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Abstract: Global fish and seafood consumption is increasing annually, frequently leading to the
emergence of food fraud, mainly related to mislabeling and adulteration like, for example, the use of
illicit/unauthorized food additives to mask or delay fish spoilage. Among the available diagnostic
tools for control purposes, spectroscopic techniques have often been proposed to identify these
kinds of illicit practices in fish and seafood products. The presented study aims to test two cheap
and portable near infrared (NIR) spectrometers, a handheld MicroNIR and a pocket-sized SCiO, to
uncover use of the illicit food additive Cafodos, a mixture of sodium citrate and hydrogen peroxide
used to preserve some fish characteristics (like smell, color, na dtexture). The NIR spectroscopy
in combination with chemometric approaches, allowed the successfully classification of (81–100%)
samples of sea bass (Dicentrarchus labrax) treated with Cafodos. The study highlights the potential of
this technique that, by not requiring pre-treatment of samples with further reagents, is cheaper and
safer for the environment. In conclusion, the study confirmed the potential of portable devices for
rapid NIR spectroscopy analysis to identify food fraud and ensure consumer safety.

Keywords: Cafodos; sea bass; food fraud; near infrared spectroscopy; chemometrics; PLS-DA

1. Introduction

In the seafood industry, fraud, defined as “the intentional act of substituting, adding,
adulterating, tampering with, or misrepresenting illicit ingredients or treatments”, repre-
sents a primary threat to the production and marketing of seafood products, especially
regarding widely consumed species [1]. These frauds are rising as a result of the market’s
need to meet the consumer’s demand, especially for fresh fishery products, characterized
by short shelf life and, therefore, are often prone to be treated and/or manipulated to mask
and reduce spoilage [2].

Seafood freshness is indeed a key quality parameter due to the short shelf life of this
highly perishable foodstuff in relation to safety, nutritional value, availability, and edibil-
ity [3,4]. This quality declines rapidly after capture. Therefore, critical control processes
in the supply chain, like adequate instant processing, transport, packaging, and storage
are needed in order to preserve nutritional properties and avoid safety risks. To maintain
the organoleptic characteristics or mask the actual state of aging, numerous treatments
have been developed, and are sometimes illicit or dangerous for consumers [5]. Among
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these, there are Cafodos or hydrogen peroxide [6,7], chemical products used illegally as
additives to preserve the freshness characteristics of the fish, which thus makes it appear
apparently alive. The Cafodos additive, however, is difficult to find in the treated product
because once it is in contact with water and ice, it melts and all traces of it are rapidly lost.
By subtly conferring an appearance of freshness to the fish, the use of Cafodos constitutes
both a commercial fraud, i.e., the sale of a stale or altered fish for a fresh and sanitary one,
since the food apparently seems to retain the characteristics of freshness, while internally it
undergoes deterioration, giving rise to previously cited allergic and/or poisoning problems
in humans like scombroid syndrome [2].

Sea bass, (Dicentrarchus labrax) is one of the most important fish species from an
economic point of view in the entire Mediterranean area; Turkey and Greece have recently
become the major producing countries, while Italy, Spain, and France continue to remain
the main world importers [8].

To the best of our knowledge, the frauds most detected for this fish species are those on
the mislabeling: incorrect declaration of origin of farmed/wild fish and correct fresh/frozen
status of fish [9–12]. Only few studies are available on the rapid discrimination of fish
samples treated with compounds to simulate freshness [13].

To prevent this circumstance and face the threat of the marketing of spoiled or adul-
terated products, it is essential to find new technologies, that are rapid and in step with
the times, to identify illicit treatments in real-time, to report them to the authorities as
an alternative to the total volatile basic nitrogen (TVB-N), the main chemical indicator
for spoilage assessment in seafood products [14]. Untargeted fingerprinting approaches
based on Raman or near infrared spectroscopy (NIRS) meet all these characteristics, as
they provide multiple chemical and physical information to qualitatively/quantitatively
characterize complex food matrix [15]. In a previous study, the effects of Cafodos were
studied on sea bream with Raman spectroscopy highlighting its capabilities to discriminate
between treated and not treated samples with good accuracy [16]. Following this study,
we decided to use the same protocol proposed by Benedetto et al. (2024) [13] to test the
efficacy of NIR spectroscopy on sea bass to evaluate illicit treatment with Cafodos. The
shape of the NIR spectra obtained from fish samples is the result of several interactions
between NIR radiation and water; organic molecules like protein, carbohydrates, and
fat; and low-concentration constituents such as vitamins and minerals [17]. Indeed, NIR
analysis supported by chemometric techniques has been emerging as an effective tool in
food fraud analysis [18,19], as it is proven to be able to detect alterations caused by different
kinds of fish processing [20]. In addition, the use of portable NIR instruments has been
often adopted in several applications [21].

The purpose of this project was to evaluate the possibility of discriminating sea bass
illicitly treated with Cafodos from untreated ones using spectral acquisitions from NIR
portable devices coupled with multivariate analysis. The instruments used in this study
have different portability and spectral measurement ranges. In detail, the following were
used: a portable device controlled by a smartphone (SCiO by Consumer Physics, Tel Aviv,
Israel), and a portable MicroNIR instrument (Viavi Solutions Inc., Santa Rosa, CA, USA)
controlled with a laptop PC.

2. Materials and Methods
2.1. Reagent and Samples

Hydrogen peroxide solution (≥30%, for trace analysis) and sodium citrate tribasic
dihydrate (≥99.0%) were purchased from Merck Life Sciences (Milan, Italy). A Cafodos-like
treatment solution (TS) composed of 8 g/L hydrogen peroxide and 2.5% (w/v) sodium
citrate was prepared in ultrapure water and stored in a refrigerator at 4 ◦C.

Fish samples were purchased from a single farm soon after capture, through a trusted
supplier chain able to deliver animals in less than 24 h after capture. Fish were, therefore,
homogeneous in size (600 g average gutted weight) and production cycle. A total of
24 farmed European sea bass specimens (Dicentrarchus labrax) collected during spring 2023
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were used. Samples were divided into four groups: controls (stored on ice in the fridge for
3 h and for 24 h, respectively) and a group treated with a Cafodos solution for 3 h and 24 h,
respectively. For more details about the study design, refer to [13,16]. The experimentation
was carried out over 12 different days, with two samples evaluated and treated as paired
comparisons each day: one control and one treated fish.

Each treated fish was placed in the Cafodos solution for 60 s, transferred into a food bag
and stored on ice in the fridge for 3 h or 24 h (ratio fish:solution 1:1 w/v). The corresponding
control samples were treated and stored in the same way, by using ultrapure water. Each
fish was washed by flushing it with deionized water for 2 min, soon after treatment.

Spectroscopic measurements were taken from different fish parts as follows: eye, gills,
skin, and muscle.

Samples were labeled with the following 9-digit string: a letter indicating the sampling
site (E = eye, G = gill, M = muscle; S = skin); the indication of the fish sample (“F” followed
by a two-digits progressive number); the indication of the group (“C” for controls and
“T” for treated samples); a 2-digit number indicating the short- or long-term (03 = 3 h;
24 = 24 h); a 3-digit string indicating the replication (“_” followed by a progressive number).
These sample labels were the same as those exploited in a previous paper where Raman
spectroscopy was tested on the same sample batches [16].

2.2. NIR Acquisition

NIR spectra were acquired directly on the skin, eye, muscle, and gill of each sample.
Three replications of each measurement were recorded; for muscle and skin, they were
obtained from three different positions of the fish’s middle back, while for the gills and eye,
they were obtained by re-positioning the instrument on the area each time. The study was
conducted using 2 portable NIR spectrometers (SCiO pocket device, by Consumer Physics,
and MicroNIR 1700 Pro ES VIAVI Solutions, San Jose, CA, USA).

2.2.1. Portable SCiO

Spectra NIR collection and management of data were performed using the pocket-
sized SCiO device with a probing size of 0.6 × 0.9 mm and connected to a smartphone app
(The Lab, v. 1.3.1.81). Spectra were acquired in diffuse reflection mode. The experimental
acquisition parameters were set as follows: 740–1070 nm as the spectral range, 10 cm−1

resolution, with a typical scan time of less than 5 s.
Each collected NIR spectrum was stored on the online Consumer Physics cloud

database. The SCiO sensor was calibrated before the first acquisition by placing the sensor
in the instrument lid and performing a scan. The lid housing serves as a reference and
blank. A new calibration was performed when notification appears.

2.2.2. Handheld MicroNIR

Spectra NIR collection and management of data were performed using the handheld
MicroNIR with a probing size of 47 mm diameter. Analytical conditions for the MicroNIR
were as follows: 908–1676 nm spectral range, 12 cm−1 resolution, 12.5 µs integration time,
and 200 scans at 80 Hz were applied. The spectra acquisition and instrumental control
were managed by means of the VIAVI MicroNIR Pro software (v2.0), operated on a laptop
computer. Before the first sample, a dark current acquisition was performed followed by a
reference standard acquisition to calibrate the instrument.

2.3. Data Analysis

For both the SCiO sensor and the micro-NIR measurements, multivariate statistical
methods were applied to provide classification models able to classify the samples as control
or treated and identify the differences between the classes (controls vs. treated samples).

For this purpose, in the case of the SCiO, the collected spectra, uploaded and stored
on Consumer Physics’ cloud database, underwent the following approach: (i) spectra
were subjected to the four owners pre-treatments algorithms: Processed”, “Normalize”,
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“Processed & Normalize”, and “(log)R & Normalize” which included logarithmic, first and
second derivative, mean average scan, and SNV transformation; (ii) a principal component
analysis (PCA) was used as an unsupervised approach to verify the possible grouping of the
samples according to the treatment; (iii) random forest (RF) was applied as a classification
method for the identification of the differences between the control and treated samples.
RF and cross-validation were automatically performed by the app, in fact, the algorithms
are proprietary and it is not possible to change the set-up or obtain further information
regarding the chemometric processing of the spectra.

In the case of micro-NIR measurements, instead, the collected spectra underwent a
different approach as follows: (i) spectra were first pre-treated by different procedures
(SNV, first and second derivative); (ii) classification was performed by partial least squares–
discriminant analysis (PLS-DA) coupled to a variable selection procedure in backward
elimination (BE) to identify the differences between the control and treated samples and
provide the best predictive ability. In particular, the Savitzky–Golay procedure was applied
for the calculation of first and second derivative spectra with a step 5 and using a second
order polynomial. BE-PLS-DA [13,16] was then applied to provide the classification of the
samples (control vs. treated) separately for the short- and long-term exposure. PLS-DA
is based on partial least squares (PLS), a multivariate regression method able to correlate
X (the descriptors, here the wavelengths) and Y variables (the responses), by identifying
couples of latent variables (LVs) on X and Y blocks that mostly correlate. PLS-DA is the
classification version of PLS, where the Y variable represents the class membership. Here,
PLS-DA was applied to autoscaled data, after pretreatment by SNV and first or second
derivative. The algorithm was also coupled to an iterative variable selection procedure
in backward elimination; at each iteration, the variables with the smallest VIP score [22]
in cross-validation, were eliminated (no more than 6% of the variables were eliminated at
each cycle). Leave-more out cross-validation was applied here, taking into account that the
study was designed as paired comparisons. During cross-validation, all the replications
of the measurements of the fish samples that were analyzed in the same day were taken
out contemporarily (6 cancellation groups). The work presented here is part of a greater
project aimed at characterizing the applied treatments by different spectroscopic tools [16]
and a multi-omic approach [13]. The study design was, therefore, aimed at finding the
best compromise between: (i) a proper evaluation of the individual variability; (ii) the
minimization of the experimental effort; (iii) the characterization of the samples in a short
time after treatment. For these reasons, the calculations were applied in cross-validation
and no test set was applied; however, the applied cross-validation procedure provides an
evaluation of the predictive ability of the models that can be considered reliable enough for
a first feasibility study.

The classification results were evaluated on the basis of parameters related to the
overall classification performances (% accuracy and non-error rate—NER%).

For the micro-NIR calculations, spectra pre-treatment and classification models were
calculated exploiting self-developed routines in Matlab R2014b (The Mathworks, Natick,
MA, USA) and the Classification Toolbox from the Milano Chemometrics group [23].
Figures and plots were carried out by Statistica v7 (Statsoft Inc, Tulsa, OK, USA).

3. Results
3.1. SCiO

The acquisitions on the eye were not saved because the SCiO instrument reported
an error in the intensity of the recorded signal and, therefore, the eye was not taken
into consideration.

The first explorative analysis to evaluate the behavior of fish samples was the prin-
cipal component analysis (PCA); samples were not effectively grouped according to the
treatment applied. Subsequently, the four algorithms for data pre-treatment presented in
the app were used before the RF classification models and compared in terms of coefficient
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of variation (F1) and confusion matrix to evaluate which algorithm provided the best
classification results.

The ”F1” corresponds to the performance of the model, and “1” corresponds to the
best classification.

The best data obtained from all organs at 3 and 24 h are reported in Table 1 for the data
pre-treated by average scans and SNV. The performance of the confusion matrix obtained
by analyzing all treated and untreated organs at 3 h (Figure 1a,b) is better, F1 = 0.809 than
that obtained at 24 h, F1 = 0.733. In both confusion matrices, the skin of the treated fish was
the organ with 100% correct classification, confirming that the Cafodos modifies the fish
appearance. Subsequently the data were analyzed reducing the number of variables in the
model and analyzing the various organs separately. The classification improved, as shown
in Table 1, for all the organs at both 3 h and 24 h.

Table 1. Classification results of 2-variables analysis: treated/not treated. All values are expressed
in percentage.

Organ/Time Model F1 1 Predicted NT 2 (%) Predicted T 3 (%)

Muscle (3 h) Normalize 0.96 100 100
Muscle (24 h) Normalize 0.95 100 90

Gill (3 h) Processed and Normalize 0.94 100 100
Gill (24 h) Processed and Normalize 0.98 100 100
Skin (3 h) (log)R and Normalize 0.83 81 91

Skin (24 h) (log)R and Normalize 0.80 81 90
1 Coefficient of variation. 2 Not treated. 3 Treated with Cafodos.
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Figure 1. Confusion matrix obtained with model normalised, pre-treatments: average scans and
SNV (standard normal variate). (a) Gill (G), muscle (M), skin (S). NT0G; NT0M; NT0S: not treated;
T3G; T3M; T3S: treated and acquired post 3 h; (b) NT24G; NT24M; NT24S: not treated; T24G; T24M;
T24S: treated and acquired post 24 h. The percentage of samples correctly classified by category is
represented in green, the percentage of samples classified in an incorrect category is represented
in pink.
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3.2. MicroNIR Viavi

Figure 2 reports a MicroNIR spectrum obtained for each sample matrix, in the range
915–1670 nm. For each matrix, four spectra are reported: short-term control and treated
spectra and long-term control and treated spectra; each spectrum is the average of three
measurements recorded on the same fish. Since the study design was organized as paired
comparisons, the average spectra represented belong to one control fish and its corre-
sponding treated fish at both short- and long-term treatment. The available dataset from
MicroNIR acquisitions is reported as Supplementary Table S1.
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Figure 2. Average spectra of a control fish and its corresponding treated fish at both short- and
long-term for each matrix separately: eye (top left); gills (top right); muscle (bottom left); skin
(bottom right). Blue lines represent the short-term measurements, while red lines correspond to
long-term treatments. Solid lines represent controls, while dotted lines represent the treated samples.

PLS-DA was applied to identify the effect played by Cafodos in the short- and long-
term independently, separately for each sample matrix. Different data pre-treatments were
compared as follows: Standard normal variate (SNV), first derivative and second derivative.
All the models were calculated coupling PLS-DA to a variable selection procedure in back-
ward elimination, as described in Section 2.3. The Table 2 reports the results obtained: for
each matrix and separately for short- and long-term effects, the percentage of classification
accuracy is given both in calibration and in cross-validation, together with the number
of variables selected by the backward elimination procedure and the number of latent
variables included in the models.

Figures 3 and 4 report the score plots of the first two or three LVs calculated for the
best models obtained for each sample matrix and for both short- (Figure 3) and long-term
(Figure 4) effects.
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The reasons for the separation of the samples in the two classes can be explained in the
corresponding plots of the coefficients, reported in Figure 5 for both short- and long-term
effects and for all the sample matrices. In Figure 5, the variables are indicated on the x-axis,
while the coefficients are reported on the y-axis. For each sample matrix, the coefficients
calculated for the short-term model are reported in blue, while the coefficients calculated
for the long-term treatment are represented in red.
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Table 2. PLS-DA classification results in calibration and in cross-validation.

Sample
Matrix Effect Pre-Treatment N◦ Variables N◦ LV a Acc% cal b Acc% cv c

Eye

Short-term
Der1 86 5 100 100
Der2 86 2 100 100
SNV 86 5 97.22 97.22

Long-term
Der1 86 4 97.22 97.22
Der2 86 2 100 100
SNV 24 5 100 100

Gills

Short-term
Der1 86 4 100 100
Der2 86 2 100 100
SNV 86 5 100 97.22

Long-term
Der1 46 2 94.44 94.44
Der2 71 5 100 100
SNV 86 2 97.22 97.22

Muscle Short-term
Der1 22 4 97.22 97.22
Der2 71 5 100 100
SNV 49 3 94.44 94.44

Long-term Der1 92 5 97.22 91.67
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Table 2. Cont.

Sample
Matrix Effect Pre-Treatment N◦ Variables N◦ LV a Acc% cal b Acc% cv c

Der2 52 4 100 100
SNV 98 4 80.56 86.11

Skin

Short-term
Der1 86 4 100 100
Der2 86 5 100 97.22
SNV 23 5 91.67 88.89

Long-term
Der1 49 5 97.22 97.22
Der2 86 4 100 100
SNV 52 5 100 100

a Latent variables. b Accuracy of calibration. c Accuracy of cross-validation.

4. Discussion
4.1. SCiO

In the spectra obtained from SCiO, the most characteristic bands were associated to
the 3rd overtone of water (760 nm) and to the proteins (950 and 1020 nm), confirming that
water is the main constituent of fish.

The data analysis followed two approaches, one based on six-variable analysis and
the second on two-variable analysis. The idea was to determine in which case the best
classification was obtained. Combining all data at a given time post-treatment, the samples
were, in general, correctly classified (from 77% to 100%). The worst classification was
obtained on muscle treated with Cafodos at 24 h.

By reducing the number of variables, great improvements were achieved in the classi-
fication of the gills, which reached 100%, and also for muscle (from 90% to 100%). For the
skin, there was a slight worsening both in the treated and not treated fish.

However, in the two-variable analysis, treated and untreated for a single organ, the
tool suggests that increasing the number of samples to increase the reliability of the model.

It should be noted, however, that the raw data in this SCiO version were not exportable.
Therefore, the models obtained from this proprietary software cannot be processed with
additional chemometric approaches.

4.2. MicroNIR Viavi

Looking at the spectra reported in Figure 2, in all cases, the most prominent band was
located at ca. 1400 nm. This is related to the first overtone of the O-H group arising from
water and chemical groups bonded with water via hydrogen bonds [24,25], thus indicating
that this compound plays a major role in defining the general shape of the spectra. Even the
small band at ca. 1000 nm can be attributed to water [9,26,27], although it is always much
weaker than the previous one, but in some articles it was also correlated to the presence
of -NH2 compounds [9,28]. On the other hand, the signal between 1150 and 1200 nm is
generally attributed to the second overtone of C-H stretching in lipids [19,24,29–31]. The
appearance of this band changes significantly among the different matrices; it is particularly
well defined in the spectra recorded on muscles, whereas it is slightly weaker in the case of
eyes and gills and it is barely noticeable in those acquired on the skin. One last weak signal
arises at ca. 1330–1370 nm as a shoulder of the main water band, which could be due to
C-H combination modes [19,24,32,33].

Figure 2 also points out some differences between the control and treated spectra
at both short- and long-term exposures, with spectral regions that show an increasing or
decreasing absorption; however, the biological variability due to the fish samples often
overcomes these differences, hampering the identification of the spectral changes related to
the treatment applied. This problem can be overcome by centering the data according to
the day of analysis, so that each couple of paired fish samples is centered with respect to
its average.
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PLS-DA was, therefore, applied to identify the effect played by Cafodos in both the
short- and long-term independently. The performances of the models built for each BE-
PLS-DA model, with three different spectral pre-treatments (SNV, first derivative, second
derivative), and for the different sample matrices independently (Table 1), show that the best
results could be obtained by the second derivative, with the only exception of skin at short-
term, for which the best results were obtained with the first derivative. The best models
show the perfect classification of all the samples both in calibration and cross-validation.

The score plots of the first two or three LVs calculated for the best models, reported in
Figure 3 (for the short-term effect) and Figure 4 (for the long-term effect), show a very good
separation of the two groups of samples in all the cases. The evaluation of the reasons for
the separation of the samples in the two classes in all the investigated comparisons can be
carried out by looking at the corresponding plots of the coefficients, reported in Figure 5.
For each sample matrix and for short- and long-term separately, the positive coefficients
correspond to wavelengths with signals that, in the second derivative or first derivative
(for skin at the short-term) spectra, are more intense after treatment, while the negative
coefficients show the opposite behavior.

The plots of the coefficients show that the treatment with Cafodos plays an effect on all
the main components of the sample (lipids, proteins, etc.) since the overall spectral region
investigated is involved in the effect, i.e., shows significant positive or negative coefficients.
Moreover, it is possible to notice that, for almost all the sample matrices, the effect played
in the short-term is in part opposite to that played in the long-term: this effect can be
identified by looking at the sign of the coefficients of the original variables on the model
for the short- and long-term; a high number of variables (wavelengths) have coefficients
with opposite signs for the two exposure times. This behavior is not to be considered
unusual since the study design proposed here is intended to identify the spectral regions
involved in two different types of effects: in the short-term we compared almost fresh fish
with the Cafodos-treated counterpart (the treatment was applied for 3 h only), while in
the long-term, we compared the effect of Cafodos with what should have been the effect
of a “normal” storage in ice. In this last case, therefore, we did not compare fresh with
Cafodos-treated samples, but rather licit vs. illicit treatment.

5. Conclusions

The global trend of fish and seafood consumption is increasing annually, leading
to the emergence of several food frauds such as mislabeling and adulteration [1]. To
counter these issues, spectroscopic techniques could be utilized for the detection of different
illicit practices in food products [10,12,19]. A recent study focused on the use of Raman
spectroscopy, aimed to characterize the effects of hydrogen peroxide in fish muscle and skin
samples, confirmed the potential of these techniques as suitable field diagnostic tools [16].
Starting from the aforementioned study, this study aimed to verify further spectroscopic
methods capable of discovering similar food fraud and in a more rapid and effective way to
fill the gaps in the current available analysis technologies. By using two different handled
NIR instruments, it was possible to classify fish in control or Cafodos-treated groups in
both the short- and long-term.

Considering the practical applications, by using simple and rapid NIR devices, it is
possible to rapidly screen fish products to evaluate Cafodos treatment without extensive
and elaborate chemometric analysis. Moreover, this instrument could be used also by
non-technical personnel.

In addition, the rapidity of spectroscopic measurements and the minimal sample
pretreatment, not requiring the use of reagents, resulted in cheaper and safer workflows
that make this method promising for widespread application, potentially even directly in
the field using portable devices like those tested in the present work.
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