EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

First measurement of the |t|-dependence of incoherent J/ ψ photonuclear production

ALICE Collaboration*

Abstract

The first measurement of the cross section for incoherent photonuclear production of J/ψ vector mesons as a function of the Mandelstam |t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, |y| < 0.8, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}} = 5.02$ TeV. This rapidity interval corresponds to a Bjorken-*x* range $(0.3-1.4) \times 10^{-3}$. Cross sections are given in five |t| intervals in the range 0.04 < |t| < 1 GeV² and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a |t|-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.

© 2023 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

^{*}See Appendix A for the list of collaboration members

The fundamental structure of protons, neutrons, and nuclei is described in terms of quarks and gluons by quantum chromodynamics (QCD). A new phenomenon called gluon saturation—a dynamic equilibrium between the production and annihilation of gluons—is predicted by QCD [1]. While the high-energy limit of QCD has been found to be dominated by the gluon contribution in proton targets [2], experimental work is yet needed to determine the onset of gluon saturation [3]. Besides protons at high energy, saturation is expected for large nuclei at even lower energies [4], thus the study of the structure of heavy ions is an attractive area of exploration within the current collider experiments. The search for the onset of saturation has motivated the construction of dedicated QCD facilities such as the future Electron–Ion Collider [5].

Photons are ideal probes to study the interior of nuclei. In this context, the diffractive photoproduction of a vector meson, like the J/ψ , is of particular interest because of its sensitivity to both the average and the variance of spatial distribution of the gluon field inside nuclei [6]. In this process, a quasi-real photon emitted by one of the highly Lorentz-contracted nuclei interacts via the exchange of at least two gluons with the other nucleus, producing the vector meson [7].

This process can be divided in two contributions: coherent and incoherent production. The former refers to photon interactions with the colour field of the whole nucleus, and the latter to photon interactions with only one nucleon inside the nucleus. The incoherent production can be further divided in the interaction with a full nucleon or the interaction with sub-nucleon sized structures inside the nucleon; the latter is known as the dissociative contribution. The square of the momentum transferred during the interaction, the Mandelstam variable |t|, is related through a Fourier transform to the distribution of nuclear matter in the impact-parameter plane. This implies that collisions with a large scattering object, such as the whole nucleus, occur at small |t|, which for the case of Pb ions means $|t| \leq 0.01$ GeV². In the same way, collisions with a small object, like a nucleon, lead to larger |t| values of the order of 0.1 GeV². If there are collisions with even smaller objects at a sub-nucleon scale, they would have even larger |t|. In the Good–Walker approach [8], the coherent process is related to the average spatial distribution of gluons in the transverse plane, and the incoherent case is related to its variance [9]. The applicability of this approach to LHC data may have some caveats as discussed in [10]. A recent study using this approach [11] demonstrated the importance of including fluctuations of spatial distributions of gluons to describe the |t|-dependence of the dissociative cross section off protons measured at HERA [12]. Further work in this direction [13] revealed that the energy dependence of the dissociative process provides another signature for saturation. When the gluon saturation regime is reached, all gluon configurations in the proton appear similar, thus the cross section, which is proportional to the variance of the gluon field, decreases as the energy increases. Note that larger values of |t| are expected to be more sensitive to fluctuations, thus it is important to study the energy dependence at different values of |t|, where a decrease of the cross section with increasing energy would be a signature of saturation.

Although the dissociative production of J/ψ off protons has been measured at HERA [12], until now this process has not been measured using heavy-ion targets. Most of the experimental effort has been put on coherent vector meson photoproduction. At high energies, this has been carried out using photon-induced processes in ultra-peripheral heavy-ion collisions (UPCs) at the Large Hadron Collider (LHC) [6, 14, 15]. The diffractive photoproduction of a J/ψ vector meson at the LHC has a very clean experimental signal with a sizeable cross section. The coherent photoproduction of a J/ψ off the Pb nuclei has been measured at the LHC at two different centre-of-mass energies per nucleon pair, $\sqrt{s_{NN}} = 2.76$ TeV and 5.02 TeV, by the ALICE [16–18], CMS [19], and LHCb [20] Collaborations. Together, these measurements cover a range in J/ψ rapidity of |y| < 4.5. More recently, the ALICE Collaboration performed the first measurement of the |t|-dependence of the coherent J/ψ photoproduction cross section [21], and the STAR Collaboration studied the structure of the deuteron through the |t|-dependence of J/ψ diffractive photoproduction in deuteron–gold collisions [22]. The ALICE Collaboration also presented a measurement of the cross section for incoherent J/ψ production at midrapidity [16].

In recent years, great theoretical interest has been given to incoherent J/ψ photoproduction [23–26], and in particular to its |t|-dependence [27–29]. Theoretical approaches that describe correctly the coherent production process differ widely in their predictions for incoherent production, which is particularly sensitive to spatial fluctuations of sub-nucleon degrees of freedom. Note that a better assessment of such quantum fluctuations would significantly improve the determination of the initial stage of nuclear collisions at high energies [30].

In this Letter, the first measurement of the |t|-dependence of the incoherent photonuclear production of a J/ ψ vector meson is presented. The measurement was carried out in the rapidity range |y| < 0.8 using UPCs of Pb nuclei at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. Cross sections are presented in five |t| intervals in the range 0.04 < |t| < 1 GeV². The measurement is compared to the predictions of the models discussed later on, finding that the contribution of fluctuations at a sub-nucleon scale is important to describe the data.

This analysis is based on the data set collected during the 2018 Pb–Pb data-taking period. It utilises the same trigger and follows the same analysis strategy as in Ref. [21]. The luminosity of the analysed sample is $(232\pm7) \mu b^{-1}$. The measured J/ ψ mesons have a rapidity |y| < 0.8, corresponding to Bjorkenx values within $(0.3-1.4) \times 10^{-3}$, and transverse momentum $0.2 < p_T < 1 \text{ GeV}/c$. Owing to the small virtuality of the quasi-real photons, in the kinematic region studied here $|t| = p_T^2$. According to the STARlight Monte Carlo [31], the difference between the mean |t| and p_T^2 in each interval is less than 0.4%. As p_T is conjugate to impact parameter, which in UPC is large, interference effects are important only at p_T below 10 MeV/c and are negligible for the p_T range of this measurement [32].

The J/ ψ was reconstructed using its decay into a $\mu^+\mu^-$ pair. The signature of these events is then two tracks in an otherwise empty detector. The only other particles that may be present in such an event are the products from the dissociation of the interacting nucleus; these particles would appear near beam rapidities. The muons were measured with the central barrel detectors of ALICE [33, 34]: the ALICE Inner Tracking System (ITS) [35] and the Time Projection Chamber (TPC) [36], both of them covering the full azimuthal angle and surrounded by a large solenoid magnet producing a magnetic field of 0.5 T. Any other activity in the event was vetoed by the V0 [37] and the AD [38], which are scintillator based detectors consisting of two arms each, located at both sides of the nominal interaction point along the beam axis. They cover the pseudorapidity ranges $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$ (V0), and $4.8 < \eta < 6.3$ and $-7.0 < \eta < -4.9$ (AD). Each arm of V0 and AD has a time resolution smaller than 1 ns.

The tracks were required to have opposite electric charges and to leave signals in both the ITS and the TPC. Their pseudorapidity was constrained to $|\eta| < 0.8$ in order to have a large reconstruction efficiency. The muons were identified by requiring an ionisation energy loss, measured in the TPC, compatible with the muon hypothesis. For the momentum range of the muons in this analysis (0.5 to 3 GeV/c) this criterion rejects completely the contribution from the electron decay channel. The two tracks were required to form a common interaction vertex with a coordinate along the nominal beam line $|z_{vtx}| < 10$ cm to have uniform acceptance.

The J/ ψ yield, $N_{J/\psi}$, was extracted by fitting the muon-pair invariant-mass $(m_{\mu\mu})$ distribution with two contributions: a double sided Crystal Ball distribution [39] to represent the signal and an exponential to describe the background. An unbinned extended likelihood fit was performed in each one of the five |t| intervals. The left panel of Fig. 1 shows the fit to the total sample. The extracted J/ ψ yield is 512 ± 26 (stat.). This yield is dominated by the contribution of incoherent processes, but it still has a remaining background that has to be subtracted. The amount of background is obtained by analyzing the transverse momentum distribution.

The J/ ψ yield originates from three contributions: coherent and incoherent production, as well as feeddown from ψ' diffractive photoproduction. The background to the yield from incoherent production, $N_{J/\psi}^{inc}$, was subtracted in each |t| range using the ratio of the number of J/ ψ from coherent (feed-down)

Figure 1: Left: Invariant mass distribution of muon pairs (full symbols) and fit to a model (solid blue line, see text). Right: transverse momentum distribution of muon pairs with $3.0 < m_{\mu\mu} < 3.2 \text{ GeV}/c^2$ (full symbols) and fit to a model (solid blue line) along with the different contributions to the fit (other lines, see text).

to incoherent production $f_{\rm C}$ ($f_{\rm D}$) such that $N_{{\rm J}/\psi}^{\rm inc} = N_{{\rm J}/\psi}/(1+f_{\rm C}+f_{\rm D})$.

The $f_{\rm C}$ and $f_{\rm D}$ ratios were determined from a binned extended likelihood fit to the transverse-momentum distribution of the J/ ψ yield in the range 3.0 < $m_{\mu\mu}$ < 3.2 GeV/ c^2 . The J/ ψ yields were obtained by performing in each bin a fit to the invariant mass distribution, using the model described above. The fit to the transverse-momentum distribution is shown in the right panel of Fig. 1. The data were fitted to the sum of five templates. Four of them, describing the contributions of coherent and incoherent production of both J/ψ and ψ' , are obtained with the STARlight Monte Carlo. The charmonium states are assumed to be transversely polarised as expected for photoproduction processes [40]. The shape of the transverse momentum distribution is given by the target form factor which in turn is obtained by the Fourier transform of the target profile in the impact-parameter space. This presents the physics modelling implemented in STARlight. It is known that STARlight does not describe correctly the shape of coherent J/ψ production in the range $p_T < 0.11$ GeV/c [21] when using the default value of the parameters for the nuclear form factor. At the same time, the data can be described using a different value that was found by reweighting the STARlight templates. The template corresponding to coherent J/ψ production is the only one affected by such a procedure. Moreover, whereas the effect of the reweighting is important for $p_{\rm T} < 0.2$ GeV/c, which is outside the kinematic region of the measurement presented here and contains about 99% of the coherent cross section, it corresponds to no more than a 2% modification of the final incoherent J/ ψ cross section in the lowest |t| range. Note that the STARlight implementation of the incoherent process does not include the dissociative contribution. For this reason a fifth template was added, which uses the H1 parameterisation of dissociative production off protons [12]. In this parametrisation, the values corresponding to the H1 high-energy sample were used. Although the parameters were obtained for free protons, they describe well the shape of the distribution, as shown in Fig. 1. The measured ratio R of the coherent ψ' to J/ ψ cross sections [18] fixes the normalisation of the ψ' templates; here the acceptance and efficiency of each decay channel is taken into account. This leaves the normalisations of the templates describing coherent, incoherent and dissociative J/ψ photoproduction as free parameters. The value of R was assumed to be the same for the ratio of incoherent cross sections, which has not yet been measured in heavy-ion collisions, but was measured at HERA by the H1 [41] and ZEUS [42] Collaborations in electron-proton collisions and found in agreement with the value of R measured by ALICE [18] for coherent J/ ψ production in Pb–Pb collisions. The χ^2 per degree of freedom of the fit is 1.13. The values for $f_{\rm C}$ and $f_{\rm D}$ are listed in Table 1.

Table 1: Measured cross sections, shown in the last column, and the numerical values used to compute them according to Eq. (1). The uncertainties on $N_{J/\psi}$ and $(Acc \times \varepsilon)_{MC}$ are statistical; those on f_C and f_D are each correlated systematic; those on the cross sections are (in this order) statistical, uncorrelated systematic, and correlated systematic.

	1	1	1		· · · · ·
t (GeV ²)	$N_{\mathrm{J}/\psi}$	$f_{\rm C}(\%)$	$f_{\rm D} (\%)$	$(\operatorname{Acc} \times \varepsilon)_{\operatorname{MC}} (\%)$	$\frac{\mathrm{d}\sigma_{\gamma\mathrm{Pb}}}{\mathrm{d} t }$ ($\mu\mathrm{b}/\mathrm{GeV^2}$)
(0.040, 0.080)	128 ± 12	9.4 ± 0.8	81.9 ± 11.7	3.39 ± 0.03	$21.8 \pm 2.1 \pm 0.3 \pm 2.1$
(0.080, 0.152)	127 ± 12	0.024 ± 0.002	36.0 ± 4.9	3.03 ± 0.02	$19.1 \pm 1.9 \pm 0.3 \pm 1.5$
(0.152, 0.258)	85 ± 10	0	9.3 ± 1.0	2.49 ± 0.02	$13.1 \pm 1.6 \pm 0.4 \pm 0.9$
(0.258, 0.477)	86 ± 11	0	4.9 ± 0.4	2.04 ± 0.02	$8.1 \pm 1.1 \pm 0.1 \pm 0.6$
(0.477, 1.000)	86 ± 11	0	2.7 ± 0.2	1.57 ± 0.02	$4.6 \pm 0.6 \pm 0.1 \pm 0.3$

The photonuclear cross section in each |t| interval was computed as

$$\frac{\mathrm{d}\sigma_{\gamma\mathrm{Pb}}}{\mathrm{d}|t|} = \frac{1}{2n_{\gamma\mathrm{Pb}}} \frac{N_{\mathrm{J/\psi}}^{\mathrm{inc}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{J/\psi}}^{\mathrm{inc}} \times \mathrm{BR}(\mathrm{J/\psi} \to \mu^{+}\mu^{-}) \times \mathscr{L} \times \Delta y \times \Delta|t|},\tag{1}$$

where $n_{\gamma Pb} = 84.9 \pm 1.7$ is the photon flux at y = 0, obtained in the semiclassical formalism following the prescription detailed in Ref. [43]; the branching ratio BR $(J/\psi \rightarrow \mu^+\mu^-) = (5.961 \pm 0.033)\%$ is from Ref. [44]; the luminosity $\mathscr{L} = (232 \pm 7) \ \mu b^{-1}$ was determined using reference triggers with cross sections measured in van der Meer scans [45]; and $(Acc \times \varepsilon)_{J/\psi}^{inc}$ is the acceptance times efficiency. This last term is the product of three contributions. The first one takes into account the response of the detector to the muon tracks; this contribution was obtained from generated STARlight events which were passed through a simulation of the ALICE detector using GEANT 3.21 [46] and the full analysis chain. As shown in column $(Acc \times \varepsilon)_{MC}$ of Table 1, the correction depends on |t| due to the trigger, which requires tracks that are back-to-back in azimuth [21]. The second term contributing to $(Acc \times \varepsilon)_{J/\psi}^{inc}$ accounts for veto inefficiencies due to pile-up of other collisions leaving a signal in AD or V0 and amounts to 0.940 \pm 0.028. The third term corrects the yield for events lost because the dissociation of the nucleus produces particles leaving a signal in the AD detectors; it amounts to 0.637 \pm 0.024. These last two factors are |t| independent, with the quoted uncertainty originating from the size of the control data samples used to determine them.

The following systematic uncertainties were studied and their effect on the cross section is summarised in Table 2. To study the stability of the background model, the lower and upper limits to the invariant-mass fits to extract the signal were varied in the range of 2–2.5 and 4–5 GeV/ c^2 , respectively. The values of the tail parameters of the Crystal Ball distribution were also modified; the central values and the variations were obtained by fitting STARlight simulated events. The total effect on the cross section varies in the different |t| ranges between 1% and 2.9%. The detector does not have a uniform acceptance for tracks from collisions happening far from the nominal interaction point; to study the quality of the detector description for these extreme cases the selection $|z_{vtx}| < 10$ cm was extended to $|z_{vtx}| < 15$ cm, resulting in uncertainties at the level of up to 2.9%. There are three contributions to the uncertainties on the $f_{\rm C}$ and $f_{\rm D}$ factors: the uncertainties from the fit (driven by statistical fluctuations), the uncertainty from the reweighting procedure, and the effect of varying the value of R within the experimental uncertainties. The uncertainty on $f_{\rm C}$ is driven by the uncertainty from the fit to the $p_{\rm T}$ distribution and leads to uncertainties in the measured cross section up to 0.4%. The uncertainty on $f_{\rm D}$ is driven by the uncertainty on the measured value of R and produces an effect from 0.2% to 6.5%. The uncertainty on the luminosity has two contributions which were added in quadrature: from the measurement of the reference cross sections in van der Meer scans (2.5% [45]) and from the determination of the live-time of the trigger used in this analysis (1.5%). The correction for pile-up utilises an independent sample to obtain the dependence of pile-up on the average rate of inelastic scattering; this dependence is linear and the corresponding uncertainty comes from a fit to these data. The effect on the cross section is 3%. The probability of

Table 2: Summary of the identified systematic uncertainties to the cross section. The numbers in parentheses
denote a range of values in the different $ t $ intervals. Except for the first two uncertainties, all others are correlated
$\ln t $.

Source	Uncertainty (%)
Signal extraction	(1.0, 2.9)
Selection on $ z_{vtx} $	(0.0, 2.9)
fc	(0.0, 0.4)
fD	(0.2, 6.5)
Integrated luminosity	2.9
Veto inefficiency due to pile-up	3.0
Veto inefficiency due to dissociation	3.8
ITS-TPC tracking	2.8
Trigger efficiency	1.3
Branching ratio	0.6
Photon flux	2.0

dissociation products leaving a signal in AD was studied with an independent control sample as a function of the amount of activity around beam rapidity. The propagation of the statistical uncertainty of the correction factors when applied to this sample produces a 3.8% effect. The uncertainty of 2% per track on the matching of ITS and TPC track segments was estimated from the difference between matching efficiencies in data and MC simulations. Contributions from both tracks were added in quadrature, giving a total of 2.8%. The trigger efficiency uncertainty was determined using control data samples and amounts to 1.3%. The uncertainty on the branching ratio was taken from Ref. [44]. The uncertainty on the photon flux was estimated by varying the nuclear radius parameter of the Woods–Saxon distribution in Pb, used in the Glauber model, according to neutron-skin measurements [47] and amounts to 2% [21]. All uncertainties except for the signal extraction and the selection on $|z_{vtx}|$ are correlated in |t|.

The cross sections for the incoherent photoproduction of J/ψ vector mesons in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV as a function of |t| measured at midrapidity, |y| < 0.8, are listed in Table 1 and depicted in Fig. 2.

The measurements are compared to the work of three groups. Each of them provides two predictions: one including only the elastic interaction with single nucleons, and another where a dissociative-like component is contained. The models are framed in the Good-Walker picture, which naturally considers all possible configurations of the hadron participating in the interaction. The model by Mäntysaari and Schenke (MS) [27] includes saturation through the IPSat model [48] and offers two predictions. In one, sub-nucleon fluctuations are not considered (MS-p), whereas in the other the proton is composed of three hot spots whose positions in the impact-parameter plane change event-by-event and fluctuations in the saturation scale are introduced (MS-hs). A similar model, labeled MSS in Fig. 2, was recently published [49], the main difference in respect of the MS model is that instead of using the IPsat model, it solves the JIMWLK equation (see Refs. [50, 51]) to incorporate saturation effects. This model also offers two predictions: with (MSS-fl) and without nucleon substructure fluctuations (MSS). The model by Guzey, Strikman, and Zhalov (GSZ) [29] expresses the incoherent cross section as the sum of an elastic and a dissociative part (GSZ-el+diss), both parameterised from HERA data, multiplied by a common factor representing shadowing—the fact that the gluon distribution in nuclei is not just the sum of gluon distributions in constituent nucleons, see e.g. Ref. [52]-computed within the leading-twist approximation [53]. The inclusion of the dissociative component is interpreted by the authors within a Good–Walker approach as due to quantum fluctuations of the target. When the dissociative part is excluded (GSZ-el), the differential cross section is suppressed in the region of larger |t|. The uncertainty bands reflect the uncertainties on the parameters of the leading-twist approximation.

Figure 2: Cross section for the incoherent photoproduction of J/ψ vector mesons in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV measured at midrapidity. The uncorrelated uncertainty (statistical and systematic added in quadrature) is indicated with the vertical bar, while the correlated uncertainty by the grey band. The width of each |t| range is given by the horizontal bars. The lines show the predictions of the different models described in the text. The bottom panel presents the ratio of the integral of the predicted to that of the measured cross section in each |t| range. The relative uncertainties on the ratios calculated from GSZ are 45%.

When comparing the data with the model predictions, as shown in Fig. 2, two aspects should be considered: the normalisation, mainly linked to the scaling from proton to nuclear targets, and the |t|-dependence, driven by the size of the scattering object. None of the models describe both aspects of data. With regards to the normalisation, it is worth noting that the same models must also describe the coherent cross section [18], hence a global scaling factor, such as what would be obtained by using a different prescription for the wave function [54], would not necessarily improve the agreement of the model with both the coherent and incoherent cross sections. As for the |t|-dependence of the cross section, the predictions of the three theory groups substantially improve after the inclusion of sub-nucleon fluctuations, which modify the |t|-dependence by making it less steep. It is interesting to compare the MS-p and MSS predictions. The latter shows a flattening of the spectra at larger |t|. It originates from colour charge fluctuations which change the incoherent cross section to a power-law like behaviour in this region [49]. This observation reinforces the importance of quantum fluctuations at large |t|.

The cross section integrated over the interval $0.04 < |t| < 1 \text{ GeV}^2$, measured in the rapidity region |y| < 0.8, is $\sigma_{\gamma Pb} = (7.82 \pm 0.39 \pm 0.57) \mu b$, where the listed uncertainties are statistical and systematic, respectively. The corresponding cross sections, in μb , for the models are 7.4, 11.8, 6.6, 9.8, 2.3 ± 1.0 , and 4.1 ± 1.8 for MS-p, MS-hs, MSS, MSS-fl, GSZ-el, and GSZ-el+diss, respectively.

In summary, the first measurement of the incoherent photonuclear production of J/ψ is presented in this Letter. The measurement was carried out at midrapidity, in a range corresponding to Bjorken-*x* within

 $(0.3-1.4) \times 10^{-3}$, in Pb–Pb UPCs at $\sqrt{s_{\rm NN}} = 5.02$ TeV. Cross sections for five ranges in |t| within 0.04 < |t| < 1 GeV² are reported. None of the models describes both the absolute normalisation and the |t|-dependence observed in the data. However, a reasonably good description of the measured |t|-slope is achieved when the predicted dependence is softened by the inclusion of scattering structures at a sub-nucleon scale. These results confirm the importance of sub-nucleon fluctuations to describe the measured incoherent J/ψ process at high energies, representing the first experimental step to use the quantum fluctuations of the gluon field to search for saturation effects in heavy nuclei. In addition, this measurement, when confronted to models, demonstrates that the contribution of the dissociative component to the total incoherent cross section depends on |t|. Thus, future analyses shall study the incoherent production of J/ψ as a function of rapidity and |t| [55]. Finally, this analysis, together with recent measurements [17, 19], indicate that new or improved theoretical models are needed to describe simultaneously the energy and |t|-dependence of both the coherent and the incoherent processes of J/ψ photoproduction, to gain a better understanding of saturation effects at a more fundamental level.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the National Roadmap for Research Infrastructures 2020-2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency - BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan;

Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA) and National Science, Research and Innovation Fund (NSRF via PMU-B B05F650021), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: European Research Council, Strong 2020 - Horizon 2020 (grant nos. 950692, 824093), European Union; Academy of Finland (Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland.

References

- L. V. Gribov, E. M. Levin, and M. G. Ryskin, "Semihard Processes in QCD", *Phys. Rept.* 100 (1983) 1–150.
- [2] H1, ZEUS Collaboration, H. Abramowicz *et al.*, "Combination of measurements of inclusive deep inelastic e[±]p scattering cross sections and QCD analysis of HERA data", *Eur. Phys. J. C* 75 (2015) 580, arXiv:1506.06042 [hep-ex].
- [3] A. Morreale and F. Salazar, "Mining for Gluon Saturation at Colliders", Universe 7 (2021) 312, arXiv:2108.08254 [hep-ph].
- [4] L. D. McLerran and R. Venugopalan, "Computing quark and gluon distribution functions for very large nuclei", *Phys. Rev. D* 49 (1994) 2233–2241, arXiv:hep-ph/9309289.
- [5] R. Abdul Khalek *et al.*, "Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report", *Nucl. Phys. A* 1026 (2022) 122447, arXiv:2103.05419 [physics.ins-det].
- [6] S. R. Klein and H. Mäntysaari, "Imaging the nucleus with high-energy photons", *Nature Rev. Phys.* 1 (2019) 662–674, arXiv:1910.10858 [hep-ex].
- [7] M. G. Ryskin, "Diffractive J/ ψ electroproduction in LLA QCD", Z. Phys. C 57 (1993) 89–92.
- [8] M. L. Good and W. D. Walker, "Diffraction dissociation of beam particles", *Phys. Rev.* 120 (1960) 1857–1860.
- [9] H. I. Miettinen and J. Pumplin, "Diffraction Scattering and the Parton Structure of Hadrons", *Phys. Rev. D* 18 (1978) 1696.
- [10] S. R. Klein, "Challenges to the Good-Walker paradigm in coherent and incoherent photoproduction", *Phys. Rev. C* 107 (2023) 055203, arXiv:2301.01408 [hep-ph].
- [11] H. Mäntysaari and B. Schenke, "Evidence of strong proton shape fluctuations from incoherent diffraction", *Phys. Rev. Lett.* **117** (2016) 052301, arXiv:1603.04349 [hep-ph].

- [12] H1 Collaboration, C. Alexa *et al.*, "Elastic and Proton-Dissociative Photoproduction of J/ψ Mesons at HERA", *Eur. Phys. J. C* 73 (2013) 2466, arXiv:1304.5162 [hep-ex].
- [13] J. Cepila, J. G. Contreras, and J. D. Tapia Takaki, "Energy dependence of dissociative J/ψ photoproduction as a signature of gluon saturation at the LHC", *Phys. Lett. B* **766** (2017) 186–191, arXiv:1608.07559 [hep-ph].
- [14] A. J. Baltz *et al.*, "The Physics of Ultraperipheral Collisions at the LHC", *Phys. Rept.* 458 (2008)
 1–171, arXiv:0706.3356 [nucl-ex].
- [15] J. G. Contreras and J. D. Tapia Takaki, "Ultra-peripheral heavy-ion collisions at the LHC", Int. J. Mod. Phys. A 30 (2015) 1542012.
- [16] ALICE Collaboration, E. Abbas *et al.*, "Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", *Eur. Phys. J. C* **73** (2013) 2617, arXiv:1305.1467 [nucl-ex].
- [17] ALICE Collaboration, S. Acharya *et al.*, "Coherent J/ ψ photoproduction at forward rapidity in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV", *Phys. Lett. B* **798** (2019) 134926, arXiv:1904.06272 [nucl-ex].
- [18] ALICE Collaboration, S. Acharya *et al.*, "Coherent J/ ψ and ψ' photoproduction at midrapidity in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV", *Eur. Phys. J. C* **81** (2021) 712, arXiv:2101.04577 [nucl-ex].
- [19] **CMS** Collaboration, V. Khachatryan *et al.*, "Coherent J/ ψ photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV with the CMS experiment", *Phys. Lett. B* **772** (2017) 489–511, arXiv:1605.06966 [nucl-ex].
- [20] **LHCb** Collaboration, R. Aaij *et al.*, "Study of coherent J/ ψ production in lead-lead collisions at $\sqrt{s_{\text{NN}}} = 5 \text{ TeV}$ ", JHEP **07** (2022) 117, arXiv:2107.03223 [hep-ex].
- [21] ALICE Collaboration, S. Acharya *et al.*, "First measurement of the |t|-dependence of coherent J/ ψ photonuclear production", *Phys. Lett. B* **817** (2021) 136280, arXiv:2101.04623 [nucl-ex].
- [22] **STAR** Collaboration, M. Abdallah *et al.*, "Probing the Gluonic Structure of the Deuteron with J/ψ Photoproduction in d+Au Ultraperipheral Collisions", *Phys. Rev. Lett.* **128** (2022) 122303, arXiv:2109.07625 [nucl-ex].
- [23] J. Cepila, J. G. Contreras, M. Krelina, and J. D. Tapia Takaki, "Mass dependence of vector meson photoproduction off protons and nuclei within the energy-dependent hot-spot model", *Nucl. Phys.* B 934 (2018) 330–340, arXiv:1804.05508 [hep-ph].
- [24] A. Łuszczak and W. Schäfer, "Incoherent diffractive photoproduction of J/ψ and Y on heavy nuclei in the color dipole approach", *Phys. Rev. C* 97 (2018) 024903, arXiv:1712.04502 [hep-ph].
- [25] V. P. Gonçalves, D. E. Martins, and C. R. Sena, "Coherent and incoherent J/ψ photoproduction in Pb-Pb collisions at the LHC, HE-LHC and FCC", *Eur. Phys. J. A* 57 (2021) 82, arXiv:2007.13625 [hep-ph].
- [26] B. Sambasivam, T. Toll, and T. Ullrich, "Investigating saturation effects in ultraperipheral collisions at the LHC with the color dipole model", *Phys. Lett. B* 803 (2020) 135277, arXiv:1910.02899 [hep-ph].

- [27] H. Mäntysaari and B. Schenke, "Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions", *Phys. Lett. B* 772 (2017) 832–838, arXiv:1703.09256 [hep-ph].
- [28] J. Cepila, J. G. Contreras, and M. Krelina, "Coherent and incoherent J/ψ photonuclear production in an energy-dependent hot-spot model", *Phys. Rev. C* 97 (2018) 024901, arXiv:1711.01855 [hep-ph].
- [29] V. Guzey, M. Strikman, and M. Zhalov, "Nucleon dissociation and incoherent J/ψ photoproduction on nuclei in ion ultraperipheral collisions at the Large Hadron Collider", *Phys. Rev. C* **99** (2019) 015201, arXiv:1808.00740 [hep-ph].
- [30] H. Mäntysaari, "Review of proton and nuclear shape fluctuations at high energy", *Rept. Prog. Phys.* **83** (2020) 082201, arXiv:2001.10705 [hep-ph].
- [31] S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth, "STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions", *Comput. Phys. Commun.* 212 (2017) 258–268, arXiv:1607.03838 [hep-ph].
- [32] S. R. Klein and J. Nystrand, "Interference in exclusive vector meson production in heavy ion collisions", *Phys. Rev. Lett.* 84 (2000) 2330-2333, arXiv:hep-ph/9909237.
- [33] ALICE Collaboration, K. Aamodt *et al.*, "The ALICE experiment at the CERN LHC", JINST 3 (2008) S08002.
- [34] ALICE Collaboration, B. Abelev *et al.*, "Performance of the ALICE Experiment at the CERN LHC", *Int. J. Mod. Phys. A* **29** (2014) 1430044, arXiv:1402.4476 [nucl-ex].
- [35] ALICE Collaboration, K. Aamodt *et al.*, "Alignment of the ALICE Inner Tracking System with cosmic-ray tracks", *JINST* 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
- [36] J. Alme et al., "The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events", Nucl. Instrum. Meth. A 622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
- [37] ALICE Collaboration, E. Abbas *et al.*, "Performance of the ALICE VZERO system", JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
- [38] M. Broz et al., "Performance of ALICE AD modules in the CERN PS test beam", JINST 16 (2021) P01017, arXiv:2006.14982 [physics.ins-det].
- [39] ALICE Collaboration, J. Adam *et al.*, "Quarkonium signal extraction in ALICE", ALICE-PUBLIC-2015-006. https://cds.cern.ch/record/2060096.
- [40] **ALICE** Collaboration, S. Acharya *et al.*, "First polarisation measurement of coherently photoproduced J/ ψ in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV", arXiv:2304.10928 [nucl-ex].
- [41] H1 Collaboration, C. Adloff *et al.*, "Diffractive photoproduction of $\psi(2S)$ mesons at HERA", *Phys. Lett. B* 541 (2002) 251–264, arXiv:hep-ex/0205107.
- [42] **ZEUS** Collaboration, I. Abt *et al.*, "Measurement of the cross-section ratio $\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ in exclusive photoproduction at HERA", *JHEP* **12** (2022) 164, arXiv:2206.13343 [hep-ex].
- [43] J. G. Contreras, "Gluon shadowing at small x from coherent J/ψ photoproduction data at energies available at the CERN Large Hadron Collider", *Phys. Rev. C* 96 (2017) 015203, arXiv:1610.03350 [nucl-ex].

- [44] **Particle Data Group** Collaboration, R. L. Workman and Others, "Review of Particle Physics", *PTEP* **2022** (2022) 083C01.
- [45] ALICE Collaboration, S. Acharya *et al.*, "ALICE luminosity determination for Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ ", *JINST* **19** (2024) P02039, arXiv:2204.10148 [nucl-ex].
- [46] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, GEANT: Detector Description and Simulation Tool; Oct 1994. CERN Program Library. CERN, Geneva, 1993. https://cds.cern.ch/record/1082634. Long Writeup W5013.
- [47] S. Abrahamyan *et al.*, "Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering", *Phys. Rev. Lett.* **108** (2012) 112502, arXiv:1201.2568 [nucl-ex].
- [48] H. Kowalski and D. Teaney, "An Impact parameter dipole saturation model", *Phys. Rev. D* 68 (2003) 114005, arXiv:hep-ph/0304189.
- [49] H. Mäntysaari, F. Salazar, and B. Schenke, "Nuclear geometry at high energy from exclusive vector meson production", *Phys. Rev. D* 106 (2022) 074019, arXiv:2207.03712 [hep-ph].
- [50] C. Marquet and H. Weigert, "New observables to test the Color Glass Condensate beyond the large- N_c limit", Nucl. Phys. A 843 (2010) 68–97, arXiv:1003.0813 [hep-ph].
- [51] A. H. Mueller, "A Simple derivation of the JIMWLK equation", *Phys. Lett. B* 523 (2001) 243–248, arXiv:hep-ph/0110169.
- [52] N. Armesto, "Nuclear shadowing", J. Phys. G 32 (2006) R367-R394, arXiv:hep-ph/0604108.
- [53] L. Frankfurt, V. Guzey, and M. Strikman, "Leading Twist Nuclear Shadowing Phenomena in Hard Processes with Nuclei", *Phys. Rept.* **512** (2012) 255–393, arXiv:1106.2091 [hep-ph].
- [54] J. Cepila, J. Nemchik, M. Krelina, and R. Pasechnik, "Theoretical uncertainties in exclusive electroproduction of S-wave heavy quarkonia", *Eur. Phys. J. C* 79 (2019) 495, arXiv:1901.02664 [hep-ph].
- [55] V. Guzey, M. Strikman, and M. Zhalov, "Disentangling coherent and incoherent quasielastic J/ψ photoproduction on nuclei by neutron tagging in ultraperipheral ion collisions at the LHC", *Eur. Phys. J. C* **74** (2014) 2942, arXiv:1312.6486 [hep-ph].

A The ALICE Collaboration

S. Acharya ¹²⁷, D. Adamová ⁸⁷, A. Adler⁷¹, G. Aglieri Rinella ³³, M. Agnello ³⁰, N. Agrawal ⁵², Z. Ahammed (2)¹³⁵, S. Ahmad (2)¹⁶, S.U. Ahn (2)⁷², I. Ahuja (2)³⁸, A. Akindinov (2)¹⁴¹, M. Al-Turany (2)⁹⁸, D. Aleksandrov (2)¹⁴¹, B. Alessandro (2)⁵⁷, H.M. Alfanda (2)⁶, R. Alfaro Molina (2)⁶⁸, B. Ali (2)⁶, A. Alici (2)²⁶, N. Alizadehvandchali $^{\circ}$ ¹¹⁶, A. Alkin $^{\circ}$ ³³, J. Alme $^{\circ}$ ²¹, G. Alocco $^{\circ}$ ⁵³, T. Alt $^{\circ}$ ⁶⁵, A.R. Altamura $^{\circ}$ ⁵¹, I. Altsybeev $^{\circ}$ ¹⁴¹, J.R. Alvarado $^{\circ}$ ⁴⁵, M.N. Anaam $^{\circ}$ ⁶, C. Andrei $^{\circ}$ ⁴⁶, A. Andronic $^{\circ}$ ¹²⁶, V. Anguelov $^{\circ}$ ⁹⁵, ⁷¹ F. Antinori ⁵⁵, P. Antonioli ⁵², N. Apadula ⁷⁵, L. Aphecetche ¹⁰⁴, H. Appelshäuser ⁶⁵, C. Arata ⁷⁴, S. Arcelli ⁶²⁶, M. Aresti ⁵³, R. Arnaldi ⁵⁷, J.G.M.C.A. Arneiro ¹¹¹, I.C. Arsene ²⁰, M. Arslandok ¹³⁸, A. Augustinus ⁽⁶⁾ ³³, R. Averbeck ⁽⁶⁾ ⁹⁸, M.D. Azmi ⁽⁶⁾ ¹⁶, H. Baba¹²⁴, A. Badalà ⁽⁶⁾ ⁵⁴, J. Bae ⁽⁶⁾ ¹⁰⁵, Y.W. Baek ⁽⁶⁾ ⁴¹, X. Bai ⁽⁶⁾ ¹²⁰, R. Bailhache ⁽⁶⁾ ⁶⁵, Y. Bailung ⁽⁶⁾ ⁴⁹, A. Balbino ⁽⁶⁾ ³⁰, A. Baldisseri ⁽⁶⁾ ¹³⁰, B. Balis ⁽⁶⁾ ², D. Banerjee ⁽⁶⁾ ⁴, Z. Banoo ⁽⁶⁾ ⁹², R. Barbera ⁽⁶⁾ ²⁷, F. Barile ⁽⁶⁾ ³², L. Barioglio ⁽⁶⁾ ⁹⁶, M. Barlou⁷⁹, G.G. Barnaföldi ⁽⁶⁾ ⁴⁷, L.S. Barnby 6⁸⁶, V. Barret 6¹²⁷, L. Barreto 6¹¹¹, C. Bartels 6¹¹⁹, K. Barth 6³³, E. Bartsch 6⁶⁵, N. Bastid 6¹²⁷, S. Basu (9⁷⁶, G. Batigne (9¹⁰⁴, D. Battistini (9⁹⁶, B. Batyunya (9¹⁴², D. Bauri⁴⁸, J.L. Bazo Alba (9¹⁰², I.G. Bearden © ⁸⁴, C. Beattie © ¹³⁸, P. Becht © ⁹⁸, D. Behera © ⁴⁹, I. Belikov © ¹²⁹, A.D.C. Bell Hechavarria © ¹²⁶, F. Bellini © ²⁶, R. Bellwied © ¹¹⁶, S. Belokurova © ¹⁴¹, G. Bencedi © ⁴⁷, S. Beole © ²⁵, A. Bercuci © ⁴⁶, Y. Berdnikov (141, A. Berdnikova (195, L. Bergmann (195, M.G. Besoiu (164, L. Betev (1933, P.P. Bhaduri (1913), Y. Berdnikov (b) ¹⁴¹, A. Berdnikova (b) ⁹³, L. Bergmann (b) ⁹³, M.G. Besoiu (b) ⁶⁴, L. Betev (b) ⁵³, P.P. Bhaduri (b) ¹⁵³, A. Bhasin (b) ⁹², M.A. Bhat (b) ⁴, B. Bhattacharjee (b) ⁴², L. Bianchi (b) ²⁵, N. Bianchi (b) ⁵⁰, J. Bielčík (b) ³⁶, J. Bielčík (b) ³⁶, J. Bielčík (b) ⁴⁷, S. Biswas (b) ⁴, N. Bize (b) ¹⁰⁴, J.T. Blair (b) ¹⁰⁹, D. Blau (b) ¹⁴¹, M.B. Blidaru (b) ⁹⁸, N. Bluhme³⁹, C. Blume (b) ⁶⁵, G. Boca (b) ^{22,56}, F. Bock (b) ⁸⁸, T. Bodova (b) ²¹, A. Bogdanov¹⁴¹, S. Boi (b) ²³, J. Bok (b) ⁵⁹, L. Boldizsár (b) ⁴⁷, M. Bombara (b) ³⁸, P.M. Bond (b) ³³, G. Bonomi (b) ^{134,56}, H. Borel (b) ¹³⁰, A. Borissov (b) ¹⁴¹, A.G. Borquez Carcamo (b) ⁹⁵, H. Bossi (b) ¹³⁸, E. Botta (b) ²⁵, Y.E.M. Bouziani (b) ⁶⁵, L. Bratrud (b) ⁶⁵, P. Braun-Munzinger (b) ⁹⁸, M. Bregant (b) ¹¹¹, M. Broz (b) ³⁶, G. E. Bruno (b) ^{97,32}, M.D. Buckland (b) ²⁴, D. Budnikov (b) ¹⁴¹, H. Buesching (b) ⁶⁵, S. Bufalino (b) ³⁰, P. Buhler (b) ¹⁰³, M. Broz (b) ¹⁴¹, B. Buhler (b) ¹²³, A. Boris (b) ¹⁴¹, H. Buesching (b) ⁶⁵, S. Bufalino (b) ³⁰, P. Buhler (b) ¹⁰³, M. Broz (b) ¹⁴¹, B. Buhler (b) ¹⁴¹, B. Buhler (b) ¹⁴¹, B. Buhler (b) ¹⁴¹, B. Buhler (b) ¹⁴², B. Buhler (b) ¹⁴², B. Buhler (b) ¹⁴¹, B. Buhler (b) ¹⁴², B. Buhler (b) ¹⁴¹, B. Buhler (A. Caliva ²⁹, E. Calvo Villar ¹⁰², J.M.M. Camacho ¹¹⁰, P. Camerini ²⁴, F.D.M. Canedo ¹¹¹, S.L. Cantway 138, M. Carabas 114, A.A. Carballo 33, F. Carnesecchi 33, R. Caron 128, L.A.D. Carvalho ¹¹¹, J. Castillo Castellanos ¹³⁰, F. Catalano ^{33,25}, C. Ceballos Sanchez ¹⁴², I. Chakaberia ⁷⁵, P. Chakraborty ⁴⁸, S. Chandra ¹³⁵, S. Chapeland ³³, M. Chartier ¹¹⁹, S. Chattopadhyay ¹³⁵, S. Chattopadhyay ¹⁰⁰, T. Cheng ^{98,6}, C. Cheshkov ¹²⁸, B. Cheynis ¹²⁸, V. Chibante Barroso ³³, D.D. Chinellato ¹¹², E.S. Chizzali ^{II,96}, J. Cho ⁵⁹, S. Cho ⁵⁹, P. Chochula ³³, ⁵⁷ P. Christakoglou ⁶ ⁸⁵, C.H. Christensen ⁸⁴, P. Christiansen ⁶⁷⁶, T. Chujo ⁶ ¹²⁵, M. Ciacco ⁶³⁰, C. Cicalo ⁵³, F. Cindolo ⁵², M.R. Ciupek⁹⁸, G. Clai^{III,52}, F. Colamaria ⁵¹, J.S. Colburn¹⁰¹, D. Colella ^{97,32}, M. Colocci © ²⁶, M. Concas © ^{IV,57}, G. Conesa Balbastre © ⁷⁴, Z. Conesa del Valle © ¹³¹, G. Contin © ²⁴, J.G. Contreras ³⁶, M.L. Coquet ¹³⁰, P. Cortese ^{133,57}, M.R. Cosentino ¹¹³, F. Costa ³³, S. Costanza ^{22,56}, C. Cot ¹³¹, J. Crkovská ⁹⁵, P. Crochet ¹²⁷, R. Cruz-Torres ⁷⁵, P. Cui ⁶, A. Dainese ⁵⁵, M.C. Danisch ⁹⁵, A. Danu ⁶⁴, P. Das ⁸¹, P. Das ⁶⁴, S. Das ⁶⁴, A.R. Dash ¹²⁶, S. Dash ⁶⁴⁸, A. De Caro ⁹²⁹, G. de Cataldo ⁵¹, J. de Cuveland³⁹, A. De Falco ⁶²³, D. De Gruttola ⁶²⁹, N. De Marco ⁵⁷, C. De Martin ⁹²⁴, S. De Pasquale ⁶²⁹, R. Deb ⁶¹³⁴, S. Deb ⁶⁴⁹, R. Del Grande ⁹⁶, L. Dello Stritto ¹²⁹, W. Deng ¹⁶, P. Dhankher ¹⁹, D. Di Bari ¹³², A. Di Mauro ¹³³, B. Diab ¹³⁰, R.A. Diaz (9^{142,7}, T. Dietel (9¹¹⁵, Y. Ding (9⁶, R. Divià (9³³, D.U. Dixit (9¹⁹, Ø. Djuvsland²¹, U. Dmitrieva (9¹⁴¹, A. Dobrin ⁶⁴, B. Dönigus ⁶⁵, J.M. Dubinski ¹³⁶, A. Dubla ⁹⁸, S. Dudi ⁹¹, P. Dupieux ¹²⁷, M. Durkac¹⁰⁷, N. Dzalaiova¹³, T.M. Eder ¹²⁶, R.J. Ehlers ⁷⁵, F. Eisenhut ⁶⁵, R. Ejima⁹³, D. Elia ⁵¹, B. Erazmus $^{\circ}$ ¹⁰⁴, F. Ercolessi $^{\circ}$ ²⁶, F. Erhardt $^{\circ}$ ⁹⁰, M.R. Ersdal²¹, B. Espagnon $^{\circ}$ ¹³¹, G. Eulisse $^{\circ}$ ³³, D. Evans $^{\circ}$ ¹⁰¹, S. Evdokimov $^{\circ}$ ¹⁴¹, L. Fabbietti $^{\circ}$ ⁹⁶, M. Faggin $^{\circ}$ ²⁸, J. Faivre $^{\circ}$ ⁷⁴, F. Fan $^{\circ}$ ⁶, W. Fan $^{\circ}$ ⁷⁵, A. Fantoni ⁶ ⁵⁰, M. Fasel ⁸⁸, P. Fecchio³⁰, A. Feliciello ⁵⁷, G. Feofilov ⁶ ¹⁴¹, A. Fernández Téllez ⁶⁴⁵, L. Ferrandi ¹¹¹, M.B. Ferrer ³³, A. Ferrero ¹³⁰, C. Ferrero ⁵⁷, A. Ferretti ²⁵, V.J.G. Feuillard ⁹⁵, V. Filova ⁶ ³⁶, D. Finogeev ⁶ ¹⁴¹, F.M. Fionda ⁶ ⁵³, F. Flor ⁶ ¹¹⁶, A.N. Flores ⁶ ¹⁰⁹, S. Foertsch ⁶ ⁶⁹, I. Fokin ⁶ ⁹⁵, S. Fokin ¹⁴¹, E. Fragiacomo ⁵⁸, E. Frajna ⁴⁷, U. Fuchs ³³, N. Funicello ²⁹, C. Furget ⁷⁴, A. Furs ¹⁴¹, T. Fusayasu ⁹⁹, J.J. Gaardhøje ⁸⁴, M. Gagliardi ²⁵, A.M. Gago ¹⁰², T. Gahlaut⁴⁸, C.D. Galvan ¹¹⁰, D.R. Gangadharan (b¹¹⁶, P. Ganoti (b⁷⁹, C. Garabatos (b⁹⁸, A.T. Garcia (b¹³¹, T. García Chávez (b⁴⁵, E. Garcia-Solis (b⁹, C. Gargiulo (b³³, K. Garrer¹²⁶, P. Gasik (b⁹⁸, A. Gautam (b¹¹⁸, M.B. Gay Ducati (b⁶⁷, M. Germain (b¹⁰⁴, A. Ghimouz¹²⁵, C. Ghosh¹³⁵, M. Giacalone (b^{52,26}, P. Giubellino (b^{98,57}, P. Giubilato (b²⁸, 120) A.M.C. Glaenzer 130, P. Glässel 15, E. Glimos 122, D.J.Q. Goh⁷⁷, V. Gonzalez 137, M. Gorgon 2, K. Goswami ¹⁰ ⁴⁹, S. Gotovac³⁴, V. Grabski ¹⁰ ⁶⁸, L.K. Graczykowski ¹³⁶, E. Grecka ¹⁸⁷, A. Grelli ¹⁰ ⁶⁰, C. Grigoras () ³³, V. Grigoriev () ¹⁴¹, S. Grigoryan () ^{142,1}, F. Grosa () ³³, J.F. Grosse-Oetringhaus () ³³, R. Grosso ⁹⁸, D. Grund ³⁶, G.G. Guardiano ¹¹², R. Guernane ⁷⁴, M. Guilbaud ¹⁰⁴, K. Gulbrandsen ⁸⁴,

T. Gündem () ⁶⁵, T. Gunji () ¹²⁴, W. Guo () ⁶, A. Gupta () ⁹², R. Gupta () ⁹², R. Gupta () ⁴⁹, K. Gwizdziel () ¹³⁶, L. Gyulai [©]⁴⁷, M.K. Habib⁹⁸, C. Hadjidakis [©]¹³¹, F.U. Haider [©]⁹², H. Hamagaki [©]⁷⁷, A. Hamdi [©]⁷⁵, M. Hamid⁶, Y. Han ¹³⁹, B.G. Hanley ¹³⁷, R. Hannigan ¹⁰⁹, J. Hansen ⁷⁶, M.R. Haque ¹³⁶, J.W. Harris 138, A. Harton 9, H. Hassan 88, D. Hatzifotiadou 52, P. Hauer 43, L.B. Havener 138, S.T. Heckel ⁶⁹⁶, E. Hellbär ⁹⁸, H. Helstrup ³⁵, M. Hemmer ⁶⁵, T. Herman ³⁶, G. Herrera Corral ⁸, S. 1. Heckel 9 ⁷⁰, E. Hellbar 9 ⁷⁰, H. Helstrup 9 ³⁵, M. Hemmer 9 ⁶⁰, T. Herman 9 ³⁶, G. Herrera Corral 9 ⁸, F. Herrmann¹²⁶, S. Herrmann 9 ¹²⁸, K.F. Hetland 9 ³⁵, B. Heybeck 9 ⁶⁵, H. Hillemanns 9 ³³, B. Hippolyte 9 ¹²⁹, F.W. Hoffmann 9 ⁷¹, B. Hofman 9 ⁶⁰, B. Hohlweger 9 ⁸⁵, G.H. Hong 9 ¹³⁹, M. Horst 9 ⁹⁶, A. Horzyk 9 ², Y. Hou 9 ⁶, P. Hristov 9 ³³, C. Hughes 9 ¹²², P. Huhn ⁶⁵, L.M. Huhta 9 ¹¹⁷, T.J. Humanic 9 ⁸⁹, A. Hutson 9 ¹¹⁶, D. Hutter 9 ³⁹, R. Ilkaev¹⁴¹, H. Ilyas 9 ¹⁴, M. Inaba 9 ¹²⁵, G.M. Innocenti 9 ³³, M. Ippolitov 9 ¹⁴¹, A. Isakov 9 ⁸⁷, T. Isidori 9 ¹¹⁸, M.S. Islam 9 ¹⁰⁰, M. Ivanov¹³, M. Ivanov 9 ⁹⁸, V. Ivanov 9 ¹⁴¹, K.E. Iversen 9 ⁷⁶, M. Jablonski 9 ², B. Jacak 7 ⁵, N. Jacazio 9 ²⁶, P.M. Jacobs 7 ⁷⁵, S. Jadlovska¹⁰⁷, J. Jadlovsky¹⁰⁷, S. Jaelani 9 ⁸³, C. Jahnke 112, M.J. Jakubowska 136, M.A. Janik 136, T. Janson⁷¹, M. Jercic⁹⁰, S. Ji 17, S. Jia 17, S. Jia A.A.P. Jimenez ⁶⁶, F. Jonas ^{88,126}, D.M. Jones ¹¹⁹, J.M. Jowett ^{33,98}, J. Jung ⁶⁵, M. Jung ⁶⁵, A. Junique 33 , A. Jusko 101 , M.J. Kabus 33,136 , J. Kaewjai¹⁰⁶, P. Kalinak 61 , A.S. Kalteyer 998 , A. Junique 6¹⁰, A. Jusko 6¹¹, M.J. Kabus 6¹¹, J. Kaewjai ¹⁰, P. Kaimak 6¹¹, A.S. Kaneyer 6¹¹, A. Karasu Uysal 6¹³, D. Karatovic 6⁹⁰, O. Karavichev 6¹⁴¹, T. Karavicheva 6¹⁴¹, P. Karczmarczyk 6¹³⁶, E. Karpechev 6¹⁴¹, U. Kebschull 6¹¹, R. Keidel 6¹⁴⁰, D.L.D. Keijdener⁶⁰, M. Keil 6³³, B. Ketzer 6⁴³, S.S. Khade 6⁴⁹, A.M. Khan 6^{120,6}, S. Khan 6¹⁶, A. Khanzadeev 6¹⁴¹, Y. Kharlov 6¹⁴¹, A. Khatun 6¹¹⁸, A. Khuntia 6³⁶, M.B. Kidson¹¹⁵, B. Kileng 6³⁵, B. Kim 6¹⁰⁵, C. Kim 6¹⁷, D.J. Kim 6¹¹⁷, E.J. Kim 6⁷⁰, J. Kim 6¹³⁹, J.S. Kim 6⁴¹, J. Kim 6⁵⁹, J. Kim 6⁷⁰, M. Kim ¹⁹, S. Kim ¹⁸, T. Kim ¹³⁹, K. Kimura ⁹³, S. Kirsch ⁶⁵, I. Kisel ³⁹, S. Kiselev ¹⁴¹, A. Kisiel © ¹³⁶, J.P. Kitowski © ², J.L. Klay © ⁵, J. Klein © ³³, S. Klein © ⁷⁵, C. Klein-Bösing © ¹²⁶, M. Kleiner © ⁶⁵, T. Klemenz © ⁹⁶, A. Kluge © ³³, A.G. Knospe © ¹¹⁶, C. Kobdaj © ¹⁰⁶, T. Kollegger⁹⁸, A. Kondratyev ¹⁴², N. Kondratyeva ¹⁴¹, E. Kondratyuk ¹⁴¹, J. Konig ⁶⁵, S.A. Konigstorfer ⁹⁶, P.J. Konopka ³³, G. Kornakov ¹³⁶, M. Korwieser ⁹⁶, S.D. Koryciak ², A. Kotliarov ⁸⁷, V. Kovalenko ¹⁴¹, M. Kowalski ¹⁰⁸, V. Kozhuharov ³⁷, I. Králik ⁶¹, A. Kravčáková ³⁸, L. Krcal ^{33,39}, M. Krivda ^{101,61}, F. Krizek ⁸⁷, K. Krizkova Gajdosova ³³, M. Kroesen ⁹⁵, M. Krüger ⁶⁵, D.M. Krupova ⁶ ³⁶, E. Kryshen ⁶ ¹⁴¹, V. Kučera ⁵⁹, C. Kuhn ⁶ ¹²⁹, P.G. Kuijer ⁸⁵, T. Kumaoka¹²⁵, D. Kumar¹³⁵, L. Kumar^{© 91}, N. Kumar⁹¹, S. Kumar^{© 32}, S. Kundu ^{© 33}, P. Kurashvili ^{© 80}, A. Kurepin ^{© 141}, A.B. Kurepin ¹⁴¹, A. Kuryakin ¹⁴¹, S. Kushpil ⁸⁷, M.J. Kweon ⁵⁹, Y. Kwon ¹³⁹, S.L. La Pointe ³⁹, P. La Rocca ¹²⁷, A. Lakrathok¹⁰⁶, M. Lamanna ³³, A.R. Landou ⁷⁴, R. Langoy ¹²¹, P. Larionov ³³, P. La Rocca 21, A. Lakratnok¹⁰⁰, M. Lamanna 53, A.K. Landou 54, R. Langoy 512, P. Larionov 55,
E. Laudi 633, L. Lautner 33,96, R. Lavicka 103, R. Lea 114,56, H. Lee 105, I. Legrand 46, G. Legras 126,
J. Lehrbach 39, T.M. Lelek², R.C. Lemmon 86, I. León Monzón 110, M.M. Lesch 96, E.D. Lesser 19,
P. Lévai 47, X. Li¹⁰, X.L. Li⁶, J. Lien 121, R. Lietava 101, I. Likmeta 116, B. Lim 25, S.H. Lim 17,
V. Lindenstruth 39, A. Lindner⁴⁶, C. Lippmann 98, A. Liu 19, D.H. Liu 61, J. Liu 119, G.S.S. Liveraro 112, 100 I.M. Lofnes ²¹, C. Loizides ⁸⁸, S. Lokos ¹⁰⁸, J. Lomker ⁶⁰, P. Loncar ³⁴, J.A. Lopez ⁹⁵, X. Lopez ¹²⁷, E. López Torres $^{\circ}$ 7, P. Lu $^{\circ}$ 98,120, J.R. Luhder $^{\circ}$ 126, M. Lunardon $^{\circ}$ 28, G. Luparello $^{\circ}$ 58, Y.G. Ma $^{\circ}$ 40, M. Mager ^(b) ³³, A. Maire ^(c) ¹²⁹, E.M. Majerz², M.V. Makariev ^(b) ³⁷, M. Malaev ^(c) ¹⁴¹, G. Malfattore ^(b) ²⁶, N.M. Malik $^{\circ}$ ⁹², Q.W. Malik²⁰, S.K. Malik $^{\circ}$ ⁹², L. Malinina $^{\circ}$ ^{I,VII,142}, D. Mallick $^{\circ}$ ⁸¹, N. Mallick $^{\circ}$ ⁴⁹, G. Mandaglio $^{\circ}$ ^{31,54}, S.K. Mandal $^{\circ}$ ⁸⁰, V. Manko $^{\circ}$ ¹⁴¹, F. Manso $^{\circ}$ ¹²⁷, V. Manzari $^{\circ}$ ⁵¹, Y. Mao $^{\circ}$ ⁶, P. W. Marsing $^{\circ}$ ² C.V. Manzari $^{\circ}$ ²⁴ + 25 G. Mandaglio ^{31,54}, S.K. Mandal ⁸⁰, V. Manko ¹⁴¹, F. Manso ¹²⁷, V. Manzari ⁵¹, Y. Mao ⁶, R.W. Marcjan ², G.V. Margagliotti ²⁴, A. Margotti ⁵², A. Marín ⁹⁸, C. Markert ¹⁰⁹, P. Martinengo ³³, M.I. Martínez ⁴⁵, G. Martínez García ¹⁰⁴, M.P.P. Martins ¹¹¹, S. Masciocchi ⁹⁸, M. Masera ²⁵, A. Masoni ⁵³, L. Massacrier ¹³¹, A. Mastroserio ^{132,51}, O. Matonoha ⁷⁶, S. Mattiazzo ²⁸, P.F.T. Matuoka¹¹¹, A. Matyja ¹⁰⁸, C. Mayer ¹⁰⁸, A.L. Mazuecos ³³, F. Mazzaschi ²⁵, M. Mazzilli ³³, J.E. Mdhluli ¹²³, A.F. Mechler⁶⁵, Y. Melikyan ⁴⁴, A. Menchaca-Rocha ⁶⁸, E. Meninno ¹⁰³, A.S. Menon ¹¹⁶, M. Meres ¹³, S. Mhlanga^{115,69}, Y. Miake¹²⁵, L. Micheletti ³³, L.C. Migliorin¹²⁸, D.L. Mihaylov ⁹⁶, K. Mikhaylov ^{142,141}, A.N. Mishra ⁴⁷, D. Miśkowiec ⁹⁸, A. Modak ⁴, A.P. Mohanty ⁶⁰, B. Mohanty⁸¹, M. Mohisin Khan ^{V,16}, M.A. Molander ⁴⁴, S. Monira ¹³⁶, Z. Moravcova ⁸⁴, C. Mordasini ¹¹⁷, D.A. Moreira De Godoy ¹²⁶, I. Morozov ¹⁴¹, A. Morsch ³³, T. Mrniayac ³³, V. Muccifora ⁵⁰, S. Muhuri ¹³⁵, I.D. Mulligan ⁷⁵, A. Mulliri²³, M.G. Munhoz ⁹¹¹¹, T. Mrnjavac 6 ³³, V. Muccifora 6 ⁵⁰, S. Muhuri 6 ¹³⁵, J.D. Mulligan 6 ⁷⁵, A. Mulliri²³, M.G. Munhoz 6 ¹¹¹, R.H. Munzer (a) 65, H. Murakami (a) 124, S. Murray (a) 115, L. Musa (a) 33, J. Musinsky (a) 61, J.W. Myrcha (a) 136, B. Naik ¹²³, A.I. Nambrath ¹⁹, B.K. Nandi ⁴⁸, R. Nania ⁵², E. Nappi ⁵¹, A.F. Nassirpour ^{18,76}, A. Nath \odot ⁹⁵, C. Nattrass \odot ¹²², M.N. Naydenov \odot ³⁷, A. Neagu²⁰, A. Negru¹¹⁴, L. Nellen \odot ⁶⁶, R. Nepeivoda \odot ⁷⁶, A. Nahl 6¹⁷, C. Nahlass 6¹⁷, M.N. Naydenov 6¹⁷, A. Neagu¹⁷, A. Negru¹⁷, L. Nehen 6¹⁷, K. Nepervola S. Nese 6²⁰, G. Neskovic 6³⁹, B.S. Nielsen 6⁸⁴, E.G. Nielsen 6⁸⁴, S. Nikolaev 6¹⁴¹, S. Nikulin 6¹⁴¹, V. Nikulin 6¹⁴¹, F. Noferini 6⁵², S. Noh 6¹², P. Nomokonov 6¹⁴², J. Norman 6¹¹⁹, N. Novitzky 6¹²⁵, P. Nowakowski 6¹³⁶, A. Nyanin 6¹⁴¹, J. Nystrand 6²¹, M. Ogino 77, S. Oh 6¹⁸, A. Ohlson 6⁷⁶, V.A. Okorokov 6¹⁴¹, J. Oleniacz 6¹³⁶, A.C. Oliveira Da Silva 6¹²², M.H. Oliver 6¹³⁸, A. Onnerstad 6¹¹⁷,

C. Oppedisano 6⁵⁷, A. Ortiz Velasquez 6⁶⁶, J. Otwinowski 6¹⁰⁸, M. Oya⁹³, K. Oyama 77, Y. Pachmayer 8⁹⁵, S. Padhan ⁶⁴⁸, D. Pagano ⁶^{134,56}, G. Paić ⁶⁶, S. Paisano-Guzmán ⁶⁴⁵, A. Palasciano ⁵¹, S. Panebianco ⁶¹³⁰, H. Park (125, H. Park (10) 105, J. Park (10) 59, J.E. Parkkila (10) 33, Y. Patley (10) 48, R.N. Patra 92, B. Paul (10) 23, H. Pei (10) 6, T. Peitzmann ⁶ ⁶⁰, X. Peng ¹¹, M. Pennisi ²⁵, D. Peresunko ¹⁴¹, G.M. Perez ⁷, Y. Pestov¹⁴¹, V. Petrov (a) ¹⁴¹, M. Petrovici (a) ⁴⁶, R.P. Pezzi (a) ^{104,67}, S. Piano (a) ⁵⁸, M. Pikna (a) ¹³, P. Pillot (a) ¹⁰⁴, O. Pinazza (5²,³³, L. Pinsky¹¹⁶, C. Pinto (9⁶, S. Pisano (5⁰), M. Płoskoń (5⁷⁵, M. Planinic⁹⁰, F. Pliquett⁶⁵, M.G. Poghosyan (5⁸⁸, B. Polichtchouk (5¹⁴¹, S. Politano (5³⁰), N. Poljak (5⁹⁰), A. Pop (5⁴⁶), M.G. Poghosyan 6 ³⁰, B. Polichtchouk 6 ¹¹¹, S. Politano 6 ³⁰, N. Poljak 6 ³⁰, A. Pop 6 ¹⁰, S. Porteboeuf-Houssais 6 ¹²⁷, V. Pozdniakov 6 ¹⁴², I.Y. Pozos 6 ⁴⁵, K.K. Pradhan 6 ⁴⁹, S.K. Prasad 6 ⁴, S. Prasad 6 ⁴⁹, R. Preghenella 6 ⁵², F. Prino 6 ⁵⁷, C.A. Pruneau 6 ¹³⁷, I. Pshenichnov 6 ¹⁴¹, M. Puccio 6 ³³, S. Pucillo 6 ²⁵, Z. Pugelova¹⁰⁷, S. Qiu 6 ⁸⁵, L. Quaglia 6 ²⁵, R.E. Quishpe¹¹⁶, S. Ragoni 6 ¹⁵, A. Rakotozafindrabe 6 ¹³⁰, L. Ramello 6 ^{133,57}, F. Rami 6 ¹²⁹, T.A. Rancien⁷⁴, M. Rasa 6 ²⁷, S.S. Räsänen 6 ⁴⁴, R. Rath 6 ⁵², M.P. Rauch 6 ²¹, I. Ravasenga 6 ⁸⁵, K.F. Read 6 ^{88,122}, C. Reckiegel 6 ¹¹³, A.R. Redelbach 6 ³⁹, K. Redlich ¹⁰ VI,80, C.A. Reetz ¹⁰ 98, H.D. Regules-Medel⁴⁵, A. Rehman²¹, F. Reidt ¹⁰ 33, H.A. Reme-Ness ¹⁰ 35, Z. Rescakova³⁸, K. Reygers 95 , A. Riabov 141 , V. Riabov 141 , R. Ricci 929 , M. Richter 920 , A.A. Riedel ⁹⁶, W. Riegler ³³, C. Ristea ⁶⁴, M.V. Rodriguez ³³, M. Rodríguez Cahuantzi ⁴⁵, S.A. Rodríguez Ramírez ⁴⁵, K. Røed ²⁰, R. Rogalev ¹⁴¹, E. Rogochaya ¹⁴², T.S. Rogoschinski ⁶⁵, D. Rohr ³³, D. Röhrich ²¹, P.F. Rojas⁴⁵, S. Rojas Torres ³⁶, P.S. Rokita ¹³⁶, G. Romanenko ¹⁴², F. Ronchetti ⁵⁰, A. Rosano ^{31,54}, E.D. Rosas⁶⁶, K. Roslon ¹³⁶, A. Rossi ⁵⁵, A. Roy ⁴⁹, S. Roy ⁴⁸, N. Rubini ¹⁰ ²⁶, D. Ruggiano ¹³⁶, R. Rui ¹², P.G. Russek ¹², R. Russo ¹³⁶, A. Rustamov ¹³⁶, ⁸², E. Ryabinkin 6¹⁴¹, Y. Ryabov 6¹⁴¹, A. Rybicki 6¹⁰⁸, H. Rytkonen 6¹¹⁷, J. Ryu 6¹⁷, W. Rzesa 6¹³⁶, O.A.M. Saarimaki ⁶ ⁴⁴, R. Sadek ⁶ ¹⁰⁴, S. Sadhu ⁶ ³², S. Sadovsky ⁶ ¹⁴¹, J. Saetre ⁶ ²¹, K. Šafařík ⁶ ³⁶, P. Saha⁴², S.K. Saha ⁶⁴, S. Saha ⁶⁸¹, B. Sahoo ⁶⁴⁸, B. Sahoo ⁶⁴⁹, R. Sahoo ⁶⁴⁹, S. Sahoo⁶², D. Sahu ⁶⁴⁹, P.K. Sahu ⁶⁶², A. Schröter 6 ³⁹, J. Schukraft ³³, K. Schweda ⁹⁸, G. Scioli ⁶, E. Scomparin ⁵⁷, J.E. Seger ¹⁵, Y. Sekiguchi¹²⁴, D. Sekihata ¹²⁴, M. Selina ⁸⁵, I. Selyuzhenkov ⁹⁸, S. Senyukov ¹²⁹, J.J. Seo ^{95,59}, D. Serebryakov ¹⁴¹, L. Šerkšnytė ⁹⁶, A. Sevcenco ⁶⁴, T.J. Shaba ⁶⁹, A. Shabetai ¹⁰⁴, R. Shahoyan³³, D. Serebryakov (141, L. Serkšnytė 90, A. Sevcenco 04, T.J. Shaba 09, A. Shabetai 104, R. Shahoyan³⁵, A. Shangaraev (141, A. Sharma⁹¹, B. Sharma 92, D. Sharma 48, H. Sharma 55,108, M. Sharma 92, S. Sharma 77, S. Sharma 92, U. Sharma 92, A. Shatat 131, O. Sheibani¹¹⁶, K. Shigaki 93, M. Shimomura⁷⁸, J. Shin¹², S. Shirinkin 141, Q. Shou 40, Y. Sibiriak 141, S. Siddhanta 53, T. Siemiarczuk 80, T.F. Silva 111, D. Silvermyr 76, T. Simantathammakul¹⁰⁶, R. Simeonov 77, B. Singh 92, B. Singh 96, K. Singh 49, R. Singh 81, R. Singh 92, R. Singh 49, S. Singh 135, T. Sinha 100, B. Sitar 13, M. Sitta 133,57, T.B. Skaali²⁰, G. Skorodumovs 95, M. G. K. Singh 44, N. G. K. Singh 40, K. Singh 40, K. Singh 413, M. Sitta 413, S. Singh 52, Sharma 520, G. Skorodumovs 95, M. G. K. Singh 54, N. Singh 54, N M. Slupecki ⁶⁴⁴, N. Smirnov ¹³⁸, R.J.M. Snellings ⁶⁰, E.H. Solheim ²⁰, J. Song ¹¹⁶, A. Songmoolnak¹⁰⁶, C. Sonnabend ^{33,98}, F. Soramel ²⁸, A.B. Soto-hernandez ⁸⁹, R. Spijkers ⁸⁵, I. Sputowska ¹⁰⁸, J. Staa ⁷⁶, J. Stachel ⁹⁵, I. Stan ⁶⁴, P.J. Steffanic ¹²², S.F. Stiefelmaier ⁹⁵, D. Stocco ¹⁰⁴, I. Storehaug ²⁰, P. Stratmann © ¹²⁶, S. Strazzi © ²⁶, C.P. Stylianidis⁸⁵, A.A.P. Suaide © ¹¹¹, C. Suire © ¹³¹, M. Sukhanov © ¹⁴¹, M. Suljic © ³³, R. Sultanov © ¹⁴¹, V. Sumberia © ⁹², S. Sumowidagdo © ⁸³, S. Swain⁶², I. Szarka © ¹³, M. Szymkowski © ¹³⁶, S.F. Taghavi © ⁹⁶, G. Taillepied © ⁹⁸, J. Takahashi © ¹¹², G.J. Tambave © ⁸¹, S. Tang © ⁶, Z. Tang © ¹²⁰, J.D. Tapia Takaki © ¹¹⁸, N. Tapus¹¹⁴, L.A. Tarasovicova © ¹²⁶, M.G. Tarzila © ⁴⁶, G.F. Tassielli © ³², A. Tauro 33 , G. Tejeda Muñoz 45 , A. Telesca 33 , L. Terlizzi 25 , C. Terrevoli 116 , S. Thakur 4 , D. Thomas 109 , A. Tikhonov 141 , A.R. Timmins 116 , M. Tkacik 107 , T. Tkacik 107 , A. Toia 65 , D. Thomas 50 , A. Tikhonov 511 , A.R. Timmins 510 , M. Tkacik 50 , T. Tokacik 50 , A. Tota 50 , R. Tokumoto⁹³, K. Tomohiro⁹³, N. Topilskaya 514 , M. Toppi 50 , T. Tork 513 , V.V. Torres 104 , A.G. Torres Ramos 32 , A. Trifiró 31,54 , A.S. Triolo 33,31,54 , S. Tripathy 52 , T. Tripathy 648 , S. Trogolo 53 , V. Trubnikov 53 , W.H. Trzaska 5117 , T.P. Trzcinski 6136 , A. Tumkin 5141 , R. Turrisi 55 , T.S. Tveter 20 , K. Ullaland 21 , B. Ulukutlu 96 , A. Uras 5128 , M. Urioni 56,134 , G.L. Usai 23 , M. Vala³⁸, N. Valle 22 , L.V.R. van Doremalen⁶⁰, M. van Leeuwen 85 , C.A. van Veen 95 , R.J.G. van Weelden 85 , P. Vande Vyvre () ³³, D. Varga () ⁴⁷, Z. Varga () ⁴⁷, M. Vasileiou () ⁷⁹, A. Vasiliev () ¹⁴¹, O. Vázquez Doce () ⁵⁰, O. Vazquez Rueda [©] ¹¹⁶, V. Vechernin [©] ¹⁴¹, E. Vercellin [©] ²⁵, S. Vergara Limón⁴⁵, R. Verma⁴⁸, L. Vermunt [©] ⁹⁸, R. Vértesi ⁶⁴⁷, M. Verweij ⁶⁰, L. Vickovic³⁴, Z. Vilakazi¹²³, O. Villalobos Baillie ¹⁰¹, A. Villani ⁶²⁴, G. Vino 6⁵¹, A. Vinogradov 6¹⁴¹, T. Virgili 6²⁹, M.M.O. Virta 6¹¹⁷, V. Vislavicius⁷⁶, A. Vodopyanov 6¹⁴², B. Volkel ⁽⁶⁾ ³³, M.A. Völkl ⁽⁶⁾ ⁹⁵, K. Voloshin¹⁴¹, S.A. Voloshin ⁽⁶⁾ ¹³⁷, G. Volpe ⁽⁶⁾ ³², B. von Haller ⁽⁶⁾ ³³, I. Vorobyev ⁽⁶⁾ ⁹⁶, N. Vozniuk ⁽⁶⁾ ¹⁴¹, J. Vrláková ⁽⁶⁾ ³⁸, J. Wan⁴⁰, C. Wang ⁽⁶⁾ ⁴⁰, D. Wang⁴⁰, Y. Wang ⁽⁶⁾ ⁴⁰, Y. Wang ⁽⁶⁾ ⁶, A. Wegrzynek ⁽⁶⁾ ³³, F.T. Weiglhofer³⁹, S.C. Wenzel ⁽⁶⁾ ³³, J.P. Wessels ⁽⁶⁾ ¹²⁶, J. Wiechula ⁽⁶⁾ ⁶⁵,

J. Wikne © ²⁰, G. Wilk © ⁸⁰, J. Wilkinson © ⁹⁸, G.A. Willems © ¹²⁶, B. Windelband © ⁹⁵, M. Winn © ¹³⁰, J.R. Wright © ¹⁰⁹, W. Wu⁴⁰, Y. Wu © ¹²⁰, R. Xu © ⁶, A. Yadav © ⁴³, A.K. Yadav © ¹³⁵, S. Yalcin © ⁷³, Y. Yamaguchi © ⁹³, S. Yang²¹, S. Yano © ⁹³, Z. Yin © ⁶, I.-K. Yoo © ¹⁷, J.H. Yoon © ⁵⁹, H. Yu¹², S. Yuan²¹,

A. Yuncu ⁹⁵, V. Zaccolo ²⁴, C. Zampolli ³³, F. Zanone ⁹⁵, N. Zardoshti ³³, A. Zarochentsev ¹⁴¹,

P. Závada (b⁶³, N. Zaviyalov¹⁴¹, M. Zhalov (b¹⁴¹, B. Zhang (b⁶, C. Zhang (b¹³⁰, L. Zhang (b⁴⁰, S. Zhang (b⁴⁰, X. Zhang (b⁶, Y. Zhang (b⁶, M. Zhao (b¹⁰), V. Zherebchevskii (b¹⁴¹, Y. Zhi¹⁰, D. Zhou (b⁶, X. Zhang (b⁶, M. Zhao (b¹⁰), V. Zherebchevskii (b¹⁴¹, Y. Zhi¹⁰, D. Zhou (b⁶, X. Zhang (b⁶, X. Zhang (b⁶), M. Zhao (b¹⁰), V. Zherebchevskii (b¹⁴¹, Y. Zhi¹⁰, D. Zhou (b⁶), X. Zhang (b⁶), M. Zhao (b¹⁰), V. Zherebchevskii (b¹⁴¹, Y. Zhi¹⁰), D. Zhou (b⁶), X. Zhang (b⁶), X. Zhan

Y. Zhou ⁶ ⁸⁴, J. Zhu ⁶ ^{98,6}, Y. Zhu⁶, S.C. Zugravel ⁵⁷, N. Zurlo ^{134,56}

Affiliation Notes

^I Deceased

^{II} Also at: Max-Planck-Institut fur Physik, Munich, Germany

^{III} Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy

^{IV} Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy

^V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India

^{VI} Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

VII Also at: An institution covered by a cooperation agreement with CERN

Collaboration Institutes

¹ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

² AGH University of Krakow, Cracow, Poland

³ Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

⁴ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

⁵ California Polytechnic State University, San Luis Obispo, California, United States

⁶ Central China Normal University, Wuhan, China

⁷ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

⁸ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

⁹ Chicago State University, Chicago, Illinois, United States

¹⁰ China Institute of Atomic Energy, Beijing, China

¹¹ China University of Geosciences, Wuhan, China

¹² Chungbuk National University, Cheongju, Republic of Korea

¹³ Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak Republic

¹⁴ COMSATS University Islamabad, Islamabad, Pakistan

¹⁵ Creighton University, Omaha, Nebraska, United States

¹⁶ Department of Physics, Aligarh Muslim University, Aligarh, India

¹⁷ Department of Physics, Pusan National University, Pusan, Republic of Korea

¹⁸ Department of Physics, Sejong University, Seoul, Republic of Korea

¹⁹ Department of Physics, University of California, Berkeley, California, United States

²⁰ Department of Physics, University of Oslo, Oslo, Norway

²¹ Department of Physics and Technology, University of Bergen, Bergen, Norway

²² Dipartimento di Fisica, Università di Pavia, Pavia, Italy

²³ Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy

²⁴ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy

²⁵ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy

²⁶ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy

²⁷ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy

²⁸ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy

²⁹ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy

³⁰ Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

³¹ Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy

³² Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy

³³ European Organization for Nuclear Research (CERN), Geneva, Switzerland

³⁴ Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia

³⁵ Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

³⁶ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

- ³⁷ Faculty of Physics, Sofia University, Sofia, Bulgaria
- ³⁸ Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
- ³⁹ Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁴⁰ Fudan University, Shanghai, China
- ⁴¹ Gangneung-Wonju National University, Gangneung, Republic of Korea
- ⁴² Gauhati University, Department of Physics, Guwahati, India

⁴³ Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

- ⁴⁴ Helsinki Institute of Physics (HIP), Helsinki, Finland
- ⁴⁵ High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
- ⁴⁶ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
- ⁴⁷ HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
- ⁴⁸ Indian Institute of Technology Bombay (IIT), Mumbai, India
- ⁴⁹ Indian Institute of Technology Indore, Indore, India
- ⁵⁰ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- ⁵¹ INFN, Sezione di Bari, Bari, Italy
- ⁵² INFN, Sezione di Bologna, Bologna, Italy
- ⁵³ INFN, Sezione di Cagliari, Cagliari, Italy
- ⁵⁴ INFN, Sezione di Catania, Catania, Italy
- ⁵⁵ INFN, Sezione di Padova, Padova, Italy
- ⁵⁶ INFN, Sezione di Pavia, Pavia, Italy
- ⁵⁷ INFN, Sezione di Torino, Turin, Italy
- ⁵⁸ INFN, Sezione di Trieste, Trieste, Italy
- ⁵⁹ Inha University, Incheon, Republic of Korea
- ⁶⁰ Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
- ⁶¹ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic
- ⁶² Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
- ⁶³ Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- ⁶⁴ Institute of Space Science (ISS), Bucharest, Romania
- ⁶⁵ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁶⁶ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶⁷ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- ⁶⁸ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶⁹ iThemba LABS, National Research Foundation, Somerset West, South Africa
- ⁷⁰ Jeonbuk National University, Jeonju, Republic of Korea
- ⁷¹ Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
- ⁷² Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
- ⁷³ KTO Karatay University, Konya, Turkey
- ⁷⁴ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
- ⁷⁵ Lawrence Berkeley National Laboratory, Berkeley, California, United States
- ⁷⁶ Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
- ⁷⁷ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ⁷⁸ Nara Women's University (NWU), Nara, Japan
- ⁷⁹ National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
- ⁸⁰ National Centre for Nuclear Research, Warsaw, Poland
- ⁸¹ National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
- 82 National Nuclear Research Center, Baku, Azerbaijan
- ⁸³ National Research and Innovation Agency BRIN, Jakarta, Indonesia
- ⁸⁴ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

⁸⁵ Nikhef, National institute for subatomic physics, Amsterdam, Netherlands

⁸⁶ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

⁸⁷ Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Řež, Czech Republic

⁸⁸ Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

⁸⁹ Ohio State University, Columbus, Ohio, United States

⁹⁰ Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia

⁹¹ Physics Department, Panjab University, Chandigarh, India

⁹² Physics Department, University of Jammu, Jammu, India

⁹³ Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2),

Hiroshima University, Hiroshima, Japan

⁹⁴ Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany

⁹⁵ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

⁹⁶ Physik Department, Technische Universität München, Munich, Germany

⁹⁷ Politecnico di Bari and Sezione INFN, Bari, Italy

⁹⁸ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung

GmbH, Darmstadt, Germany

⁹⁹ Saga University, Saga, Japan

¹⁰⁰ Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India

¹⁰¹ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

¹⁰² Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

¹⁰³ Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria

¹⁰⁴ SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France

¹⁰⁵ Sungkyunkwan University, Suwon City, Republic of Korea

¹⁰⁶ Suranaree University of Technology, Nakhon Ratchasima, Thailand

¹⁰⁷ Technical University of Košice, Košice, Slovak Republic

¹⁰⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

¹⁰⁹ The University of Texas at Austin, Austin, Texas, United States

¹¹⁰ Universidad Autónoma de Sinaloa, Culiacán, Mexico

¹¹¹ Universidade de São Paulo (USP), São Paulo, Brazil

¹¹² Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

¹¹³ Universidade Federal do ABC, Santo Andre, Brazil

¹¹⁴ Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, Bucharest, Romania

¹¹⁵ University of Cape Town, Cape Town, South Africa

¹¹⁶ University of Houston, Houston, Texas, United States

¹¹⁷ University of Jyväskylä, Jyväskylä, Finland

¹¹⁸ University of Kansas, Lawrence, Kansas, United States

¹¹⁹ University of Liverpool, Liverpool, United Kingdom

¹²⁰ University of Science and Technology of China, Hefei, China

¹²¹ University of South-Eastern Norway, Kongsberg, Norway

¹²² University of Tennessee, Knoxville, Tennessee, United States

¹²³ University of the Witwatersrand, Johannesburg, South Africa

¹²⁴ University of Tokyo, Tokyo, Japan

¹²⁵ University of Tsukuba, Tsukuba, Japan

¹²⁶ Universität Münster, Institut für Kernphysik, Münster, Germany

¹²⁷ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

¹²⁸ Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France

¹²⁹ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France

¹³⁰ Université Paris-Saclay, Centre d'Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France

¹³¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

¹³² Università degli Studi di Foggia, Foggia, Italy

¹³³ Università del Piemonte Orientale, Vercelli, Italy

¹³⁴ Università di Brescia, Brescia, Italy

¹³⁵ Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India

¹³⁶ Warsaw University of Technology, Warsaw, Poland

¹³⁷ Wayne State University, Detroit, Michigan, United States

- ¹³⁸ Yale University, New Haven, Connecticut, United States
 ¹³⁹ Yonsei University, Seoul, Republic of Korea
 ¹⁴⁰ Zentrum für Technologie und Transfer (ZTT), Worms, Germany
- ¹⁴¹ Affiliated with an institute covered by a cooperation agreement with CERN
 ¹⁴² Affiliated with an international laboratory covered by a cooperation agreement with CERN.