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A B S T R A C T   

Approximately 20% of breast cancers (BCs) overexpress human epidermal growth factor receptor 2 (HER2), a 
transmembrane glycoprotein with tyrosine kinase activity, encoded by ERBB2 gene. Historically, HER2 over-
expression has been linked with increased disease recurrence and a worse prognosis. However, the increasing 
availability of different anti-HER2 compounds and combinations is progressively improving HER2-positive BC 
outcome, thus requiring expertise to prioritize both overall survival (OS) prolongation and quality of life, without 
neglecting the accessibility to further treatment lines with a low attrition rate. In this context, tucatinib, an oral 
tyrosine kinase inhibitor, has recently been granted approval by regulatory agencies based on evidence from the 
HER2CLIMB, a clinical trial which randomized patients with metastatic BC to receive trastuzumab and capeci-
tabine with either tucatinib or placebo. A distinctive feature of this study was the inclusion of patients with new 
or active brain metastases (BMs) at study entry, a population traditionally excluded from clinical trials. Thus, 
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HER2CLIMB provides the first solid evidence of an OS benefit in patients with BC and BMs, addressing a long 
standing unmet medical need, especially given the high incidence of central nervous system metastatic spread in 
patients with HER2-positive disease. 

This review provides an overview of the molecular and clinical landscape of tucatinib for the treatment of 
advanced BC. It focuses on the technological journey that drove the development of this therapeutic innovation, 
from preclinical data to clinical practice.   

Introduction 

Metastatic breast cancer (BC) is the second most common cancer 
after lung cancer, associated with the development of brain metastases 
(BMs) [1]. As cancer research breakthroughs considerably improved 
survival of patients with advanced BC in the last decades, the incidence 
of BMs has also increased accordingly (Fig. 1) [2]. Hence, new treatment 
options and therapeutic strategies are needed to ensure a survival 
advantage for patients with BMs. However, data about the efficacy of 
anti-cancer agents on BMs are limited. This is primarily due to the 
scarcity of human tissue samples from BMs for translational research 
purposes [1]. Consequently, acquiring comprehensive information on 
the ability of anti-cancer agents to penetrate the central nervous system 
(CNS) is challenging [1]. 

In April 2020, the Food and Drug Administration (FDA) approved the 
anti-human epidermal growth factor receptor 2 (HER2) tyrosine kinase 
inhibitor (TKI) tucatinib (Tukysa) in combination with trastuzumab and 
capecitabine for the treatment of adult patients with advanced unre-
sectable or metastatic HER2-positive BC, including patients with BMs, 
who have received one or more prior anti-HER2-based regimens in the 
metastatic setting [3]. In December of the same year, the European 
Medicines Agency’s (EMA) Committee for Medicinal Products for 
Human Use for Human Use (CHMP) issued a positive opinion, recom-
mending the granting of a marketing authorization for Tukysa in com-
bination with trastuzumab and capecitabine, in patients who have 
received at least 2 prior anti-HER2 regimens [4,5]. The regulatory rec-
ommendations are based on data from the HER2CLIMB trial, which 

randomized patients with metastatic BC to receive trastuzumab and 
capecitabine with either tucatinib or placebo. Tucatinib showed efficacy 
compared with placebo in terms of both progression-free survival (PFS) 
and overall survival (OS) [6]. 

Among the 612 patients originally enrolled in the HER2CLIMB trial, 
291 had BMs at baseline [6]. Notably, a distinctive feature of the trial 
was that 60% of these participants had new or active BMs at study entry, 
defined as either new lesions or untreated lesions at baseline, or previ-
ously treated but progressing lesions (Fig. 1) [6]. Since these patients 
have hardly ever been included in clinical trials, HER2CLIMB represents 
the first study displaying an OS benefit in patients with BC and active 
BMs [5]. Because at least half of patients with HER2-positive metastatic 
BC develop BMs over the course of their disease, the OS benefit observed 
meets a critical medical need [5]. 

This review provides an overview of the molecular and clinical 
landscape of tucatinib for the treatment of advanced BC. Special 
emphasis is put on the technological advancements that drove the 
development of this therapeutic innovation, encompassing the journey 
from preclinical data to clinical practice. 

Role of HER2 as a predictive biomarker for treatment allocation 
in breast cancer 

Approximately 20% of BCs overexpresses HER2, a transmembrane 
glycoprotein with tyrosine kinase activity, encoded by ERBB2 gene [2]. 
Historically, the overexpression of this receptor has been linked with an 
increased risk of disease recurrence and an overall worse prognosis [2]. 

Fig. 1. Different types of CNS metastases. CNS metastases tend to show predilection for localizing at the white–gray matter junction due to the proximity of this 
region to the vascular border zones. In the context of treatment purposes, CNS metastases are classified into different categories. “Active” metastases, refer to either 
new (i.e., untreated) lesions or progressive metastases that have not been subjected to CNS-directed therapy since their documented progression. On the other hand, 
“stable” metastases are lesions that have received prior CNS-directed therapy, without further progression. Additionally, CNS metastases can also involve the lep-
tomeningeal space. In such cases, leptomeningeal disease is confirmed with either positive cerebrospinal fluid cytology or with unequivocal radiologic or clinical 
evidence of leptomeningeal involvement. Abbreviations: BM, brain metastasis; CNS, central nervous system. Created with biorender.com (2023). 

C. Criscitiello et al.                                                                                                                                                                                                                             

http://biorender.com


Cancer Treatment Reviews 120 (2023) 102618

3

According to the 2018 American Society of Clinical Oncology (ASCO) 
and College of American Pathologist (CAP) HER2 testing guidelines, 
HER2-positive BC is defined by HER2 overexpression (score 3+ ) on an 
immunohistochemistry (IHC) assay and/or gene amplification on an in 
situ hybridization (ISH) assay [7]. Such a high level of HER2 over-
expression is a strong predictive factor for sensitivity to HER2-targeted 
agents, and these criteria should be used to identify patients who are 
suitable candidates for treatment with these drugs. Conversely, a HER2 
IHC score of 0, 1+ or 2+ and negative ISH results currently define a BC 
as HER2-negative, and, in such cases, anti-HER2 therapy is not recom-
mended [2]. As a matter of fact, when HER2 inhibition with adjuvant 
trastuzumab was investigated in high-risk BC that was negative for 
HER2 by ISH and with IHC score of 1+ or 2+, it failed to provide any 
clinical benefit [8]. Furthermore, HER2 intra-tumor heterogeneity has 
been widely described in BCs, being a potentially adverse contributor to 
biomarker evaluation and treatments response [9–11]. According to the 
CAP, HER2 heterogeneity exists if HER2 is amplified in >5 % and <50 % 
of infiltrating tumor cells [12]. Regrettably, the actual incidence of 
HER2 spatial heterogeneity in BCs is still a subject of controversy among 
pathologists, with some authors arguing that it is an exceedingly rare 
event, and others suggesting that up to 40% of cases are HER2- 
heterogeneous (Fig. 2) [13–16]. Finally, recent advances in the devel-
opment of antibody-drug conjugates (ADCs) further challenged the 

notion of predictive biomarker [17,18]. In fact, while traditional tar-
geted therapies (i.e., monoclonal antibodies or small molecules) typi-
cally interfere with a specific biological mechanism needed for tumor 
growth, the target antigen exploited by ADCs does not necessarily have 
to play a role as main oncogenic driver [18]. In such perspective, the 
ADC fam-trastuzumab deruxtecan-nxki (T-DXd) documented activity 
and efficacy even in BC harboring HER2 IHC score of 1+ or 2+ and ISH- 
negative, thus paving the way for a remodulation of HER2-related 
nomenclature [19]. Therefore, only a HER2 IHC score of 0, and/or 
negative ISH test would define a BC as HER2-negative, while cases with 
HER2 IHC score of 1+ or 2+ and ISH-negative would be referred to as 
“HER2-low” [19]. This emerging biomarker includes distinct subtypes, 
such as hormone receptor (HR)-positive BCs, as well as triple negative 
BCs (TNBCs) [19]. Although initial attempts to define clinicopathologic 
characteristics specific to HER2-low BC have led to differing results, 
after accounting for possible confounding factors, such as HR expres-
sion, there were not statistically significant differences between HER2- 
low and HER2 IHC score 0 tumors in recurrence-free survival (RFS), 
pathological complete response (pCR), OS, and PAM50 subtypes 
[20–24]. 

Fig. 2. HER2-positive breast cancer: a lot of different diseases. HER2-positive breast cancer can be defined as a composite group of diseases, that may differ 
based on intra-tumor heterogeneity, amount of HER2 mRNA, ERBB2 gene copy number, gene expression profile, co-expression of hormone receptors, specific gene 
mutations and features of the tumor microenvironment. All these aspects may contribute to the determination of disease prognosis and either sensitivity or resistance 
to systemic therapies. Abbreviations: BC, breast cancer; BRCA, breast cancer gene; ERα, estrogen receptor alpha; HER2, human epidermal growth factor receptor 2; 
PD-L1, programmed death-ligand 1; PIK3CA, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha; mRNA, messenger RNA; TILs, tumor- 
infiltrating lymphocytes; TME, tumor microenvironment. Created with biorender.com (2023). 
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Clinical management of HER2-positive metastatic breast cancer 

Although there is no unique strategy to treat patients with HER2- 
positive metastatic BC, patient selection and drug sequencing remain 
keys to management [2]. In fact, the increasing availability of different 
anti-HER2 compounds and combinations requires expertise to prioritize 
both OS prolongation and quality of life, without neglecting access to 
further treatment lines with a low attrition rate [2]. 

For previously untreated patients, combination treatment with 
trastuzumab, pertuzumab and a taxane (docetaxel or paclitaxel) remains 
standard of care, regardless of HR status (Fig. 3) [2,25]. Adding pertu-
zumab to docetaxel and trastuzumab increased median PFS by > 6 

months (18.5 versus 12.4 months, with and without pertuzumab, 
respectively, HR 0.62, 95% CI, 0.51–0.75; P < 0.001) [25]. At a median 
follow-up of > 8 years, a 16.3-month improvement in median OS (HR 
0.69; 95% CI 0.58–0.82 months) was observed [2]. For patients who 
progress on HER2-directed therapy, data from DESTINY-Breast-03 
clinical trial indicate that T-DXd is associated with a significantly 
improved PFS (HR, 0.33; P < 0.000001), compared with the previous 
gold standard second-line therapy trastuzumab emtansine (T-DM1) 
[2,26]. The 12-month PFS rate was 75.8% with T-DXd versus 34.1% 
with T-DM1, and an OS benefit was also observed (HR 0.64; P = 0.0037) 
[26,27]. Drug-related interstitial lung disease (ILD) of any grade 
occurred in 15.2% of patients (0.8% grade 3), without fatal events 

Fig. 3. Proposed algorithm for management of HER2-positive metastatic breast cancer. In third line setting, the combination of tucatinib, capecitabine and tras-
tuzumab appears to be the most active treatment option, beside T-DXd and T-DM1. Specifically for patients with active BMs, considering tucatinib-containing 
combination treatment in second line setting is justified due to the demonstrated benefit in PFS and OS in this population, as shown in the randomized HER2-
CLIMB clinical trial (see paragraph 4) [6]. As for T-DXd, data on intracranial activity are accumulating. The phase 3 Destiny-Breast03 clinical trial compared T-DM1 
versus T-DXd in patients with HER2-positive metastatic BC who had experienced progression on a trastuzumab- and taxane-containing regimen [27]. Patients with 
CNS involvement were eligible if they had clinically stable, previously treated BMs. Among the 114 patients with stable BMs, the hazard ratio for disease progression 
or death was 0.38, favoring T-DXd (95 % CI 0.23–0.64). Interestingly, in the phase 2 DEBBRAH trial, which included 13 patients with advanced HER2-positive BC 
and either asymptomatic untreated BMs or progressing BMs after local therapy, T-DXd was associated with an intracranial response rate of 46% [43]. Moreover, 
updated results of the same trial presented at the San Antonio Breast Cancer Symposium 2022 documented first preliminary hints of activity also in the small HER2- 
low population of patients with active BMs (N = 12, ORR-intracranial (IC) 6/12, 50%). Abbreviations: ADC, antibody-drug conjugate; AI, aromatase inhibitor; BC, 
breast cancer; BMs, brain metastases; CNS, central nervous system; HER2, human epidermal growth factor receptor; HR, hormone receptor; IC, intracranial; mBC, 
metastatic breast cancer; ORR, overall response rate; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. Created with biorender.com (2023). 
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[2,27]. On May 4th 2022, the FDA approved T-DXd for patients with 
HER2-positive unresectable or metastatic BC who have received a prior 
anti-HER2-based regimen either in the metastatic setting, or in the 
neoadjuvant or adjuvant setting and have developed disease recurrence 
during or within 6 months of completing therapy [28]. Similarly, on 
June 23rd 2022, the EMA extended marketing authorization for T-DXd 
to the second-line setting [29–31]. 

Henceforth, whilst the clinical scenario for the first and second 
treatment lines may be distinctly outlined, a consensus is yet to be 
reached in respect to further lines of therapy. This is due to the lack of 
current clinical data regarding therapies that can be used beyond pro-
gression on T-DXd [32]. Therefore, in such circumstances, decision- 
making should be guided by patient- and disease-related factors, 
including overall tolerability, clinical benefit of prior therapies, disease 
burden, and CNS involvement (later discussed). 

Based on previous experience with trastuzumab, which has demon-
strated clinical efficacy and prolonged survival in the second- and third- 
line settings by maintaining HER2 blockade beyond progression, it is 
advisable to maintain HER2-blockade after T-DXd failure [33–35]. 
Given the lack of comprehensive data on resistance mechanisms, it is 
advisable to conduct a tumor re-biopsy after T-DXd failure. This 
approach will facilitate treatment decision-making and enable optimal 
referral of patients to clinical trials that focus on addressing progression 
on ADC-based therapies [32,36]. Real-world data on the activity and 
effectiveness of these treatments following T-DXd failure could further 
assist in identifying the most effective compounds, as seen with T-DM1 
in pertuzumab pre-treated patients [37]. 

That being said, the preferred treatment option following progres-
sion on T-DXd may be tucatinib-capecitabine-trastuzumab (Fig. 3) [6]. 
In this regard, the HER2CLIMB clinical trial, which included 480 heavily 
pretreated patients with HER2-positive BC (primary endpoint; total 
population, 612 patients), was conducted in patients who had previ-
ously received trastuzumab and T-DM1. The 1-year PFS rate was 33% 
among patients in the experimental arm, versus 12% among those 
receiving placebo-capecitabine-trastuzumab (HR 0.54, 95% CI 
0.42–0.71), and the median duration of PFS was 7.8 and 5.6 months, 
respectively. OS at two years was 45% in the tucatinib-combination 
group and 27% in the placebo-combination group (HR 0.66, 95% CI 
0.50–0.88). Nonetheless, the observed PFS and OS benefits in patients 
with either active or stable BMs (HRs, 0.32 and 0.58, respectively) 
warrant consideration of its second-line use for selected patients (Fig. 3, 
later discussed) [2]. T-DM1 may be offered upon progression on 
tucatinib-containing combination, as its FDA approval was based on the 
results of the phase 3 EMILIA trial. Although T-DM1 prolonged median 
OS (from 25.9 to 29.9 months; HR 0.75; 95 % CI, 0.64–0.88) and median 
PFS, the ADC was compared to lapatinib-capecitabine in the pre-T-DXd 
era [30]. 

For later treatment lines, several options are available, although no 
direct evidence supports an optimal treatment sequence [2]. Marge-
tuximab, an Fc-engineered antibody derivative of trastuzumab, was 
evaluated in the phase 3 SOPHIA trial, which randomised patients who 
had received ≥ 2 prior lines of anti-HER2 therapy to receive marge-
tuximab plus chemotherapy versus trastuzumab plus chemotherapy. 
PFS was improved with margetuximab (5.8 versus 4.9 months; HR 0.76, 
95% CI 0.59–0.98; P = 0.03), with no significant OS improvement [38]. 
Neratinib and lapatinib, both TKIs, have been investigated in combi-
nation with capecitabine and are suitable later-line options for patients 
who are still eligible for chemotherapy. Neratinib, an irreversible pan- 
HER TKI, has received FDA approval for its use in combination with 
capecitabine after two or more anti-HER2 regimens in the metastatic 
setting, based on data from the NALA clinical trial. In this phase 3 study, 
which involved 621 patients with advanced HER2-positive BC who had 
received at least two prior anti-HER2-based regimens in the metastatic 
setting, the combination of neratinib and capecitabine resulted in an 
improved median PFS of 8.8 months compared to 6.6 months for lapa-
tinib plus capecitabine (HR 0.76, 95% CI 0.63–0.93). However, there 

was no significant difference in median OS (24 versus 22 months; HR 
0.88, 95% CI 0.72–1.07), and substantial toxicity was observed [39]. 
Indeed, diarrhea was the most common adverse event, with grade ≥ 3 
events occurring more frequently in patients receiving neratinib with 
capecitabine (24%) than in those receiving lapatinib with capecitabine 
(13%). Lapatinib plus capecitabine is another option, especially for 
patients who prefer an orally administered regimen and do not tolerate 
neratinib. In a phase 3 trial involving 399 patients who were randomly 
assigned to receive lapatinib plus capecitabine or capecitabine alone, 
the treatment was shown to have a systemic benefit [40]. Combination 
treatment showed a significant benefit in median time to tumor pro-
gression (6 vs 4 months; HR 0.57, 95% CI 0.43–0.77; P < 0.001) 
compared to capecitabine monotherapy, with a trend towards 
improvement in median OS (75 vs 65 weeks; HR 0.78, 95% CI 
0.55–1.12, P = 0.177), which was not statistically significant [40]. 
Although the phase 3 randomized CEREBEL clinical trial, which ran-
domized 540 patients with metastatic BC without evidence of BM to 
receive capecitabine plus either lapatinib or trastuzumab was designed 
to investigate incidence of CNS metastases as first site of relapse (pri-
mary endpoint), the study showed that median PFS and OS were longer 
with trastuzumab-capecitabine compared with lapatinib-capecitabine 
(HR for PFS, 1.30; 95% CI, 1.04–1.64; HR for OS, 1.34; 95% CI, 
0.95–1.64) [41]. Finally, in TKI-naive patients, lapatinib-trastuzumab 
improves PFS (HR 0.73; P = 0.008) with a trend towards improved OS 
(HR 0.75; P = 0.106) compared with lapatinib alone [42]. 

Tucatinib expands options for HER2-positive metastatic breast 
cancer 

Tucatinib is an oral reversible TKI highly selective for the kinase 
domain of HER2, with minimal inhibition of epidermal growth factor 
receptor (Table 1) [5]. During its preclinical characterization and in the 
early-phase clinical settings, tucatinib has demonstrated efficient brain 
penetration [44,45]. A strong biological rationale supports its use in 
combination with other anti-HER2 compounds, as tucatinib displayed 
synergistic activity when combined with either trastuzumab or T-DM1, 
in preclinical models [44]. Moreover, as trastuzumab may contribute to 
innate and adaptive immune system engagement, tucatinib may provide 
further synergistic effect for enhancing this activity [46]. 

In the phase 1b clinical trial testing the combination of tucatinib, 
trastuzumab and capecitabine, 60 patients were enrolled and treated 
[47]. The tucatinib recommended phase 2 dose was determined to be 
300 mg orally twice a day, equivalent to single-agent maximum toler-
ated dose. Pharmacokinetic analysis showed that there was no drug- 
drug interaction with capecitabine, with an overall good safety profile. 
In HER2CLIMB, tucatinib demonstrated efficacy compared with placebo 
in PFS (7.8 months versus 5.6 months; HR: 0.54, 95% CI: 0.42–0.71, p <
0.001) and OS (21.9 months versus 17.4 months; HR: 0.66, 95% CI: 
0.50–0.87, p = 0.0048) in patients pre-treated with both dual blockade 
and T-DM1 [6]. Of note, risk of developing new CNS lesions was reduced 
by 48% in all patients with or without BMs in the tucatinib-combination 
arm (HR 0.52; 95% CI 0.33–0.82), with a prolonged time to develop-
ment of new BMs or death as compared with the placebo-combination 
group (median new BMs-free survival, not reached versus 11.7 
months) [48]. Active BMs did not represent an exclusion criterion, un-
less immediate management was needed, in which case enrolment was 
permitted after local intervention [6]. Indeed, patients with either active 
or a history of CNS metastases (N = 291) accounted for 48% (N = 198, 
tucatinib arm) and 46% (N = 93, control arm) of the study population, 
with median duration of PFS of 7.6 months (95% CI: 6.2–9.5) and 5.4 
months (95% CI: 4.1–5.7) for the experimental and control arm, 
respectively [6]. An exploratory analysis focusing on the BM endpoints 
in these 291 patients showed improved intracranial PFS by the addition 
of tucatinib (9.9 months versus 4.2 months, p < 0.0001; HR: 0.48, 95% 
CI: 0.34–0.69, p < 0.00001) and OS (18.1 months versus 12 months, p =
0.005; OS HR, 0.58; 95% CI: 0.40–0.85; p = 0.005) [6]. Intracranial 
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objective response rate (ORR) was also improved among the 75 patients 
with active BMs and measurable intracranial disease at baseline (47.3% 
versus 20%, p = 0.03), with a 1-year intracranial PFS of 35% versus 0% 
in the experimental arm and in the control arm, respectively [6]. A 
recent update focusing on patients with CNS involvement, confirmed the 
OS advantage for the tucatinib-including combination (21.6 months in 
the tucatinib-combination group, 95% CI, 18.1–28.5, versus 12.5 
months in the placebo-combination group, 95% CI, 11.2–16.9), while 
reducing the risk of developing new brain lesions as the site of first 
progression or death (45.1% reduction in the tucatinib-combination 
group versus the placebo-combination group, HR 0.55, 95% CI, 
0.36–0.85), thus further supporting the clinical relevance of this treat-
ment option for patients with HER2-positive metastatic BC, including 
those with BMs [49]. Finally, as thirty patients (21, tucatinib arm; 9, 
control arm) who experienced isolated progression in the brain and 
underwent local therapy continued study-assigned treatment, second 
progression could be assessed [50]. In these patients, median time from 
random assignment to second progression (brain or body) or death was 
15.9 months (95% CI, 11.7–28.2 months) in the tucatinib arm and 9.7 
months (95% CI, 4.9–12.0 months) in the control arm (HR, 0.29; 95% CI, 
0.11–0.77; P = 0.009). Median time from progression in the brain to 
second progression (brain or body) or death in these patients was 7.6 
months (95% CI, 3.9–11.3 months) in the tucatinib arm versus 3.1 
months (95% CI, 1.2–4.1 months) in the control arm (HR, 0.33; 95% CI, 
0.13–0.85; P = 0.02) [50]. 

As for the safety profile, the most common adverse events in the 
tucatinib arm were diarrhea (any grade: 80% versus 53% in the control 

arm; grade ≥ 3 diarrhea: 12.9% versus 8.6% in the control arm), palmar- 
plantar erythrodysesthesia syndrome, fatigue, nausea, and vomiting. 
Patients in the tucatinib arm experienced a higher rate of transaminitis, 
even though typically low-grade, transient, and reversible. Consistently, 
Health-Related Quality of Life (HRQoL) was maintained throughout 
treatment and was not different between treatment arms. So, the 
HER2CLIMB clinical trial provides the highest level of evidence 
regarding medical treatment of patients with HER2-positive BC with 
CNS disease, because of its randomized design, the inclusion of in-
dividuals with active BMs, as well as the presence of a specific BM 
endpoint [1]. To summarize, the combination therapy of tucatinib, 
capecitabine, and trastuzumab is one of the most effective treatment 
options for third-line management, alongside T-DXd and T-DM1. For 
patients with active BMs, the tucatinib-containing combination regimen 
should be considered as a second-line option based on the demonstrated 
PFS and OS benefits in this patient population (Fig. 3). [6,50]. 

Targeting BMs in HER2-positive metastatic breast cancer 

Although current guidelines for metastatic BC do not support routine 
BM screening, recent advancements, especially in treatment choices for 
HER2-positive BC with BMs, are paving the way for a higher probability 
of clinical benefit from early interventions [51]. Therefore, ongoing 
clinical trials are investigating the role of brain monitoring, especially 
for HER2-positive and TNBC subtypes (NCT04030507, NCT03617341, 
NCT03881605) (Fig. 4) [1]. 

To date, surgery and stereotactic radiosurgery (SRS) remain the 
mainstays of treatment of BMs from BC [1]. Individuals who benefit the 
most from aggressive local treatment are those with a long survival 
expectancy [55]. SRS is defined as the delivery of high doses of radiation 
via stereotactic or image guidance with ~ 1 mm targeting accuracy to 
intracranial targets, and it is usually administered as single fraction with 
doses ranging between 15 and 24 Gy [51]. Fractionated SRS, typically 
delivered with 27 Gy in three fractions or 30 Gy in five fractions, is 
preferred in patients with larger lesions (>3 cm diameter) or for lesions 
located in proximity of structures at risk, or in case of re-irradiation 
[56]. The approach to patients with multiple BMs has evolved over 
the last decade, as SRS has become more widely available. A recent large 
multi-institutional prospective observational study supports its use in 
the initial management also for patients with 5–10 lesions from different 
primary tumors, with comparable survival outcomes to patients with 
2–4 BMs and room for use also in case of ≥ 10 BMs [57,58]. Treatment- 
related toxicity was low, with neurocognitive function assessed by the 
mini-mental state examination being similar between groups when cu-
mulative tumour volume was < 15 ml [59]. Furthermore, SRS has 
demonstrated sustained local control rates when used either as primary 
or salvage treatment for BMs specifically from BC [60,61]. Considering 
the high local recurrence rates after neurosurgical resection alone, two 
randomized clinical trials evaluated SRS to surgical cavity and demon-
strated no difference in OS with a lower decline in neurocognitive 
function in respect to whole brain radiotherapy (WBRT) [62,63]. 
Consequently, WBRT currently represents an alternative especially for 
symptomatic patients who are not eligible for either surgery or SRS (e.g., 
high number of BMs, multiple bulky lesions), being associated with a 
more frequent cognitive decline without an OS benefit [1,62,64]. 

Systemic anti-HER2 treatment should be considered to delay WBRT 
in HER2-positive BC patients with asymptomatic or oligosymptomatic 
BMs [1,2]. In this context, if no adjuvant HER2-directed approaches 
have historically demonstrated a role in prevention or at least post-
ponement of BMs, the role of systemic therapy at least in patients with 
metastatic HER2-positive BC is rapidly changing [51,65–69]. Indeed, as 
previously discussed, tucatinib has demonstrated not only to delay the 
onset of new BMs, in pretreated patients with metastatic BC, but also the 
ability to prolong time to second progression (brain or body) after iso-
lated and locally-treated CNS progression followed by continued study- 
assigned treatment [48–50]. However, as per current clinical practice, 

Table 1 
Clinical features and chemical properties of tucatinib. *Information about CNS 
penetration is based on a whole-body physiologically based pharmacokinetic 
(PBPK) model integrated with a 4-compartment permeability-limited brain 
model developed and verified for predicting tucatinib concentration–time pro-
files in the plasma, cerebrospinal fluid, brain and brain tumors. Abbreviations: 
AEs, adverse events; ALP, alkaline phosphatase; ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; CL, clearance; CNS, central nervous system; 
Css,ave, Classification System steady-state average concentration; EGFR, 
epidermal growth factor receptor; HER2, human epidermal growth factor re-
ceptor 2; IC50, half maximal inhibitory concentration; Kp,uu, unbound brain-to- 
unbound plasma concentration ratio; MoA, Mechanism of Action; N, nitrogen; 
Papp, passive permeability; PD, Pharmacodynamics; PK, Pharmacokinetics; 
TER, target engagement ratio; TKI, tyrosine kinase inhibitor; Vd, volume of 
distribution; ↑, increased. Adapted from Corti et al 2022. [5,6,45].  

Chemical name N6-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-N4-[3-methyl-4- 
([1,2,4]triazolo[1,5-a]pyridin-7-yloxy)phenyl]quinazoline-4,6- 
diamine 

Alternative 
names 

ONT-380, ARRY-380, irbinitinib, 937263-43-9, Tukysa (trade 
name) 

Class Small molecule, TKI 
MoA Highly selective for the kinase domain of HER2, minimal 

inhibition of EGFR. Prevention of signal transduction pathways, 
resulting in growth inhibition and cell death. 

Route Oral administration 
PD HER2 IC50 6.9 nmol/L, EGFR IC50 449 nmol/L 

Note: Decrease toxicity avoiding targeting EGFR which is mostly 
associated with the increase of gastro-intestinal and 
dermatological toxicity 
Neratinib: HER2 IC50 5.6 nmol/L, EGFR IC50 1.8 nmol/L 
Lapatinib: HER2 IC50 109 nmol/L, EGFR IC50 48 nmol/L 

PK Vd ≈ 1670 L, plasma protein binding 97%, CL 148 L/h, half-life 
≈ 8.5 hCNS penetration*: high passive permeability  
(Papp, 12.6 × 10− 6 cm/s). 
Normal brain: Css,ave = 5.37 ng/mL (TER, 1.6), (Kp,uu) 0.47. 
Brain tumors: Css,ave 15.6 ng/mL (TER, 4.7), Kp,uu = 1.37 (↑ drug 
penetration). 

AEs Common: diarrhea, palmar-plantar erythrodysesthesia 
syndrome, anemia, decreased phosphate, nausea. 
Sporadic: hepatotoxicity (↑ALT, ↑AST, ↑ALP, ↑ bilirubin), 
vomiting, stomatitis, decreased appetite, rash, renal impairment 
(increased creatinine, decreased magnesium, potassium, or 
sodium).  
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upfront systemic anti-HER2 treatment could be considered for mini-
mally symptomatic patients, presenting with a limited number of lesions 
[66]. Also, systemic therapy can be suggested in case of further CNS 
progression despite prior local therapy [52,66]. In case of BMs without 
evidence of extracranial disease, there is a lack of well-conducted pro-
spective studies to support the choice of a systemic approach in addition 
to local therapy [1]. Hence, local treatment with surgery and/or 
radiotherapy (RT) may be proposed as first step. Even though CLEO-
PATRA did not include patients with BMs at diagnosis, in the specific 
subgroup analysis focused on patients who developed CNS disease, 
median time to develop BMs was increased from 12 to 15 months with 
the addition of pertuzumab to trastuzumab and docetaxel [70]. 

Therefore, despite acknowledging the lack of prospective data to 
determine the efficacy of this approach in radically resected brain-only 
metastatic disease, trastuzumab monotherapy or trastuzumab- 
pertuzumab therapy may be considered for this subset of HER2- 
positive patients. Conversely, HER2 TKIs plus capecitabine are not 
administered in this setting outside clinical trials due to the potential for 
treatment-related toxicities without clear evidence of clinical benefit 
[51]. 

In case of stable extracranial disease and CNS progression manage-
able with stereotactic RT, local treatment should be offered, continuing 
systemic treatment with the same anti-HER2 agent, in absence of solid 
prospective evidence [1,25,66]. Only chemotherapy should be held and 
resumed 1–2 weeks after completion of RT [66]. If BMs develop over a 
short period of time, a switch of systemic therapy should be carefully 
considered [1,51]. In this regard, second-line therapy should take into 
account the results of DESTINY-Breast-03 clinical trial (Fig. 3) [27]. 
Indeed, the significant PFS benefit associated with T-DXd treatment was 
observed across all predefined subgroups, including those defined by 
presence of visceral disease or BMs [27]. Specifically, among the 114 
patients with stable BMs, the hazard ratio for disease progression or 
death was 0.38, favoring T-DXd (95% CI, 0.23–0.64) [1,27]. More 

directly relevant results emerged from the phase 2 TUXEDO-1 trial, 
which enrolled patients with HER2-positive BC either with newly 
diagnosed BMs or with BMs showing radiological progression after prior 
local therapy and/or prior exposure to trastuzumab and pertuzumab and 
without indication for immediate local therapy. Of 15 patients enrolled 
in the intention-to-treat population, 2 (13.3%) participants showed a 
complete intracranial response, 9 (60%) had a partial intracranial 
response, 3 (20%) had stable disease as the best intracranial response, 
and an overall intracranial response rate of 73.3% (95% CI, 48.1–89.1) 
was observed (primary endpoint), with median PFS of 4 months [71]. Of 
note, in the recently presented phase 2 clinical trial DEBBRAH, which 
included 13 patients with advanced HER2-positive BC and either 
asymptomatic untreated BMs or progressive BMs after local therapy, T- 
DXd was associated with an intracranial response rate of 46% [43]. 
Although limited, these data add to accumulating evidence supporting 
T-DXd in patients whose BMs have progressed despite prior local ther-
apy. Moreover, updated results of the same trial presented at the San 
Antonio Breast Cancer Symposium 2022 documented first preliminary 
hints of activity also in the small HER2-low population of patients with 
active BMs (N = 12, ORR-IC 6/12, 50%). 

Until recently, T-DM1 was the gold standard second-line therapy for 
HER2-positive metastatic BC, based on consistent PFS and OS benefit 
observed in EMILIA and TH3RESA clinical trials [30,31]. In such 
context, an exploratory retrospective analysis of the EMILIA study, 
which investigated T-DM1 in metastatic HER2-positive BC patients 
previously treated with trastuzumab and a taxane, included 95 patients 
with asymptomatic BMs [72]. OS appeared improved in patients treated 
with T-DM1 (N = 45) compared to those receiving lapatinib and cape-
citabine (N = 50) (median OS, 26.8 months versus 12.9 months) [72]. 
Consistently, the subgroup analysis of 398 patients with metastatic BC 
and CNS disease, 126 of which with measurable BMs, included in the 
phase 3b single-arm KAMILLA clinical trial which investigated T-DM1 in 
pretreated HER2-positive advanced BC, confirmed an ORR of 21%, an 

Fig. 4. Evidence in favor and against the routinary screening for development of BMs in patients with HER2-positive metastatic BC. Abbreviations: BC, breast cancer; 
BMs, brain metastases; CNS, central nervous system; HER2, human epidermal growth factor receptor 2; MRI, magnetic resonance imaging; [52–54]. Created with 
biorender.com (2023). 
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intracranial response rate of 43%, a median PFS of 6 months and a 
median OS of 19 months [35]. To summarize, T-DM1 appears to have 
some activity in the context of BMs, with PFS around 5–7 months, 
although OS remains significantly inferior compared to patients without 
intracranial disease [73]. 

As for later treatment lines, some TKIs are commonly considered for 
the treatment of HER2-positive metastatic BC that has spread to the CNS, 
due to their ability to cross the blood–brain barrier (BBB) [1,51]. 
Lapatinib was first demonstrated to cross the BBB in 2015, with a con-
centration in BMs from BC ranges from 1.0 to 6.5 μM [74]. However, 
lapatinib monotherapy demonstrated poor efficacy on BMs [75–78]. In 
the aforementioned CEREBEL study, the incidence of CNS events was 
low, and comparable between the capecitabine-lapatinib arm (3%) and 
the capecitabine-trastuzumab arm (5%), indicating that the lapatinib- 
capecitabine combination did not demonstrate superiority over 
trastuzumab-based treatment in controlling intracranial disease (pri-
mary endpoint, CNS metastases as first site of relapse) [1,41]. Another 
next-generation TKI, neratinib, was investigated in combination with 
capecitabine versus lapatinib plus capecitabine in the second and third- 
line settings, in 130 patients with BC and symptomatic or stable BMs at 
the study entry (phase 3, NALA trial) [39]. The cumulative incidence of 
requiring local intervention (e.g., surgery, RT) was lower in the ner-
atinib arm compared with lapatinib (29% versus 23%, p = 0.04) [39]. In 
patients with pre-treated BMs, the neratinib-containing combination 
demonstrated a control rate of ~ 50% [79]. Consistently, of the 37 pa-
tients enrolled in a phase 2 trial assessing the combination of neratinib 
and capecitabine, the BM volumetric response was 49%, with a 6- 
months PFS of 38% and a median time to BM progression of 5.5 
months. Of note, most of the patients had received prior RT (i.e., 65% 
WBRT, 32% stereotactic RT) and 89%, 22% and 14% of patients had 
been previously treated with trastuzumab, T-DM1 and another investi-
gational HER2-directed agent, respectively [79]. 

Conclusion and future perspectives 

The story of HER2, a gene identified in 1982–1984, evolved with the 
identification of HER2-positive BC and the search for targeted agents 
[80]. Years later, tucatinib was developed by Array BioPharma and 
licensed to Cascadian Therapeutics (subsequently part of Seattle Ge-
netics) [80]. Ultimately, the subsequent FDA’s and EMA’s registration of 
tucatinib for HER2-positive advanced BC represents another achieve-
ment in a scientific saga lasting for more than three decades. [2]. 
Although the lack of comparative studies still do not allow for recom-
mendations about any specific sequencing, the development of novel 
anti-HER2 agents is rapidly shaping clinical practice guidelines [2]. In 
this regard, the tucatinib-based combination represents a further valid 
choice, with the added value of its intracranial and extracranial efficacy 
in patients with BMs. With the evolving therapeutic options in the 
landscape of HER2-positive advanced BC, management of CNS disease 
will require a multifaced and interdisciplinary approach. An expert 
panel of medical professionals, including neurologists, neurosurgeons, 
radiation oncologists, and medical oncologists, is needed to collabora-
tively develop individualized treatment strategies that consider the pa-
tient’s comprehensive medical history and the unique characteristics of 
the BMs. For example, we will be called to optimally manage and 
sequence all the available drugs, considering also that some patients will 
have received T-DM1 in the adjuvant setting, in case of residual invasive 
disease after completion of neoadjuvant therapy, and that new drugs are 
enriching the therapeutic armamentarium (Table 2) [81,82]. Addition-
ally, psychological and palliative care teams are also essential compo-
nents of the multidisciplinary approach. Hence, BMs can significantly 
impact a patient’s emotional and mental well-being; thus, psychological 
support can assist patients and their families in coping with the stress 
and anxiety which may arise. In turn, palliative care is crucial to 
enhance the quality of life for patients by managing symptoms, such as 
pain, nausea, and fatigue [73]. 

In summary, the management of BMs in patients with BC presents a 
challenging and continuously evolving landscape. Despite recent ad-
vances in radiation oncology, novel medical treatments and more 
personalized surgical approaches, treatment of BMs in patients with BC 
remains a complex issue due to the vast heterogeneity in tumor biology 
and presentation. The integration of advanced diagnostic modalities, 
novel medical treatments such as tucatinib, as well as biomarker-based 
treatment allocation, all of which in a multidisciplinary perspective, 
may enhance patient selection for individualized therapeutic strategies, 
thus ultimately leading to improved patient outcomes. Undoubtedly, 
further research is needed to better understand the biology of BMs in BC, 
identify reliable predictive biomarkers, and develop effective thera-
peutic compounds. 
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Table 2 
Ongoing clinical trials currently investigating tucatinib in breast cancer, as of May 4th 2023. *Active, # recruiting, § not yet recruiting. Abbreviations: ADC, 
antibody-drug conjugate; AE, adverse events; BMs, brain metastases; CDK4/6i, Cyclin-dependent kinase 4 and 6 inhibitor; ChT, chemotherapy; DLT, dose-limiting 
toxicities; eBC, early breast cancer; ET, endocrine therapy; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; LMD, leptomeningeal dis-
ease; LND, lymph nodes; mBC, metastatic breast cancer; mo, months; MRI, magnetic resonance imaging; MTD, maximum tolerated dose; (neo)adj, (neo)adjuvant; NR, 
not reported; Ø, diameter; pCR, pathologic complete response; PD, progressive disease; PFS, progression-free survival; PI, principal investigator; PIK3CA, 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PTZ, pertuzumab; RP2D, recommended phase 2 dose; SRS, stereotactic radiosurgery; T-DM1, 
ado-trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; TTZ, trastuzumab; tx, therapy; vs, versus; w/o, without. .  

Trial ID Phase Regimen Setting Primary Endpoint 
(s) 

Sample Active Brain mets 

NCT03054363* 1–2 Tucatinib + palbociclib +
letrozole 

HR + HER2 + mBC; > 2 anti-HER2 tx 
(any setting), of which at least 1 in mBC 

Safety (AEs), PFS 42 Eligible (if Ø > 2 cm on 
MRI, enrollment upon 
approval) 

NCT05230810# 1b-2 Tucatinib + alpelisib +/- 
fulvestrant (if HR + ) 

PIK3CA-Mutant HER2 + mBC MTD, AEs, PFS 40 Eligible (if Ø > 2 cm on 
MRI, enrollment upon 
approval) 

NCT04896320# 1–2 Gemcitabine or Vinorelbine +
Tucatinib + Trastuzumab 

HER2 + mBC, after TTZ/cape and T- 
DM1 

MTD 40 Eligible (if Ø > 2 cm on 
MRI, enrollment upon 
approval) 

NCT04539938# 

(HER2CLIMB-04) 
2 Tucatinib + T-DXd HER2 + mBC, prior taxane and TTZ or 

PD within 6 mo after (neo)adj tx. 
ORR 70 Eligible (if Ø > 2 cm on 

MRI, enrollment upon 
approval) 

NCT05458674# 2 Tucatinib + eribulin + TTZ HER2 + mBC, after prior taxane-TTZ or 
relapse within 6 mo (neo)adj setting 

AEs, SAEs 30 Eligible (if Ø > 2 cm on 
MRI, enrollment upon 
approval) 

NCT05132582# 

(HER2CLIMB-05) 
3 Tucatinib/Placebo + TTZ + PTZ HER2 + mBC, after 4–8 cycles of prior 

TTZ, PTZ and taxane in 1L w/o PD. 
PFS 650 if asymptomatic and w/o 

PD, since starting 1L tx 
NCT05583110§

(TrasTUCAN) 
2 TTZ + tucatinib + vinorelbine HER2 + mBC, ≥ 2 anti-HER2 tx in any 

setting. Prior taxane-TTZ mandatory. 
ORR 49 Untreated BMs not needing 

immediate local tx. 
NCT03975647# 3 Tucatinib/Placevo + T-DM1 HER2 + mBC, after taxane-TTZ in any 

setting. 
PFS 565 Untreated BMs not needing 

immediate local tx. 
NCT05553522# 1 Tucatinib, TTZ, and 

Capecitabine with SRS 
HER2 + mBC, with newly-diagnosed 
BMs. 

DLTs, Incidence of 
radiation-related 
toxicities 

40 Allowed, except if within 5 
mm of the optic chiasm/ 
optic nerve or brainstem 
involvement 

NCT05041842# 

(InTTercePT) 
2 Tucatinib + TTZ-PTZ +/- 

endocrine tx 
Documented isolated BMs PD under 
TTZ-PTZ with or without taxane 

PFS 55 No limit to the number and 
Ø of BMs 

NCT05382364# 1 tucatinib HER2 + mBC, gastric or GEJ, and CRC, 
no more available tx (Chinese 
population) 

AEs 25 If asyntomatic 

NCT04789096§ 2 Tucatinib + TTZ +
pembrolizumab +/- 
capecitabine 

HER2 + mBC, after prior taxane, TTZ, 
PTZ and ADC (any setting) 

ORR 50 Eligible (if Ø > 2 cm on 
MRI, enrollment upon 
approval) 

NCT05323955# 

(BRIDGET) 
2 Addition of tucatinib to either 

ongoing 1L TTZ/PTZ or 2L 
-T-DM1 

HER2 + mBC with isolated intracranial 
recurrence on anti-HER2 tx 

PFS 48 Only if Ø <5 mm 

NCT03501979* 2 Tucatinib + TTZ + capecitabine HER2 + mBC with LMD OS 30 Patients must not have 
received any therapy 
specifically directed at LMD 

NCT04457596# 

(CompassHER2 RD) 
3 T-DM1 vs T-DM1 + tucatinib HER2 + eBC T1-4, N0-3 and residual 

invasive disease 
iDFS 1031 NA 

NCT05319873# 1b-2 ribociclib, tucatinib, TTZ +/- 
fulvestrant (phase 1b and 2); vs 
docetaxel, carboplatin, TTZ, 
PTZ (phase 2) 

HER2 + mBC (phase 1b, ≥2L) and HER2 
+ eBC neoadj (phase 2) 

AEs, 
MTD, RP2D, pCR 

18 Eligible (if Ø > 2 cm on 
MRI, enrollment upon 
approval) 

NCT04579380# 2 Tucatinib + TTZ (+fulvestrant 
if HER2-mutant mBC) 

HER2 + metastatic solid tumors, ≥1 
prior line 

ORR 270 NR 

NCT04538742# 1b-2 T-DXd + tucatinib (module 5 
and 6) 

HER2 + mBC 1L (module 5), 1-2L 
(module 6) 

AEs 450 Eligible in module 6 

NCT04760431# 2 TTZ + PTZ + taxane; TTZ +
taxane + TKIs (pyrotinib, 
neratinib or tucatinib) 

HER2 + mBC with active BMs, after 
TTZ-based tx 

ORR 120 eligible 

NCT04802759# 

(MORPHEUS- 
BREAST CANCER) 

1–2 Multiple Treatment 
Combinations, including 
tucatinib 

HR + mBC on PD during or after 1-2L 
ET, must have received prior CKD4/6i 
(cohort 1); HR + HER2 + mBC after 
prior TTZ-based and taxane based tx. 

ORR, AEs, drug 
plasma 
concentrations 

510 Not eligible 

NCT04632992* 
(MyTACTIC) 

2 Multiple Treatment 
Combinations, including 
tucatinib 

advanced solid malignancy ORR 252 Not eligible 

NCT01042379# (I- 
SPY) 

2 Multiple Treatment 
Combinations, including 
tucatinib 

eBC (stage II or III, or T4, any N, M0, 
including inflammatory BC or regional 
stage IV, if supraclavicular LND only met 
site 

pCR 5000 NA 

NCT02693535# 2 Multiple Treatment 
Combinations, including 
tucatinib 

Locally advanced or metastatic solid 
tumor, multiple myeloma or B cell non- 
Hodgkin lymphoma no longer benefiting 
from standard anti-cancer treatment 

ORR 3641 Eligible on a case-by-case 
basis 
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