molecular genetics
techniques have been increasingly applied to ALS research. 
For example, genome-wide association studies and “next-
generation” sequencing techniques have supplemented the
“first-generation” methods, such as genetic linkage analysis, 
and have allowed the search forALS-linked genes to be con-
ducted in large sample sets [16]. Such advances have con-
tributed to our understanding of the genetic causes of famil-
ial ALS (fALS), with approximately 40-55% of cases ac-
counted for by variants in known ALS-linked genes. Alt-
hough more than 50 potentially causative or disease-
modifyinggenes have been identified, pathogenic variants in 
SOD1, C9ORF72, FUS, and TARDBP occur most frequent-
ly with the disease.

From a pathological point of view, the SOD1 mutation is 
relevant. The findings that SOD1 mutant proteins have bio-
physical properties similar to wild-type SOD1 (wtSOD1) 
and could cause an ALS-like disease in transgenic mice 
support an emerging role of wtSOD1 in sporadic ALS path-
ogenic mechanisms [17]. The location of the SOD1 gene is 
on chromosome 21q22.11, which encodes for monomeric 
SOD1 protein comprising 153 amino acids with a molecular 
weight of 16kDa. Until now, more than 180 different muta-
tions have been found in the SOD1 gene, like single point
mutations, deletions, insertions, and truncation mutations in 
5 exons, which would result in protein failures [18].

In 20% of fALS and 2-3% of sporadic ALS (sALS) cas-
es, the SOD1 gene has been reported to be altered. The en-
zyme, which is encoded by SOD1, helps in the defense 
mechanisms against peroxidation. In particular, the inactiva-
tion of superoxide radicals by generating dioxygen and hy-
drogen peroxide (H2O2) is done by SOD1 [19]. For this rea-
son, changes in SOD1 function could lead to an imbalance 
between the degradation and production of ROS [20]. ALS
patients with the SOD1 mutations contain SOD1/ubiquitin-
positive aggregates [21, 22], which couldrepresent the cause 
of toxicity [23, 24] through actions on the endoplasmic re-
ticulum (ER). For instance, the ER stress can be triggered 
by a component of endoplasmic-reticulum-associated pro-
tein degradation (ERAD) machinery, when mutant SOD1 
interacts with Derkin-1 [25].

SOD1 mutations can also impair proteasome activity. The
reduced level of 20S proteasome, which is expressedin fALS
SOD1 G93A mutant, was observed in lumbar spinal MNs. 
In the study by Dangoumau A et al. [26], many strategies to 
stop the accumulation of SOD1-positive aggregates have 
been described. They observed that the inhibition of SOD1
SUMOylation could inhibit the in vitro mutant SOD1 aggre-

gates. Moreover, it was observed that in mice, the overex-
pression of human Dorfin in SOD1G93A reduced the level
of mutant SOD1protein, and it was able to repair the neuro-
logical phenotypes in the spinal cord [27].

Another important factor for toxicity related to SOD1 
appears to be represented by autophagy. The ubiquitin ligase 
E3 (Parkin), which is related to Parkinson’s disease, permits 
the mutant SOD1 to ubiquitinate and proceed to degradation 
by the autophagy-lysosome system [28]. Macro-autophagy 
initiated by Hsp70 and its co-chaperone BAG3 clears the 
aggregated amount of mutated SOD1 [29]. The exact cause 
of selective degeneration of MN in SOD1 connected to ALS
is still unclear. One hypothesis could be that these neurons
cannot correctly degrade unfolded/misfolded proteins. It is 
noteworthy that the activation of the autophagy system re-
lated to SOD1 mutants is lower in NSC-34 cells when com-
pared to the C2C12 muscle cell line. All the above data
demonstrate that disturbances in UPS and autophagy in 
SOD1 are associated with ALS [30].

It is also noteworthy that dysfunction of TAR DNA-
binding protein 43 (TDP-43) can play a role in the onset of
most cases of ALS [31]. However, although TDP-43 pa-
thology is a common feature of ALS, just a few percentage
of all cases is caused by gene alterations [32, 33]. With re-
gards to this issue, mutations in the TARDBP gene that en-
codes TDP-43 account for only 5-10% cases with a genetic
cause [34-36], whereas the remaining 90-95% cases are re-
lated to mutations in C9ORF72, SOD1, FUS and UBQLN2 
[32]. In general, the above gene alterations can exacerbate
TDP-43 aggregation, leading to TDP-43 loss-of-function and
gain-of-toxicity, whichdrives ALS pathogenesis [37, 38]. It
is noteworthy that defective protein homeostasis (proteosta-
sis) caused byeither genetic reasons and/or extrinsic stressors
can lead to the pathological transformation of wild-type TDP 

In particular, four essential endogenous proteostasis sys-
tems, the ubiquitin-proteasome system (UPS), autophagy-
lysosome pathway (ALP), heat-shock response (HSR), and
chaperone-mediated autophagy (CMA), can differentially be 
involved in ALS pathogenesis through changes in the detec-
tion, sequestration, refolding, or degradation of misfolded and 
aggregated proteins, which can be toxic or can impair cell 
functionality [39, 40]. Mutations in UBQLN2, C9ORF72, 
and SQSTM1 (encoding p62) genes have been associated
with the alteration of UPS [41-43]. However, in spite of the
extended knowledge about the role of thosegenes in the clear-
ance of TDP43 protein(s), the precise mechanism through
which neurodegeneration can occuris unclear so far [44-46]. 
It also needs to be noted that UBQLN2, p62/SQSTM1, 
VCP, TBK1, and OPTN mutations can be involved in the
accumulation of polyubiquitinated TDP-43 and other pro-
teins [47] through impairment of the autophagy process. In 
UBQLN2 knock-out mice, a reduction in autophagosome
acidification was observed [48]. Also, disease-linked muta-
tions in p62/SQSTM1 have been found to impair the bind-
ing and recruitment of ubiquitinated substrates to disrupt 
selective autophagy and promote the aggregation of p62 and
TDP-43. In mice and iPSC-derived MNs expressing mutant
VC, TDP-43 mislocalisation, cytoplasmic inclusion for-
mation [49, 50], and accumulation of non-degradative au-
tophagosomes have been observed [51]. Finally, in ALS
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patients, OPTN mutations have been correlated with au-
tophagic vacuole formation and TDP-43 pathology [52], and 
this was replicated in cells with impaired autophagosome-
lysosome fusion [53].

HSP dysregulation has been suggested to be involved in 
ALS cases with TDP-43 pathology as well. For example, 
HSPB1, HSP70, and HSP40 are decreased in sporadic ALS 
spinal cord tissue [54, 55]. Furthermore, the co-localisation 
of HSP40 with pathological TDP-43 inclusions in the ALS 
end-stage would highlight that chaperones are recruited as a
clearance mechanism and are sequestered into inclusions
[56]. Mutations in HSP genes, such as DNAJC7, could be
causative of familial ALS through impairment of proteostasis
[57]. However, this still needs to be experimentally validat-
ed and the relationship with TDP-43 pathology remains to 
be clarified. Furthermore, CRISPR knock-out of STI1 in 
Neuro-2a and neuronal SN56 cells was reported to increase 
TDP-43 insolubility, misfolding, cytoplasmic puncta, and 
toxicity [58]. Also, the knockdown of HSP70or HSP90 was 
able to lead to the accumulation of TDP-43 CTFs [59]. In 
addition, inhibition of the HSR by expressing a dominant-
negative mutant HSF1 could increase insoluble TDP-43, 
phospho-TDP-43, and the number of cellular TDP-43 inclu-
sions [56]. Also, DNAJB2 (HSJ1a), which is up-regulated by 
HSF1 expression, has been identified as an anti-aggregation 
chaperone for TDP-43 [54, 60]. Finally, the nucleation and
oligomerisation of TDP-43 induced by casein kinase II-
dependent phosphorylation could trigger the HSRand recruit 
HSP90 to maintain misfolded TDP-43 in the soluble state 
for later clearance, disassembly, or refolding [61].

Chaperone-mediated autophagy (CMA) is a kind of au-
tophagy in which cytosolic proteins are targeted for degra-
dation by means of their transfer into lysosomes, which is
promoted by the chaperone heat-shock cognate protein 70 
(HSC70). CMA has been found to play a role in clearing 
pathological TDP-43 following the detection of a non-
canonical CMA recognition motif, QVKKD, in the RRM1 
domain of TDP-43 [62]. It needs to be noted that only the
ubiquitinated wild-type TDP-43, and not a mutant lacking
the QVKKD sequence, was found to co-immunoprecipitate 
with HSC70. Recently, HSC70 expression has been shown 
to be reduced in sporadic ALS patients with insoluble TDP-
43 pathology, and it has been observed that HSC70 silenc-
ing in human neuroblastoma cells is able to increase TDP-
43 protein levels. It needs to be highlighted that the patho-
genic changes to the TDP-43 protein, such as mislocalisa-
tion, aggregation, and post-translational modification, can
also be found in almost all other sporadic or inherited ALS 
cases without TARDBP mutations. However, while few 
studies have investigated the involvement of CMA in neuro-
degenerative proteinopathies, knowledge about the role of
CMA dysfunction in TDP-43 pathology needs to be deep-
ened.

3. NEUROTRANSMITTERS IN ALS

The most abundant neurotransmitter in the central nervous 
system (CNS), namely glutamate (GLU), activates mGluRs, 
comprising N-methyl-D-aspartate receptors (NMDA) and α -
amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) 
receptors, which mediate influxes of sodium and calcium in 

postsynaptic neurons. An increase in the release of GLU, an 
improper uptake, or mechanisms linked with mGluRs may
result in abnormal neuronal activation [63] and excitotoxicity
[64], which could be caused by aberrant calciumhomeostasis, 
ROS production, and downstream mitochondrial dysfunc-
tion. Hence, deterioration of neuronal dendrites was ob-
served in sALS and fALS patients but not in controls or 
other neurodegenerative disorders, suggesting that ALS 
could be a synaptopathy attributable to higher levels of GLU 
[65]. It is also noteworthy that previous studies have provid-
ed evidence related to the role of abnormal uptake of GLU 
and transport mechanism in sALS. In particular, it was
shown that loss of excitatory amino acid transporter
(EAAT2) in anterior horn cells would be involved in the
sALS onset [66]. The results of post-mortem research, how-
ever, were unable to find any difference between EAAT2 
mRNA expressions in sALS patients and controls, which 
leads to the hypothesis that the abnormalities would occur at
post-transcriptional levels [64].

Given the role played by mGluRs in the physiological 
control of neurons, it is not surprising that any changes in 
their expression/function could be involved in pathological 
conditions, like multiple sclerosis, Parkinson’s disease [67], 
and ALS [68].

The NMDA receptor is an ion channel protein receptor 
that is activated when GLU and glycine bind to it. These
receptors are heteromeric complexes that interact with mul-
tiple intracellular proteins by three different subunits:
GluNR1, GluNR2, and GluNR3. The subunits of NR1 (in
the ventral horn) and NR2 (ventral and dorsal horn) have 
been observed to be less expressed in comparison to con-
trols in ALS spinal cord [69]. These findings are related to 
cell loss or regulatory changes in response to an increase in 
NMDA agonists [70]. In addition, recent studies have 
demonstrated a direct link between the NMDAR co-agonist, 
D-serine, and ALS. The degradation of D-serine and D-
amino acid oxidase (DAO), which is caused by the patho-
genic mutation R199W, can be commonly observed in the
fALS. The abolishment of the enzyme activity would be
accompanied by a toxic effect causing apoptosis and aggre-
gation of proteins in MNs [70-72].

GLU-gated AMPA receptors comprise four subunits, 
from GluA1 to GluA4 (AKA GluR1-4) [73]. The overacti-
vation of AMPA receptors leads to paralysis of the hindlimb 
and MN degeneration in wild-type rats through mechanisms
related to calcium dysregulation [74]. The AMPA recep-
tors modulate calcium permeability in the presence of the 
GluA2 subunit, whose action is to inhibit calcium entry 
[75]. When the pre-mRNA of GluR2 is modified at amino 
acid 607, this is found in the second transmembrane domain 
of the receptor subunit, which is called the Q/R site. The
absence of this subunit impairs transcriptional editing of the
Q/R site, leading to increased calcium permeability [76]. It 
has been shown that polymorphisms in the GluA2 subunit 
would not represent a risk factor in ALS [77]. Instead, the 
cause behind excitotoxicity observed in ALS could be relat-
ed to changes in GluA2 expression [78], which could be ob-
served in anterior spinal neuronsrather than dorsal horn neu-
rons, explaining the selective susceptibility of MNs in ALS 
[79]. It is noteworthy that mutations in SOD1 in vitro and in
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vivo were accompanied by higher levels of GLU release [80], 
a reduced expression of astrocytic GluA2, and hyperexcita-
bility and degeneration of MNs [77]. Also, in sALS, GluA2
transcriptional editing was impaired in MNs compared to 
controls [81]. This transcriptional editing of GluA2is medi-
ated by adenosine deaminase acting on RNA2 (ADAR2), 
which blocks the entry of calcium-binding proteins [82] 
involved in the modulation of calcium cell signaling path-
ways. Moreover, in sALS, a reduced ADAR2 expression
and increased aggregation of TAR DNA-binding protein 43
(TDP-43; trans-active response DNA binding protein, 43
kDa), which, in turn, could cause AMPA receptors dysfunc-
tion, have beenreported in spinal MNs [83].

In summary, both the decreased GluA2 expression and 
the impaired transcriptional editing could increase the sus-
ceptibility to ALS by increasing intracellular calcium and 
activating excitotoxicity as a downstream event.Usually, in
humans, low levels of GluR2 expression have been observed
in lower and upper MNs compared to other neuronal types 
[84]. Moreover, in rodents, GluR2 distribution is very pecu-
liar, and AMPA receptors have been found to be more ex-
pressed in MNs, making them vulnerable to kainite [85]. The
modification of proteins, such as FUS and TDP-43, which 
leads to loss of ADAR2, can be observed in MNs that carry 
the GluR2 in sporadic cases. This is correlated with TDP-43 
phosphorylation and loss of TDP-43 from nuclear space. To
find the potential role of ADAR2, Hideyama et al. investi-
gated the effect of the knockdown of ADAR2 on the MN
subpopulation, and it was observed that it was able to reduce
the degeneration and the loss of neuromuscular synapses
[86]. Another important gene associated with the GLU exci-
totoxicity hypothesis of ALS is C9orf72, whose mutations 
could impair autophagosome formation and cause GLU re-
ceptors accumulation in ALS cases [87]. This hypothesis 
was supported by the findings obtained in knockout C9orf72 
mice, showing GluA1 upregulation and increased suscepti-
bility against excitotoxicity in the hippocampus compared to 
controls [88]. Additionally, it was observed that knocking 
out C9orf72 could delete SMCR8, which is an important
protein that functions with C9orf72 and WD40 repeat do-
main 41 (WDR41) in the regulation of autophagy andmem-
brane trafficking mechanism [20]. Thus, the loss of function
of C9orf72 would increase the susceptibility against exci-
totoxicity through excess clearance of GLU receptors, au-
tophagy, and aberrant accumulation of GluR1.

4. ACETYL L-CARNITINE

Acetyl L-carnitine (ALCAR), the acetyl ester of L-
carnitine (L-C), is a molecule that was discovered in 1905 in a
meatextract [89]. It is a popular and widely used nutraceuti-
cal, especially by athletes; however, it has been tested for
various diseases, including ALS, dementia, stroke, and psy-
chiatric conditions in recent years. The half-life of ALCAR is 
35.9 ± 28.9 h, with a C-max value of 12.9 ± 5.5 micromol x 
L(-1) and a 24 h accumulated urinary excretion of 368.3+/
-134.8 micromol [90]. It is digested at the jejunum level and
then transported from the intestinal lumento enterocytes sub-
jected to moderate metabolism and excreted by renal tubular
secretion in the urine. In a micemodel, ALCAR passes in a 
large percentage across the blood-brain barrier (BBB) par-
tially actively by the OCTN2 and ATBO transporters [91], 

employing a diffusion mechanism due to the acetyl group 
being able to increase hydrophobicity compared to carnitine. 
In patients, ALCAR supplementation, both by intravenous 
and oral administration, shows a significant increase in the
drug cerebrospinal fluid (CSF) concentration [92].

5. FUNCTION OF ACETYL L-CARNITINE IN PHYS-
IOLOGICAL CYCLES

Carnitine is a vitamin-like water-soluble small molecule 
present in the body in a free and esterified form (ALCAR), 
featuring essential roles in the regulation of intermediary 
metabolism. The transformation of carnitine into ALCAR is 
regulated by carnitine palmitoyltransferase I and II reversi-
ble reactions and requires the presence of Coenzyme-A (Co-
A) [93, 94]. ALCAR would, thus, be considered as a pool of 
acyl groups that may be used in biochemical pathways upon 
their conversion back into acyl‐CoA esters. For these reasons, 
carnitine and carnitine acyltransferases can modulate the in-
tracellular level of “active” acyl groups. The formation of 
esterified carnitine derivatives allows the transport of acyl 
groups across cell membranes and their excretion in urine.

Most of the endogenous carnitine is localized in the 
skeletal/cardiac muscle and liver (approximately 98%), and
only 1% is located in plasma or extracellular compartments.
In healthy adults, free plasma L-C concentration is 40-50 
µmol/l, whereas ALCAR (the most abundant ester) is about 
3-6 µmol/l [95, 96]. The primary physiological role of car-
nitine and its esterified form, ALCAR, is related to the pro-
duction of adenosine-5'-triphosphate (ATP) through the
transport of long-chain fatty acids (FA) from the cytosol into
the mitochondria, where their catabolism takes place through 
β-oxidation. This event is crucial since neither the free long-
chain FA nor the Co-A esters can cross the mitochondrial 
membrane independently [97]. In addition, carnitine/ALCAR 
can regulate the activity of several mitochondrial enzymes
involved in the tricarboxylic acid cycle (TCA), β-oxidation, 
and gluconeogenesis [98], and modulate the toxicity of acyl
groupsby facilitating their excretion in carnitine ester form 
[99]. Furthermore, carnitine/ALCAR has been shown to
exert anti-inflammatory and antioxidant actions [100-102], 
and improve insulin sensitivity and dyslipidemia [103]. Due 
to its pivotal role in the intermediary metabolism, it is not 
surprising that plasma and tissue levels of carnitine/ALCAR 
are kept within a homeostatic range, which is controlled by 
gastrointestinal absorption, endogenous biosynthesis, renal 
tubular reabsorption, and compartmentalization through 
carrier-mediated transport.

As reported above, ALCAR is one of the most common
metabolites of carnitine in plasma and tissues [97]. Inaddi-
tion to eliciting protective effects on the cardiovascular sys-
tem against the onset of dysmetabolic andinflammatory dis-
eases due to the above-reported actions, ALCAR has been 
found to exert neuroprotection [104-109] as well by provid-
ing carnitine and an acyl moiety that can be used to potenti-
ate energy metabolism [109, 110] and for the synthesis of 
acetylcholine [111], and other neurotransmitters, such as 
GABA and GLU [96]. Also, the actions of ALCAR as an 
anti-inflammatory and antioxidant agent [112] and as an 
enhancer of the activity of nerve growth factor [96, 97, 113] 
can explain its protective effects on the CNS.
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Fig. (1). Metabolic reactions involving mitochondria.

Abbreviations: G6P: glucose 6 phosphate; FA: fatty acids; TCA: tricarboxylic acid; ETC: electron transport chain; CoA. coenzyme A; CT:

carnitine transferase; CPT: carnitinepalmitoyl transferase; NADH: nicotinamide adenine dinucleotide. (A higher resolution/colour version of 

this figure is available in the electronic copy of the article).

6. MODULATION OF MITOCHONDRIAL FUNC-
TION BY ALCAR

Mitochondria are intracellular double-membrane orga-
nelles involved in numerous metabolic reactions (Fig. 1). In 
mitochondria, the production of ATP can occur starting 
from pyruvate and fatty acids thanks to the Krebs cycle and 
oxidative phosphorylation (OXPHOS) [114, 115]. In partic-
ular, the highest ATP production takes place by the 
OXPHOS pathway, where reduced intermediates deriving 
from glycolysis and the Krebs cycle are shuttled through the
electron transport chain (ETC). The electron transfer
through various mitochondrial complexes (complex I, 
NADH dehydrogenase; complex II, succinate dehydrogen-
ase; ubiquinol- cytochrome c oxidoreductase complex III; 
and complex IV, cytochrome oxidase) results in the genera-
tion of a potential gradient across the mitochondrial inner
membrane, which eventually can be followed by protons
pumping into the mitochondria through ATP synthase and
production of ATP [116]. Furthermore, during ETC, elec-
trons leaking O2 would create superoxide anions (O−2) in 
different respiratory chain sites, such as complex I and III, 
which are the major sites of O2 consumption [117-119]. The 
highly reactive O·−2 is considered the stoichiometric pre-
cursor of mitochondrial H2O2, which can easily diffuse
through mitochondrial membranes regardless of the orga-
nelle energization. Although H2O2 is less reactive, it is con-
sidered a reactive O2 species because the O-O bond is quite 
weak. In this way, it can decompose, leading to a very high 
reactive hydroxyl radical (HO•) [120, 121]. For those rea-
sons, mitochondria would represent oneof the main cellular 
sources for reactive oxygen species (ROS) [122], which lead 

to irreversible damage of proteins or lipids, causing cellular
dysfunction and cytotoxicity if their release rate overwhelms
the antioxidant system. Hence, physiologically, a complex of
antioxidant agents comprising enzymes and low molecular
mass reductants can counteract overall ROS [123]. Main 
antioxidants include superoxide dismutase, catalase, gluta-
thione peroxidase, and peroxiredoxins, as well as glutathi-
one, tocopherols, ascorbic acid, and carotenoids [124-126].

In case of an imbalance between oxidants and antioxi-
dants in favor of the former, oxidative stress would occur
[127], and oxidative damage to proteins, lipids, DNA, and 
mitochondria, as well, would start [128, 129]. In particular, 
the increased ROS release can cause the mitochondrial per-
meability transition (MPT) pore opening, followed by the
collapse of membrane potential and a burst of ROS produc-
tion. These events might contributeto the spreading of MPT
in mitochondria and lead to the well-described ROS-induced
ROS release [130]. It iswell known that MPT opening and 
mitochondrial membrane potential changes could also rep-
resent the initialstep in the onset of apoptosis [115].

On the ground of the above observations, it is quite ob-
vious how any mitochondrial dysfunction could contribute 
to the pathophysiology of clinical conditions in which their 
failure represents the starting point of downstream events
leading to insulin resistance, vascular disease, heart failure, 
and neurologic diseases.

Regarding the latter, it is well known that mitochondria 
are the most vulnerable functional subset of nervous system 
tissue. Hence, the CNS uses more oxygen and produces more 
energy per unit mass than any other organ. Both features of
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nervous metabolism translate into high OXPHOS activity, 
accompanied by correspondingly high electron leakage and a 
high chance of getting into oxidative stress conditions.

Whatever the extent of the mitochondrial role in the eti-
ology of the above disorders, current knowledge indicates 
mitochondrial impairment as a universal contributor to neu-
rodegeneration. For this reason, any modulator of mito-
chondrial function could be promising for managing neuro-
degenerative diseases. One example of such modulators 
could be represented by carnitine/ALCAR.

ALCAR was shown to enter the brain quickly in pri-
mates [131] and rodents, where it is metabolized in mito-
chondria to free carnitine and acetyl-CoA [97, 109], as 
shown in Fig. (2). Acetyl-CoA can be oxidized for energy or 
incorporated into GLU, glutamine, or GABA. The citrate 
produced from the condensation of acetyl-CoA and oxalo-
acetate (OAA) can also exit the mitochondria and provide 
substrates (cytosolic OAA and acetyl-CoA), which can be 
used for lipid synthesis or as precursors for acetylcholine. 
Finally, free l-carnitine in the mitochondrial matrix can be
used to form carnitine derivatives of acyl-CoA conjugates, 
whichcould represent a valuable tool to reduce their toxicity
in conditions where their levels are high (e.g., fatty acidoxi-
dation disorders) [97, 109, 132].

Moreover, many experimental findings have demon-
strated that ALCAR could protect mitochondria against oxi-
dative stress [133]. Also, ALCAR administration induced 
mitochondrial biogenesis in hypoxic rats [134] and in-
creased mitochondrial mass after spinal cord injury [135].

The fact that mitochondria could be a target for ALCAR 
could be relevant in ALS management, where mitochondria 
dysfunction has been widely recognized as one of the prima-
ry features, being observed at an early stage in MN degener-
ation. Additionally, it is relevant that within the muscles of
ALS patients, mitochondria have shown impaired ETC and
increased ROS generation. For those reasons, ALS could
also be considered a free-radical mitochondrial disease, alt-
hough much needs to be clarified about this issue (Fig. 3) 
[133].

Compromised mitochondria and oxidative stress could 
act as contributor factors for ALS pathology through actions 
on the presynaptic transmitter-releasing machinery, as well. 
About this issue, the accumulation of mitochondria at pre-
synaptic nerve terminals of MNs can support synaptic func-
tion through ATP production [136]. Hence, changes in neu-

ronal mitochondrial morphology and damage in axonal
transport have been shown in neurons from ALS animal 
models [137, 138]. Furthermore, it is noteworthy that these 
alterations have also been observed in both SOD1 and 
TDP43 ALS mice, indicating that they are common denom-
inators of different genetic forms of ALS [139].

For all the above reasons, we could affirm that ALCAR 
fully meets the characteristics of a neuroprotective agent, 
being able to attenuate inflammation, prevent energy failure 
and oxidative damage to key cellular and mitochondrial
proteins, and provide acetyl-CoA as a precursor for neuro-
transmitters or be used for incorporation into lipids for mye-
lination and cell growth [96].

7. PHARMACOLOGICAL PROPERTIES OF ALCAR

For ALCAR, a constellation of biological and pharmaco-
logical activities has emerged in these years. ALCAR can 
modulate several receptors pathways: the most intriguing is 
the compart of neurotransmission and transcriptomics, such 
as NMDA [140], GABA [141], mGlu [142], serotonin/
dopamine [143], cholinergic [144], and proteins gene ex-
pression [145]. For example, the modulation of mGlu 2/3 
metabotropic receptors exerts intriguing potential pharmaco-
logical effects, such as neurotrophic [146], antidepressant
[142, 147], and analgesic [148]. ALCAR reduces neuroin-
flammation and favors the regeneration of damaged nerves 
in neuropathies, exhibiting a reduction of apoptotic mito-
chondrial signal in injured cells and increasing NGF plasma
levels and receptors [149, 150]. Regarding the antidepres-
sant action, the supposed mechanism is that the increased 
levels of acetylated H3K27 do lead to acetylation of the NF-
ĸB-p65 subunit, causing an increase in gene encoding
mGlu2 receptor in the prefrontal cortex and hippocampus 
[142]. From a clinical point of view, early findings showed a
significant reduction of depressive symptoms and improve-
ments in quality of life after ALCAR administration in a 
group of geriatric patients with dysthymic disorders [151]; a 
fast antidepressant action was also observed combining AL-
CAR with selective inhibitors of serotonin re-uptake or sul-
piride [152]. As well as a pharmacological supplement, it has 
been seen how ALCAR can act as a marker of depressive
disorder, with low levels associated with greater thymic im-
pairment [153]. Lastly, ALCAR has a neuroanalgesic action 
always linked to the epigenetic increase in mGlu2/3R site in 
dorsal ganglia via the acetylation of NFkB p65/RelA that
elevates transcriptional activity in Grm2 gene promoter [154].

Fig. (2). Metabolism of ALCAR in the brain. GABA: gamma-aminobutyric acid; GLN: glutamine; GLU: glutamate; OAA: oxaloacetate KG: 

ketoglutarate; TCA: tricarboxylic acid. (A higher resolution/colour version of this figure is available in the electronic copy of the article).
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Fig. (3). Role of mitochondria in neuromuscular junction functioning in physiologic conditions and ALS. In ALS, high ROS levels target the

mitochondria and cause the positive loop: ROS released-ROS induced;   furthermore, the size of the motor nerve terminal is reduced as well as 

ACh release. ACh: acetylcholine; ROS: reactive oxygen species. (A higher resolution/colour version of this figure is available in the elec-

tronic copy of the article).

ALCAR also seems able to modulate central neuro-
transmitters. In different rodent brains, the administration of 
ALCAR increased dopamine and serotonin output in the 
accumbens shell by activating the 5-HT1A receptor [155]. 
ALCAR also led to GABA elevation in rodents’ nigrostria-
tal system, and contrariwise, it reduced GABA concentra-
tion in hippocampal formation [143]. Furthermore, ALCAR 
enhanced acetylcholine synthesis, improving learning and 
memory in aged mice [156].

8. ALCAR IN ALS ANIMAL MODELS

Nowadays, the most successful animal model for ALS is 
the transgenic mouse overexpressing the mutated SOD1 
gene, even if other genes are about to be translated in the 
next few years. In 2006, Kira et al. showed that L-C in a 
mice model of fALS (SOD1-G93A) delayed the disease 
onset and extended the life span [49], demonstrating that 
oral administration of ALCAR prior to disease onset signifi-
cantly delayed the initiation of the deterioration of motor 
activity and extended the life span. More importantly, in the 
same study, subcutaneous injection of ALCAR also in-
creased the life span of transgenic mice if administrated 
after the appearance of disease signs [157]. These findings 
are consistent with previous studies showing the neuropro-
tective effects of L-C and ALCAR on cultured neuronal
cells. In 2000, Ishii et al. evaluated the effect of ALCAR and
L-C in primary cultured neurons from the cerebral cortex, 
striatum, and thalamus of rat embryos, observing a neuronal
survival and mitochondrial activity in a concentration-
dependent manner for both molecules [158].

In 2002, the group of Mennini evaluated the role of AL-
CAR in protecting primary MN cultures exposed to exci-
totoxic agents or deprived of serum-brain-derived neu-
rotrophic factor. The authors showed an increase in choline 
acetyltransferase and tyrosine kinase B receptors in AL-
CAR-treated MNs, suggesting that ALCAR treatment im-
proves the MNs' activity, acting as a neurotrophic factor
[159].

In addition, as described above, GLU-induced excitotox-
icity is a historical disease mechanism in ALS; in the work 
by Forloni et al. published in 1994, GLU neurotoxicity 
showed an attenuation in neural cultural cells chronically
pretreated with ALCAR [160]. In detail, in this study, a cul-
ture of neuronal cells, chronically treated with ALCAR, was 
exposed to GLU; it was observed that the chronic co-
exposure attenuated the neurotoxicity and the neuronal 
death induced by NMDA with ALCAR and, consequently, a 
possible modulatory effect of ALCAR at the NMDA recep-
tors was assumed. In support of this thesis, another study 
has shown that ALCAR treatment can prevent NMDA re-
ceptor-mediated proteolysis of the microtubule-associated 
protein MAP-2 [161]. More recently, Gyawali et al. exam-
ined the alteration of the L-C transport system in ALS 
mouse models, obtaining that the pretreatment of LC and 
ALCAR attenuated GLU-induced neurotoxicity in NSC-34 
cell lines, preventing the neurotoxicity and neuroinflamma-
tion induced by GLU in MNs [162].

9. CLINICAL USE OF ALCAR

Based on preclinical and laboratory findings, ALCAR 
has been applied in human clinical research as a supportive 
treatment for several neurological conditions, including de-
mentia, neuropathies, neuropathic pain, and other medical
disorders.

Since 1980, clinical trials of ALC have been performed 
in Alzheimer’s disease and other cognitive disorders with 
contradictory results. In fact, since the 90s, several studies 
have explored the effects of ALCAR in dementia, assuming 
a role in slowing down cognitive decline, both considering 
clinical scales and neuropsychological scores. A meta-
analysis published in 2003 reported a significant advantage 
of ALCAR when compared to placebo for both clinical 
scales and psychometric tests [163]. However, in the same 
year, a Cochrane analysis reported that although early clini-
cal trials suggested a beneficial effect of ALCAR on cogni-
tion and behavior in aging subjects, the latter conducted 
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largerstudies have not supported these findings [164]. How-
ever, a recent update of the studies on ALCAR in several 
types of dementia highlights the current limitations and 
translational implications of using this substance in clinical
practice. Indeed, in dementia, the role of ALCAR is still un-
certain, mainly due to the lackof homogeneous and longitu-
dinal clinical trials [165].

To our knowledge, no studies have tested ALCAR in
Parkinson's disease and parkinsonism in clinical practice.
Only one study, published in 1990, described a potential
benefit of ALCAR in the sleep quality of Parkinson’s disease 
patients [166]. Regarding the movement disorder, only one 
study published in 1990 tested the use of ALCAR in Hun-
tington’s disease, showing no difference from the placebo
[167].

Even in the field of motor neuron diseases, the results 
are, at least numerically, reduced. Only one clinical study
was published almost ten years ago on ALS patients.
This pilot double-blind, placebo-controlled, parallel-group
trial was elaborated in 2013 by an Italian ALS study group on
ALS patients to compare ALCARwith a placebo. The prima-
ry outcome was an evaluation of the effect of ALCAR on 
disability and mortality in agroup of 82 definite or probable 
self-sufficient ALS patients. The ALCAR was taken at the 
dose of 3 g/day and added to a standard dose of riluzole 
(100 mg/day). The results showed the median survival to be 
doubled in the ALCAR group compared to the other group 
(45 vs. 22 months, p-value=0.017) [168]. Also, the decline
of ALS functional scale and force vital capacity percentage 
was slower in the treated group (p-value=0.038 and 0.015). 
The Medical Research Council Scale, quality of life, and 
adverse events were similar in both groups. The researchers
concluded that ALCAR might be effective, well-tolerated, 
and safe for ALS.

However, even if the findings of the described paper 
were encouraging and should have stimulated scientific re-
search to carry out larger trials to evaluate the effect on a 
large scale of ALS patients in slowing down the functional 
decline, no other studies were afterward published. Similar-
ly, there are still no studies evaluating this molecule’s kinet-
ics and bioavailability (in plasma and cerebrospinal fluid) in
ALS patients.

However, according to the study reviewed here, ALCAR 
has been commonly used as a supportive treatment in
MNDs for many years in several ALS centers.

10. FUTURE CLINICAL PERSPECTIVE

Summing up what has been said, ALCAR is a natural 
nutrient essential for beta-oxidation of long-chain fattyacids 
in mitochondria and able to inhibit mitochondrial injury and 
mitochondrial-dependent apoptosis by decreasing the free 
form of long-chain fatty acids. Many studies on the effect of 
ALCAR in neurodegenerative diseases have found that it 
may exert neuroprotective effects on oxidative stress and, 
consequently, on neuronal death occurring in the pathophys-
iology of aging brain [169]. Similarly, several mechanisms 
warrant the use of ALCAR in ALS, including the modula-
tion of mitochondrial function and cellular energy and the 
activity of cytochrome C oxidase, the role of oxidative 

stress, and the influence on the neurotransmitters, and exert-
ing the antioxidant and antiapoptotic properties [170, 171]. 
However, as stated above, only one study has been per-
formed on ALS patients. This is probably linked to method-
ological and ethical difficulties related to the clinical trials' 
design in ALS, especially when these involve molecules 
already available and easily trackable to the patients. In fact, 
often, dietary supplements, such as ALCAR, are self-
swallowed by patients based on anecdotal reports or incon-
clusive or preliminary clinical trials. In a similar contest, 
potential benefits, and a justifiable sense of autonomy and 
self-determination facing a rapidly progressive disease, 
make attractive the assumption of products already on the 
market and easily purchased without a prescription at the 
pharmacy or via the internet. At the same time, only one 
ALCAR trial makes it impossible to analyze the results'
reproducibility and, consequently, give patients relatively 
certain information regarding clinical efficacy and safety. In 
this circumstance, the role of the healthcare providers is that 
they must suggest caution to patients regarding the ingestion 
of such drugs, especially in case of high doses or unknown
drug interactions.

CONCLUSION

Based on the available evidence, the role of ALCAR in 

MNDs is still not well defined. Future multicenter, large, 

double-blind, randomized, placebo-controlled trials should 

be organized. All the pathways on which ALCAR can act 

are potential interesting therapeutic leads, which could be 

investigated in future ALS clinical trials, integrating clinical 

outcomes (as in the previous trial) and biological and mo-

lecular disease markers. Inthis scenario, we will continue to 

work on the potential of ALCAR from the physiological and 

clinical points of view, and will continue to investigate its
potential beneficial effect using a translational approach.

LIST OF ABBREVIATIONS

ALCAR = Acetyl L-carnitine 

ALP = Autophagy-lysosome Pathway

ALS = Amyotrophic Lateral Sclerosis 

BBB = Blood-brain Barrier 

CMA = Chaperone-mediated Autophagy

CNS = Central Nervous System

CSF = Cerebrospinal Fluid

ER = Endoplasmic Reticulum 

ERAD = Endoplasmic-reticulum-associated Protein 
Degradation 

fALS = Familial ALS 

GLU = Glutamate

HSR = Heat-shock Response

MNDs = Motor Neuron Diseases 

UPS = Ubiquitin-proteasome System 

wtSOD1 = Wild-type SOD1 
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