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Abstract: Following the advent of direct-acting antivirals (DAAs), the treatment of hepatitis C virus
(HCV) infection is now rarely challenging. However, data are still limited concerning DAA use
in patients affected by glucose-6-phosphate dehydrogenase deficiency (G6PDd). Based on these
considerations, the goal of this study was to evaluate the effectiveness and safety of DAAs in
this subpopulation. A retrospective multicenter observational study (2015–2023) was conducted
on all 2754 consecutive HCV-positive patients treated with first- and second-generation all-oral
DAAs, and with a G6PDd diagnosis confirmed by quantitative testing (n = 38). At the treating
clinician’s discretion, an enhanced clinical and laboratory follow-up was performed, generally
on a monthly basis both during treatment and up to six months after the end of it. Concerning
hematochemical parameters, no significant differences were found between any considered time
point. In all cases, no treatment-related adverse events were reported, and virologic response
rates were as expected without G6PDd. In conclusion, in a large experience which, to the best of
our knowledge, is unprecedented in the literature, the treatment of HCV hepatitis with nearly all
available DAAs in patients with G6PDd as a comorbidity—a common occurrence in countries such
as Italy—proved to be highly effective and safe.

Keywords: glucose-6-phosphate dehydrogenase deficiency; favism; anemia; hemolytic; hepatitis C
virus; direct-acting antivirals agents; pegylated interferon; ribavirin; drug-related side effects and
adverse reactions; liver cirrhosis; sofosbuvir

1. Introduction

The treatment of hepatitis C virus (HCV) infection is now rarely a challenge because
direct-acting antivirals (DAAs) are safe and effective in most patients [1–4]. This is all
the more relevant considering that there is no effective HCV vaccine yet, and reinfec-
tion continues to remain a possibility even in developed countries. However, data are
still very limited concerning DAA use in patients affected by glucose-6-phosphate de-
hydrogenase (G6PD) deficiency (d), also known as favism, (formally hemolytic anemia,
G6PD-deficient: OMIM #300908), an X-linked genetic disorder caused by mutations in
the G6PD gene which can result in acute hemolytic anemia in the presence of increased
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reactive oxygen species production. According to the estimates of the World Health Or-
ganization (WHO), 7.5% of the world population are carriers of G6PDd and 2.9% are
G6PD-deficient. Although most variants have only slightly subnormal red blood cell
survival, the Mediterranean variant—observed in Africa, Southern Europe, and several
Middle Eastern countries—renders the cells highly susceptible to oxidative stress [5–10].
Historically, previous treatment of hepatitis C with standard or pegylated (PEG) interferon
(IFN) was generally considered safe in G6PDd patients, although most studies were cen-
tered on combination therapies [which included ribavirin (RBV), in turn a well-known
factor for dose-dependent intravascular hemolysis] [11–13]. Concerning current DAA
regimens, while patients with comorbid G6PDd may have been included in registrative
trials, specific information on the efficacy and safety in these patients is not available. To
the best of our knowledge, the current literature cites only two genotype 4 children treated
with ledipasvir/sofosbuvir for 12 weeks, in which no treatment-related serious adverse
events were reported [14]. Based on these considerations, the goal of this study was to
evaluate the effectiveness and safety of HCV treatments in this special subpopulation.

2. Materials and Methods

A retrospective multicenter observational real-life study (from June 2015 to December
2023) was conducted in the liver clinics of six Italian hospitals on all consecutive HCV
mono-infected patients treated with first- and second-generation all-oral DAAs, and with
a diagnosis of G6PDd in medical history. All subjects gave written informed consent
to their participation in the research, which was conducted in strict adherence to the
principles of the Declaration of Helsinki of 1975, as revised in 2000. The study protocol was
approved by the local institutional Ethics Committee: Comitato Etico Interaziendale Novara,
https://comitatoetico.maggioreosp.novara.it/, IRB code CE34/17 113.889 (accessed on 17
July 2024). In more detail, the inclusion criteria were (a) positivity for HCV-RNA; (b) patient
age ≥ 18 years and written informed consent to participation in the study; (c) treatment with
at least one all-oral DAA regimen; (d) available medical records containing thorough clinical
and laboratory information; (e) confirmation of G6PDd with a standardized laboratory
method.

Concerning the last point, in all cases, the disease was verified with a quantitative
testing for G6PD activity (kinetic assay for the determination of glucose-6-phosphate
dehydrogenase activity in erythrocytes, code BCS180955; Sentinel Diagnostics, Milan,
Italy), using the Roche COBAS Integra 800 platform (Roche Diagnostics AG, Rotkreuz,
Switzerland) [15–19]. The claimed sensitivity and specificity of the test are 97.8 and 97.9%,
respectively. The determinations were conducted before any antiviral treatment, and
after checking that there were no current or recent hemolytic episodes and/or potential
trigger medicines, in order to minimize the risk of false positive results. Following the
manufacturer’s instructions, G6PD enzyme activity was determined by measuring the
increase in absorbance at 340 nm due to the reduction in NADP+, and then expressed
as the ratio of enzymatic activity over hemoglobin (Hb) concentration measured in the
same sample (IU/gHb). To correctly classify each sample as “normal”, “intermediate”, or
“deficient”, the obtained results were compared with the cutoffs reported in the product
data sheet, as detailed in Table S1. Briefly, values indicating deficiency in the homozygous
adult population for our laboratory were <2.71 IU/gHb in males and <2.95 IU/gHb in
females, while results up to 10.22 IU/gHb identified heterozygosity in females. IU/gHb
results were also transformed into percentages of relative enzymatic activity, as reported in
Table S2.

The test used for serum HCV-RNA detection was Alinity m HCV, which is an in vitro
pangenotypic reverse transcription–polymerase chain reaction (RT-PCR) assay for both
the detection and quantitation of HCV-RNA from HCV antibody-positive individuals,
with a claimed sensitivity of 12 IU/mL and a limit of detection (LoD) of 8.50 IU/mL
(Abbott Laboratories, Abbott Park, IL, USA). Patients who did not have a liver elastography
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(Fibroscan®) performed within six months of blood collection were recalled for testing
before starting DAA regimens.

For what concerns statistical analysis, continuous variables were expressed as medians
and interquartile ranges, and categorical variables as percentages. The Mann–Whitney,
Wilcoxon, and Kruskal–Wallis tests were used to compare continuous non-parametric
variables, as appropriate. Pearson’s chi-squared test was used to determine whether there
was a significant difference between the expected and the observed frequencies in one or
more categories. A p value of < 0.05 was considered to be significant. All analyses were
performed using Stata 18 statistical software (StataCorp LLC, College Station, TX, USA).

3. Results

For this study, 2754 HCV-positive subjects were screened. Forty-two Caucasian sub-
jects with a medical history of G6PDd were first identified. After testing for G6PD enzyme
activity, four subjects were excluded because they were not confirmed as “deficient”;
precisely, two males had a non-classifiable phenotype, one female had a heterozygous
phenotype, and one female displayed a normal phenotype. So, ultimately, 38 patients with
chronic hepatitis C were selected for this research. To note, a couple of subjects were treated
with two consecutive different lines of all-oral DAAs because of a first treatment failure
[i.e., they were administered a rescue therapy with sofosbuvir/velpatasvir/voxilaprevir
after a previous relapse to sofosbuvir/velpatasvir (n = 1) or glecaprevir/pibrentasvir
(n = 1) regimens], so that the total number of analyzed pharmacological regimens amounts
to 40. Nearly all past and currently available DAAs are represented in our study popu-
lation, with the different therapy durations according to the respective data sheets avail-
able when they were prescribed: ledipasvir/sofosbuvir (n = 5 for 12 weeks and n = 2
for 24 weeks), ombitasvir/paritaprevir/ritonavir plus dasabuvir (n = 4 for 12 weeks);
grazoprevir/elbasvir (n = 1 for 12 weeks); sofosbuvir/daclatasvir (n = 2 for 24 weeks);
sofosbuvir/velpatasvir (n = 13 for 12 weeks); glecaprevir/pibrentasvir (n = 11 for 8 weeks);
sofosbuvir/velpatasvir/voxilaprevir (n = 2 for 12 weeks, as previously reported). The main
baseline clinical, demographic, and virological characteristics of the studied population
are reported in Tables 1 and S2. Table 2 provides some additional information on all the
DAA treatments analyzed in this study, while Table S3 describes their main mechanisms of
action.

At the treating clinician’s discretion, an enhanced clinical and laboratory (including
hemoglobin, reticulocyte, and indirect bilirubin) follow-up was performed, generally on
a monthly basis both during treatment and up to six months after the end of it (Table 3).
For what concerns hematochemical parameters, no statistically significant differences
were found between baseline and any considered time point. In all cases, no treatment-
related adverse events were reported; sustained virologic response (SVR) was achieved
as normally expected in patients without G6PDd (97%, 92.5% when also considering the
two failed treatments after the first line of DAAs). One patient, who had a persistent,
mild, predominantly unconjugated hyperbilirubinemia preceding the initiation of antiviral
treatment, was then diagnosed with a concomitant Gilbert syndrome, as confirmed by the
homozygous polymorphism A(TA)7TAA in the promoter of the UDP-glucuronosyltransferase
1A1 gene.

It is worth noting that a significant proportion of the subjects included in the study
were standard or PEG IFN-experienced (29% of the total population) and, consequently,
had been exposed to weight-based RBV. Although not formally part of the aims of this
study, the medical records clearly showed that, in accordance with what has already been
widely described in the literature, the extent of hemolysis, and the consequent severe
anemia, occurred without any significant differences to the historical controls without
G6PDd. The same data also confirmed the known baseline factors associated with anemia
occurrence (such as high ribavirin dosing, presence of advanced liver fibrosis/cirrhosis,
older age, female gender, low levels of hemoglobin, concomitant renal failure). In all cases,
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the treating physicians attributed anemia to a major side effect of that combination therapy
for chronic hepatitis C, and not to favism itself.

Table 1. Baseline patient characteristics. Total number of recruited patients: 38; total number of
considered antiviral treatments: 40. Data are presented as median (range) for continuous variables
and as frequency (%) for categorical variables.

Variable Local Laboratory NR

Age, years 58 (48–68) -
Gender, n (M, F) 26 (68), 12 (32) -
HCV genotype, n (1a, 1b, 2, 3) 4 (11), 11 (29), 15 (39), 8 (21) -
HCV-RNA, ×103 IU/mL 1818 (972–2554) negative
Liver elastography, KPa 7.4 (4.8–10.3) ≤5.0
Hepatic cirrhosis, n 8 (21) -
MELD, score 8 (6–10) ≤6.0
Hemoglobin, g/L 145 (127–151) 115–157
Reticulocytes, % 1.20 (1.00–1.40) 0.50–2.17
G6PD activity (37 ◦C), IU/gHb 1.38 (0.30–1.84) -

Males, IU/gHb 1.32 (0.80–1.94) ≥9.52
Females, IU/gHb 1.37 (0.62–1.82) ≥10.22

G6PD activity (37 ◦C), % 13.86 (8.40–17.99) 100
Males, % 12.95 (7.51–20.37) 100
Females, % 13.44 (6.06–17.60) 100

AST, IU/L 36 (32–53) 0–40
ALT, IU/L 47 (24–81) 0–40
Total bilirubin, mg/dL 1.20 (0.95–2.10) 0.30–1.20
Indirect bilirubin, mg/dL 0.82 (0.45–1.60) 0.30–0.95
Creatinine, mg/dL 0.77 (0.63–0.85) 0.60–1.10
INR, Units 1.02 (0.97–1.02) 0.80–1.20
Previously treated with standard
IFN + RBV, n 3 (8) -

Previously treated with
PEG-IFN + RBV, n 8 (21) -

Administered DAA regimens, n 40 (100) -
LDV/SOF, n 1 7 (18) -
OMB/PAR/RIT + DAS 4 (10) -
GRZ/ELB 1 (3) -
SOF/DCL 2 (5) -
SOF/VEL 13 (32) -
GLE/PIB 11 (27) -
SOF/VEL/VOX 2 2 (5) -

Therapy duration, weeks 12 (12–12) -
Post-treatment virological outcome 3

SVR, n 37 (97) -
Relapse, n 1 (3) -

Abbreviations: alanine transaminase (ALT); aspartate transaminase (AST); boceprevir (BOC); dasabuvir (DAS);
daclatasvir (DCL); elbasvir (ELB); glecaprevir (GLE); glucose-6-phosphate dehydrogenase (G6PD); grazoprevir
(GRZ); hepatitis C virus (HCV); interferon (IFN); international normalized ratio (INR); international units (IU);
ratio of enzymatic activity over hemoglobin concentration measured in the same sample (IU/gHb); ledipasvir
(LDV); model for end-stage liver disease (MELD); normal range (NR); ombitasvir (OMB); paritaprevir (PAR);
pegylated (PEG); pibrentasvir (PIB); red blood cells (RBCs); ribavirin (RBV); ritonavir (RIT); sofosbuvir (SOF);
sustained virological response (SVR); TEL (telaprevir); velpatasvir (VEL); voxilaprevir (VOX). 1 in subjects with
no response to previous PEG-IFN + BOC + RBV (n = 2) or TEL + BOC + RBV (n = 5). 2 in subjects with a relapse
to previous SOF/VEL (n = 1) or GLE/PIB (n = 1) regimens. 3 not considering the two failures to the first line of
DAAs.

More interestingly, our study also included a few subjects which had previous failed a
first-generation protease inhibitor-based triple therapy (i.e., PEG-IFN + RBV plus boceprevir
or telaprevir). Again, bearing in mind that this was also not part of the formal analysis of this
research—which was centered instead on all-oral DAA regimens—no severe anemia was
reported in these individuals by the prescribing clinicians beyond that commonly expected
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for such treatments, which are notoriously burdened by some major safety issues. This
finding, though anecdotal, still deserves attention because, to the best of our knowledge, it
was never before formally described in the literature. All these patients finally obtained
SVR after a rescue therapy with sofosbuvir/ledipasvir, as detailed in Table 1.

Table 2. Main current and past DAA regimens for HCV treatment. Molecules were analyzed both
individually and in combination therapies. The column on the right shows the treatments that
were analyzed in this study on patients with G6PDd; in bold the antiviral treatments currently
recommended by most international guidelines are indicated.

Molecule NS Protein
Target Daily Dosage (mg) DAA Treatment—Recommended

Combination Regimens
Tested in This

Study 1

First-generation DAA
Protease inhibitors

BOC NS3 2400 PEG-IFN + RBV + BOC ✔ 2

TEL NS3/4A 2250 PEG-IFN + RBV + TEL ✔ 2

Second-generation DAA
NS5A polymerase

inhibitors
LDV NS5A 90 LDV/SOF ± RBV ✔

DCL NS5A 60 DCL + SOF ± RBV ✔

OMB NS5A 25 OMB/PAR/RIT + DAS ± RBV ✔

NS5B polymerase
inhibitors

DAS NS5B 500 OMB/PAR/RIT + DAS ± RBV ✔

SOF NS5B 400 PEG-IFN + RBV + SOF 3

SOF + RBV 3

Protease Inhibitors
PAR NS3/4A 150 OMB/PAR/RIT + DAS ± RBV ✔

SIM NS3/4A 150 PEG-IFN + RBV + SIM
SOF + SIM ± RBV

BMS-650032 4 NS3 200
BMS-650032 + DCL

PEG-IFN + RBV + BMS-650032 +
DCL

Third-generation DAA
NS5A polymerase

inhibitors

VEL NS5A 100 SOF/VEL ± RBV
SOF/VEL/VOX

✔

✔

PIB NS5A 120 GLE/PIB ✔

ELB NS5A 50 EBR/GZR ± RBV ✔

Protease Inhibitors
GRZ NS3/4A 100 EBR/GZR ± RBV ✔

VOX NS3/4A 100 SOF/VEL/VOX ✔

GLE NS3/4A 300 GLE/PIB ✔

Abbreviations: asunaprevir (BMS-650032); boceprevir (BOC); direct-acting antivirals (DAAs); dasabuvir (DAS);
daclatasvir (DCL); elbasvir (ELB); glecaprevir (GLE); glucose-6-phosphate dehydrogenase (G6PD); grazoprevir
(GRZ); hepatitis C virus (HCV); ledipasvir (LDV); nonstructural (NS); ombitasvir (OMB); paritaprevir (PAR);
pegylated interferon (PEG-IFN); pibrentasvir (PIB); ribavirin (RBV); ritonavir (RIT); simeprevir (SIM); sofosbuvir
(SOF); TEL (telaprevir); velpatasvir (VEL); voxilaprevir (VOX). 1 only RBV-free treatments were included in this
study. 2 indirect evidence (not part of the formal protocol analysis of this study). 3 current combination therapies
with SOF are reported in the “Third generation DAA” section, as they are commonly used in clinical practice. 4

commercialized only in Asia and Russia.
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Table 3. Hemoglobin, reticulocyte, and indirect bilirubin course during antiviral therapy. Data are
presented as median (range) for continuous variables and as frequency (%) for categorical variables.

TW4 TW8 1 TW12 2 ET FUP4 FUP12 FUP24 3

Hemoglobin,
g/L

141
(124–152)

143
(127–151)

140
(122–152)

146
(128–154)

143
(127–151)

141
(126–152)

140
(127–150)

Reticulocyte,
%

1.1
(0.9–1.4)

1.0
(1.0–1.5)

1.2
(1.1–1.5)

1.1
(1.0–1.4)

1.2
(1.1–1.3)

1.0
(1.0–1.4)

1.1
(0.9–1.4)

Indirect
bilirubin,
mg/dL

0.85
(0.49–1.65)

0.90
(0.45–1.61)

0.92
(0.51–1.62)

0.89
(0.49–1.62)

0.87
(0.47–1.59)

0.84
(0.45–1.60)

0.86
(0.44–1.63)

Abbreviations: therapy week 4 (TW4); therapy week 8 (TW8); end of treatment (ET); FUP4, post-treatment
follow-up at 4 weeks; FUP12, post-treatment follow-up at 12 weeks; FUP24, post-treatment follow-up at 24 weeks.
1 for treatments lasting more than 8 weeks. 2 for treatments lasting more than 12 weeks. 3 data available for 28/40
treatments.

4. Discussion

G6PDd, as previously reported, is a heterogeneous X-linked hereditary genetic defect
(with over 200 known pathogenic variants) which makes red blood cells highly vulnerable
to oxidative injury and, therefore, susceptible to hemolysis [20]. This defect is one of the
most common red cells enzymatic disorders, affecting 400 to 500 million people all over the
world and causing neonatal hyperbilirubinemia and chronic hemolytic anemia. Although
the majority of patients are asymptomatic, the exposure to oxidative stressors—such as
certain drugs, some food (e.g., fava beans), or infections—can trigger an acute hemolysis.
The most effective management of G6PDd is to prevent hemolysis by avoiding oxidative
stresses [21,22].

Chronic hepatitis C displays, in turn, a worldwide endemicity, affecting an estimated
71 million people across the globe, with prevalence rates varying from 0.5% to 2.5% (the
latter ones mainly in the Eastern Mediterranean and Europe) [23]. There are no published
data on the exact prevalence of G6PDd in HCV-infected subjects, but it is reasonable
to estimate that the presence of this defect in the HCV-positive subpopulation may be
comparable to the general population; said in other words, it can be assumed that at least
2 million people worldwide have the copresence of both issues.

Concerning HCV-eradicating treatments, the difficulty in G6PDd has always been to
administer drugs that do not induce hemolytic crises. Historically, the first HCV-infection
therapeutic standard of care began in 1986 in standard IFN, which was then combined with
RBV, and, after 2000, with the PEG- IFN plus RBV association. Both these treatments were
often complicated by anemia because of the well-known dose-dependent intravascular
hemolysis induced by RBV (and, to a lesser extent, also by IFN itself, which may contribute
by suppressing the production of erythroid progenitor cells in the bone marrow) [24–31].

Focusing on G6PDd subjects, no studies were conducted on the exclusive effect of
IFN monotherapy. Instead, few studies were performed on combination therapies always
focusing, however, more on the main cause of anemia, that is, as previously stated, the
hemolytic effect of RBV. What can be deduced is that there is quite a body of evidence
showing that these treatments were not harmful, in the sense that the rates of anemia
found were not significantly different from those expected in the population without this
genetic defect. However, it must be said that the results were somewhat controversial, at
least for what concerns standard IFN plus RBV, which, to the best of our knowledge, has
been tested in one single American study involving 383 patients, of whom 30 (8%) were
G6PDd and developed a more severe hemolytic anemia during the antiviral therapy [32].
In contrast, all studies are concordant regarding the association of PEG-IFN plus RBV
but, again, the results should be taken with caution because cumulatively only 56 subjects
were analyzed. Interestingly, all of this latter research originated from Italy. In a first pilot
study conducted on only four subjects, low membrane protein sulfhydrils prior to therapy,
but not G6PDd, was predictive of RBV-induced major hemolysis [11]. The results were
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confirmed in a larger group from Sardinia, an area with high prevalence of both G6PDd and
HCV infection [33,34]. More severe anemia and RBV discontinuation or dose adjustments
were not demonstrated in the 26 subjects with G6PDd (23% of the study cohort); SVR
rates were also comparable between subjects with G6PDd and without G6PDd [12]. A last
study, again carried out in Sardinia, reported similar rates of severe anemia and SVR in
the G6PDd arm (26 subjects, 38% of the studied population), confirming the possibility
of treating without additional serious consequences [13]. A possible explanation of the
discrepant results obtained in the first cited study may reside not so much in a putative
more harmful effect of standard IFN compared to PEG-IFN, but in the different studied
populations: while all the Italian research included subjects mainly with the Mediterranean
variant [i.e., NM_000402.4(G6PD):c.653C>T (p.Ser218Phe)], in the American survey most
of the population was of Afro-American or Hispanic origin, thus suggesting that patients
with other variants of enzyme deficiency may be more susceptible to the hemolytic effects
of RBV [32].

From 2011, the HCV-infection therapeutic standard of care changed thanks to the
discovery of DAAs, which were first added to the PEG-IFN plus RBV regimens. Boceprevir
and telaprevir (both protease inhibitors) were the initial DAA solutions for HCV, being
approved by FDA on 13 May and 23 May, respectively [35–38]. On November 2013,
simeprevir (SIM), another protease inhibitor, was then approved by the FDA, but it still
needed to be used in combination with PEG-IFN and RBV [39]. The real turning point
came short after in December 2013, when sofosbuvir (the first NS5B polymerase inhibitor
as well as the progenitor of the so-called second generation of DAAs) was finally approved
in combination with RBV (for genotypes 2 and 3) ± SIM (for genotypes 1 and 4)—being
the first all-oral regimens, though with still limited SVR rates—or with PEG-IFN plus RBV
(for all genotypes) [40]. Within the next two years, almost all the current armamentarium
against hepatitis C became available, with the definitive disappearance of the PEG-IFN.
The first was ledipasvir (LDV) (from October 2014), which constituted the first combined
regimen (with SOF ± RBV) in one tablet for genotypes 1, 4, 5, and 6 [41–43]. Then came
the combination ombitasvir/paritaprevir/ritonavir ± RBV for the treatment of patients
with genotype 1 (in December 2014, with the addition of dasabuvir) and 4 (from July
2015) [44]. Daclatasvir was the next, in combination with SOF ± RBV: it was the first
pangenotypic regimen (also from July 2015) [45,46]. It was followed by the combination of
elbasvir and grazoprevir ± RBV, first for patients with genotype 4 and then 1 (from January
2016); this started the third DAA generation, characterized by both high potency and a
genetic barrier to resistance. It was then the turn of the combination of SOF/velpatasvir
(VEL) ± RBV for adult patients of all genotypes (from July 2016). From here on, it is
a more recent history. A rescue therapy for those who failed a previous DAA therapy,
i.e., the combination sofosbuvir/velpatasvir/voxilaprevir, became available from July
2017. Finally, the pangenotypic combination glecaprevir/pibrentasvir was approved in
August 2017. No new drugs have been licensed since then [47–50]. Table 2 provides some
additional information on all these past and current treatments, pointing out those that
were analyzed in the present study for what concerns the subgroup of subjects with G6PDd.
As can be seen, all were analyzed, except for asunaprevir (which, however, has never
been available in Western Europe) and SIM. With regard to the first-generation protease
inhibitors (boceprevir and telaprevir), the evidence derived is only indirect, since this study
was focused on all-oral treatments, as discussed above.

What is evident from the literature is that DAAs have proven to be not only effective
but also largely safe drugs, especially since PEG-IFN and RBV could be discontinued (thus
referring to the second wave of the second generation and the entire last generation of
DAAs), including those subjects with relevant comorbidities [3,51–53] or advanced liver
disease/cirrhosis [54–56]. However, there are some recent preliminary data, mostly on
SOF ± RBV, suggesting that—at least in animal models—DAAs may also cause deleterious
effects on various metabolic pathways involved in the physiologic function of mitochondria,
the endocrine system, or immune responses [57–59]. In any case, no relevant hematological
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side effects have ever been reported in humans and, in particular, the problem of anemia—
so frequent in the pre-DAA era—has now completely disappeared. But when focusing on
individuals with G6PDd, it appears that this specific issue has never been addressed. As a
matter of fact, a search of the published medical literature was conducted regarding use of
DAAs in patients with comorbid G6PDd (also generically investigating for possible interac-
tions with drugs likely to cause hemolysis in patients with favism), and no real pertinent
information was identified. As described above, only one single abstract presented in 2018
at the Asian Pacific Association for the Study of the Liver (APASL) mentioned the use of a
SOF-based therapy (LDV/SOF) in just two Egyptian teens with G6PDd, without further
details [14]. Moreover, none of the DAA datasheets ever contained any specific mention
or warning about favism, and all the pharmaceutical companies that were contacted were
also unable to provide any indication in this respect, including post-marketing reports.

When analyzing most phase 3 clinical trials evaluating the safety and efficacy of
various DAAs, as previously cited, it appears that patients were generally excluded from
participation if they had clinically significant abnormalities other than HCV infection. This—
as is standard practice—was always based upon the results of a medical history, physical
examination, vital signs, laboratory profile, and electrocardiogram, and possibly made a
patient an unsuitable candidate for the specific study in the opinion of the investigator.
Moreover, patients with an uncontrolled cardiac, respiratory, gastrointestinal, hematologic,
neurologic, psychiatric, or other medical disease or disorder unrelated to the existing
HCV infection were also excluded from any trial participation [60–66]. In conclusion, it is
reasonable to state that—while patients with comorbid G6PDd may have been included
in some of the clinical trials for DAAs—specific information on the efficacy and safety
of DAAs in these subjects was not yet available until now and constituted an unfulfilled
scientific gap.

What clearly emerged from our research is that none of the DAAs, neither old- nor
new-generation, showed any problem of tolerability in G6PDd patients. Indeed, both their
safety profile and efficacy rate were perfectly comparable to those described in the general
population of HCV-positive subjects. Specifically, not a single case of hemolysis was found
in the study population. Moreover, DAAs were confirmed to be safe and manageable even
in the subgroup of cirrhotic patients. So, this real-life study has the merit—although well
behind the time of the marketing of these drugs—to confirm what was already known
in common clinical practice by most clinicians, namely that no special precautions or
enhanced follow-up should be undertaken in subjects with G6PDd when undergoing such
treatments. Incidentally, what might seem like a possible limitation of our research, i.e., the
fact that only subjects who had a pre-existing diagnosis of favism in their medical history
were analyzed, could actually be considered as an advantage. In fact, taking into account
what is the normal expected prevalence of G6PDd in the Caucasian population, it can be
estimated that, in our whole cohort of HCV-positive subjects (almost 3000 subjects), the
individuals affected by the disease were as high as 80, instead of the 38 actually studied [6].
And since in the entire screened population, both the drug-related problems emerging
from the analysis of all medical records and the few adverse events reported to the drug
regulatory authorities, were never related to anemia/hemolysis issues, it is reasonable to
argue that this may actually be an element that further corroborates the safety of these
treatments.

If anything, the only point that remains not formally clarified by this study is whether
populations with a higher prevalence of African American or Hispanic subjects may have
a greater susceptibility to hemolysis, as appeared to be the case for RBV, since our entire
case series involved Caucasian Italian subjects, who are therefore likely affected by the
Mediterranean-type G6PDd [32]. However, as mentioned earlier, the fact that there has
never been any report of adverse events worldwide only confirms that DAAs are safe,
regardless of mutations in the G6PD gene that may exist within specific ethnic groups.
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5. Conclusions

In a large multicenter-center experience which, to the best of our knowledge, is
unprecedented in the literature, treatment of HCV hepatitis with nearly all available
different DAA regimens in patients with G6PDd as a comorbidity—a common occurrence
in countries such as Italy—proved to be highly effective and safe.
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dehydrogenase enzymatic activity. (a) male subjects. (b) female subjects. Data of column 3 are
presented as frequency (%). Table S3: DAA molecular mechanisms of action by HCV target sites.
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