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Abstract
Thiswork analyses expansions of exponential form for approximating probability den-
sity functions, through the utilization of diverse orthogonal polynomial bases. Notably,
exponential expansions ensure the maintenance of positive probabilities regardless of
the degree of skewness and kurtosis inherent in the true density function. In particular,
we introduce novel findings concerning the convergence of this series towards the true
density function, employing mathematical tools of functional statistics. In particular,
we show that the exponential expansion is a Fourier series of the true probability
with respect to a given orthonormal basis of the so called Bayesian Hilbert space.
Furthermore, we present a numerical technique for estimating the coefficients of the
expansion, based on the first n exact moments of the corresponding true distribution.
Finally, we provide numerical examples that effectively demonstrate the efficiency
and straightforward implementability of our proposed approach.

Keywords Exponential expansion series · Convergence of density expansions ·
Bayes Hilbert space · Gram–Charlier Series

JEL Classification C02 · C14

1 Introduction

Polynomial-based expansions have been used in literature to approximate probabil-
ity density functions on both closed and infinite domains, see for instance (Kendall
et al. 1987; Schoutens 2000) and Provost (2005). This area of study often referred
to as the moments’ problem and traces its origins to the 19th century, with the pio-
neering work of Gram (1883). In the existing body of literature, researchers have
concentrated on assessing the utility and efficacy of specific orthogonal polynomial
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bases for the estimation of various distributions. They typically opt for classical poly-
nomial families as the foundation for expansion. These classical polynomials are
often preferred due to their weight functions, which are the derivatives of the pos-
itive Borel measure that define the orthogonality properties of these polynomials.
These weight functions bear a resemblance to canonical distributions. Among the
orthogonal polynomials for which density approximations have been established in
the literature, notable examples include: Hermite Polynomials, utilized in Edgeworth
and A-type Gram–Charlier Expansions, Legendre Polynomials, Jacobi Polynomials
and Laguerre Polynomials. These choices, as detailed by Gram (1883), Edgeworth
(1905), Charlier (1914), Cramer (1946), Alexits (1961), and Kendall et al. (1987),
are guided by the weight functions that resemble normal, uniform, beta, and gamma
distributions, respectively. Importantly, these polynomials can be employed to derive
moment-based expressions for specific density functions and are also recognized as
eigenfunctions of a hypergeometric-type second-order differential equation, as noted
in Schoutens (2000). More recently, by employing an A-type Gram–Charlier expan-
sion methodology, Heston and Rossi (2016) show that Hermite polynomials cannot
span fat-tailed distributions defined on the entire real line, commonly encountered in
financial contexts. To overcome this deficiency, they introduce an analogous set of
orthogonal polynomials based on the standardized logistic density.

However, the A-type Gram–Charlier and Edgeworth polynomial-based expansion
methods proposed in the literature do not guarantee the positiveness of the truncated
series, which therefore does not constitute a valid probability density function (PDF).
To avoid this problem, Jondeau andRockinger (2001), and Flamouris andGiamouridis
(2002) have suggested to impose a non negative constraint in the estimation of the
PDF approximated through the A-Gram–Charlier series. However, this constraint can
lead to serious biases in the estimate of the probability density. To encompass the
above drawbacks, Muscolino and Ricciardi (1999) and Rompolis and Tzavalis (2008)
propose, in engineering and financial contexts respectively, to approximate PDF using
the C-type Gram–Charlier expansion (Charlier 1928). This expansion is of an expo-
nential form that always guarantees positive truncated probabilities for any degree of
skewness and kurtosis of the true PDF. Moreover, Muscolino and Ricciardi (1999)
propose a simple linear system to estimate the expansion coefficients, given the first
n exact moments of the corresponding distributions.

In this work, we extend the existing literature in two main directions. Firstly,
we highlight an interesting and promising link between the exponential expansion
approach for approximating PDFs and the theory of Bayesian Hilbert spaces, exten-
sively studied in functional statistics, see for instance (Egozcue et al. 2006; van den
Boogaart et al. 2011, 2014) and Bongiorno and Goia (2016). Using the centered-log-
ratio transformation, proposed for the first time by Atchinson for discrete probability
distributions, Egozcue et al. (2006) and van den Boogaart et al. (2014) show that
the subspace of square-log-integrable densities can be mapped to the Hilbert space
of square integrable functions L2 with the ordinary notions of addition, scalar mul-
tiplication, and inner product. Our study establishes that an exponential expansion
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corresponds to the Fourier series of the true density with respect to a given trans-
formed orthogonal basis1 of this Hilbert space, called in literature Bayesian Hilbert
space orBayes space. The proposed exponential expansion includes theC-typeGram–
Charlier series as a particular case, adopting a specif orthogonal basis for the Bayes
space, that is the (transformed) Hermite polynomial basis. However, it is important to
highlight that when the density is not confined to a finite interval, the truncated Fourier
series might not consistently correspond to a finite measure, as discussed in van den
Boogaart et al. (2011, 2014). Consequently, its normalization as a valid probability
measure could be impeded. A notable example is observed in the case of truncated
Hermite series, which might lack integrability of the normalization constant for true
densities with very fat tails. In this study, we address this issue by demonstrating
that the choice of an appropriate basis of the Bayes space, such as the (transformed)
Logistic polynomials, can mitigate this problem.

Secondly, we study the moment-based estimation of the coefficients of the Fourier
series. In fact, it is often the case that the exact moments of a continuous-type statistic
can be explicitly determined, while its density function either resists numerical evalu-
ation or presents mathematical complexities. A notable example is found in stochastic
volatility models widely utilized in finance, such as the Heston model. Alternatively,
when employing real data, the estimation of moments up to a specific order may
be more accurate compared to the direct estimation of the density using interpola-
tion or kernel methods. Consequently, density approximations could be constructed
based on the first n moments of corresponding distributions. Techniques proposed by
Muscolino andRicciardi (1999) andRompolis andTzavalis (2008) present a linear sys-
tem to approximate the coefficients of the C-type Gram–Charlier expansion via these
moments. Our second contribution lies in extending their approach to encompass any
orthogonal polynomial basis of the Bayes space, while retaining the straightforward
implementation, that is a simple linear system of equations.

A considerable body of literature focuses on inversionmethods for the characteristic
function or the Laplace transform of PDFs. Some of these methods, such as the COS
method by Fang andOosterlee (2009), aswell as the Laplace transformmethods byCai
et al. (2014) and Cai and Shi (2014), offer improved numerical accuracy, particularly
in the tails of distributions. Our method provides two distinct advantages compared
to numerical inversion methods. Firstly, our proposed approach provides an explicit
analytical formula for the series coefficients and the approximated PDF. Secondly,
our method does not require knowledge of the closed-form characteristic function
or Laplace transform of the true PDF. Instead, to construct the N -th order analytical
approximation of the PDF, our method requires only knowledge of the first 2N − 2
moments of the true PDF.

Finally, we propose three illustrative numerical examples, employing Variance
Gamma, Normal Inverse Gaussian and Heston densities as true probability distribu-
tions. Our results indicate that especially in the case of extreme values of skewness and
kurtosis, the adoption of a Logistic polynomial basis makes the exponential expansion
more robust with respect to the truncation of the PDF domain. This can enhance the

1 Any orthogonal basis of L2 can be mapped to an orthogonal basis of the Bayes space using the inverse
centered-log-ratio transformation.
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convergence of the exponential series, improving the integrability of the normalization
constant, a critical factor that renders any truncated series a legitimate and valid PDF.

The work is organized as follows. In Sect. 2, we shall begin with an overview of
Bayesian Hilbert spaces and introducing the useful notation. In Sect. 3, we present our
proposed exponential expansion for approximating a given PDF and we discuss the
convergence of the series. The moment-based estimation of the expansion coefficients
is presented in Sect. 4. Then, we illustrate the numerical examples in Sect. 5 and we
end with concluding remarks in Sect. 6.

2 An overview of Bayesian Hilbert spaces

In this section, we offer a concise overview of the concept of Bayes space. For a more
comprehensive illustration, readers are referred to the works of Egozcue et al. (2006),
van den Boogaart et al. (2011, 2014) and Bongiorno et al. (2014).

We define the following set of functions:

B2(I , ν) :=
{

f (x) = c exp(φ(x)) |0 < c < ∞,

∫
I
φ(x)2ν(x)dx < ∞

}
, (1)

where I ⊆ R is the domain of the function f ∈ B2(I , ν). For simplicity of exposition,
we assume that the strictly positive weighting function ν(x) is a PDF on I , although
this is not necessary. Moreover, each member of B2(I , ν) is the exponential of a
function fromL2(I , ν), that is the set of square integrable functions, under our chosen
referenceweight ν. In the rest of this section,we simplify the notation asB2 = B2(I , ν)

and L2 = L2(I , ν), implicitly considering I and ν as the domain and the reference
weighting function, unless otherwise specified.

We can map a member f ∈ B2 to its image φ ∈ L2 applying the centered log-ratio
(clr) transformation, defined in the compositional data analysis context by Aitchison
(1986), that is

φ(x) = clr( f )(x) = ln f (x) −
∫

I
ln f (x) ν(x)dx, (2)

the clr transformation is a shift of the logarithm of the function f , such that the zero
integral constraint is satisfied, that is

∫
I clr( f )(x) ν(x)dx = 0. We say that two

members of B2, f1(x) = c1 exp(φ1(x)) and f2(x) = c2 exp(φ2(x)), are equivalent
(equal) if and only if φ1(x) = φ2(x) for any x ∈ I ; in other words, the normalization
constants, c1 and c2, need not be the same and B2 is a set of equivalent classes of
functions. Under this condition, the clr transform is an isomorphism, and then B2 is
isomorphic toL2. In fact, as proved in van den Boogaart et al. (2014), the clr transform
is linear, surjective and invertible with inverse clr−1(φ) = exp(φ).

Then, we introduce addition and multiplication by real scalar. The set B2(I , ν)

equipped with these operations is established as a vector space, termed a Bayesian
linear space, over the field R. We define vector addition as in van den Boogaart et al.
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(2011), ⊕: B2 × B2 → B2, between two elements f1, f2 ∈ B2 to be:

( f1 ⊕ f2)(x) = f1(x) f2(x) = c1c2 exp(φ1(x) + φ2(x)) ∈ B2, for any x ∈ I ,

and likewise scalar multiplication, · : R × B2 → B2, of f ∈ B2 by α ∈ R to be:

(α · f )(x) = ( f (x))α = cα exp(α φ(x)) ∈ B2, for any x ∈ I .

Notably, the zero vector is simply any constant function, c exp(0). Vector subtrac-
tion is defined in the usual way, f1 � f2 = f1 ⊕ (−1) · f2, that is

( f1 � f2)(x) = c1
c2

exp(φ1(x) − φ2(x)) ∈ B2, for any x ∈ I .

We note that subtraction is equivalent to the Radon-Nikodym derivative operation.
We endow the vector space with an inner product defined as

〈 f1, f2〉 = 1

2

∫
I

∫
I
ln

f1(x)

f1(y)
ln

f2(x)

f2(y)
ν(x)ν(y)dxdy, (3)

where f1, f2 ∈ B2(I , ν). We note that the normalization constants, c1 and c2, associ-
ated with f1 and f2 ∈ B2 play no role in the definition of the inner product. Since ν

is a valid PDF, we can also write the inner product in (3) as

〈 f1, f2〉 = E
ν[ln f1 ln f2] − E

ν[ln f1]Eν[ln f2],

where E
ν[] represents the expected value under the probability measure induced by

ν. Following (van den Boogaart et al. 2014), then, we can claim that B2 with inner
product (3) forms a separable Hilbert space, which is referred to as a Bayesian Hilbert
space. We shall sometimes briefly refer to it as a Bayesian space or Bayes space. The
norm of f ∈ B2 can be taken as || f || = √〈 f , f 〉. Accordingly, we can define the
distance, called Atchinson distance, between two members of B2, f and g, as

dA( f , g) = || f � g|| = √〈 f � g, f � g〉, (4)

which induces a metric on Bayes space. Moreover, since we add a metric to the
Bayes space, Egozcue et al. (2006) and van den Boogaart et al. (2014) prove that clr
is an isometry that preserves distances passing from the Bayes space B2 to the space
of square integrable function L2:

dA( f , g) = d2(clr( f ), clr(g)) =
∫

I
(clr( f )(x) − clr(g)(x))2ν(x)dx, (5)

where d2 is the classical Euclidean distance between two members of L2. Then, B2

and L2 are isometrically isomorphic normed vector spaces and they can be identified
with each other.

123



A. M. Gambaro

Finally, it is important to asses the relation between the members of the space B2

and the set of PDFs defined on I . Not all the possible PDFs are included in B2. In
fact, to be included in B2 the PDF should be strictly positive, that is p(x) > 0 for any
x ∈ I , and log-squared integrable with respect to the reference weighting function,
that is

∫
I ln p(x)2ν(x)dx < ∞. Moreover, in case of infinite domain I , B2 includes

also functions that cannot be normalized, that corresponds to an infinite measures on
I . We define B2

P ⊆ B2 as the subset of elements in B2 that can be identified with a
finite measure on I , that is

B2
P :=

{
f ∈ B2 |

∫
I

f (x)dx < ∞
}

.

Then, we can apply the normalization operator P : B2
P → B2

P

p(x) = P( f )(x) = f (x)∫
I f (x)dx

, (6)

then p ∈ B2 is a valid PDF on I and is equivalent to f ∈ B2.

3 Exponential expansion series for approximating PDFs

In this section, we present our proposed exponential expansion for approximating a
strictly positive PDFs defined on a domain I . Let {ψ j } j≥0 be an orthonormal basis
for L2(I , ν) space,2 that is the space of squared integrable function with respect to
the reference PDF ν, as introduced in Sect. 2. For I = R, examples of orthonormal
basis are the (normalized) Hermite or Logistic polynomials, with weighting functions
the standard Gaussian or the logistic PDFs, respectively. Then, we approximate the
(strictly positive) PDF p(x) on I by a truncated expansion series of the following
form:

pN (x) := C0 exp

⎛
⎝ N∑

j=1

c j ψ j (x)

⎞
⎠ , (7)

for N = 1, 2, 3, ... and with normalization constant

C0 =
⎛
⎝∫

I
exp

⎛
⎝ N∑

j=1

c j ψ j (x)

⎞
⎠ dx

⎞
⎠

−1

. (8)

2 To be an orthonormal basis of L2(I , ν), the functions {ψ j } j≥0 must be square integrable, that is∫
I (ψ j (x))2ν(x)dx < ∞ for j = 0, 1, 2, ..., and orthonormal, that is

∫
I ψ j (x)ψk (x)ν(x)dx = δ j,k

for j, k = 0, 1, 2, ..., where δ j ,k is the Kronecker delta function. Finally, the system {ψ j } j≥0 must be

complete in L2(I , ν).
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Proposition 1 Let us assume that p ∈ B2(I , ν). Then, the truncated series pN defined
in (7) with coefficients

c j =
∫

I
clr(p)(x) ψ j (x) ν(x)dx, (9)

converges to p in the Bayes space, that is the Atchinson distance defined in (4)
converges to zero,

dA(p, p̂N ) → 0, for N → ∞. (10)

Proof Let {ψ j } j≥0 be an orthonormal basis for L2 with ψ0(x) a constant function,
then {g j } j≥1, with g j = (clr)−1(ψ j ) = exp(ψ j ) is an orthonormal basis for B2. In
fact, orthogonality and completeness are guaranteed by the clr-isometry. Given a basis
{g j } j≥1 of B2 any p ∈ B2(I , ν) can be represented by its Fourier coefficients in the
basis. The truncated Fourier representation at N terms is

pN =
N⊕

j=1

c j · g j =
N∏

j=1

exp(ψ j )
c j = exp

⎛
⎝ N∑

j=1

c j ψ j

⎞
⎠ , with c j = 〈p, g j 〉,

where the addition operation ⊕ and the multiplication by scalar · in Bayes space are
defined in Sect. 2. We recall that the function pN defined above is equivalent to the
one defined in(7) regardless of the constant C0. Moreover, by the clr-isometry, the
coefficients c j defined in (9) are exactly the Fourier coefficients, that is c j = 〈

p, g j
〉
.

Since B2 is isometrically isomorphic to L2, then clr(pN ) converges to clr(p) =∑N
j=1 c j ψ j in the L2 sense, that is

dA(p, pN ) = d2

⎛
⎝clr(p),

N∑
j=1

c j ψ j

⎞
⎠ → 0, for N → ∞.

�
The rate of convergence of orthogonal polynomial expansion for square integrable

functions is discussed in literature, see for instance (Schwartz 1967) andWalter (1977)
for Hermite polynomials and Efromovich (2010) and Abilov et al. (2009) and refer-
ences therein for a more general classes of orthogonal polynomial basis. In particular,
the rate of convergence of the polynomial expansion is related to the differentiability
order of the function. Proposition 1 establishes that the convergence rate for clr(pN )

in L2 remains valid for pN in the Hilbert space B2, equipped with the Atchinson dis-
tance as defined in Eq. (4) and the orthogonal basis obtained as the inverse transform
clr−1 of the polynomial basis.

Using the normalization operator P defined in (6), we can rewrite the truncated
series in (7) as

pN (x) = P( fN )(x),
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fN (x) = exp

⎛
⎝ N∑

j=1

c j ψ j (x)

⎞
⎠ , (11)

where fN ∈ B2
P . In the case of infinite domain I , although the Proposition 1 remains

valid, it is not possible to guarantee a priori that for each N , fN corresponds to a
finite measure on I , which implies that pN (x) is a valid PDF. Indeed, in Bayes spaces,
pN represents a class of equivalent functions independently of the constant C0. This
problem can be solved in practice by truncating the I domain of the referenced PDF.
In Sect. 5, we present a heuristic rule of thumb to strike a balance between domain
truncation and accuracy in replicating the tails of the actual distribution. Moreover, we
show that adopting an appropriate orthonormal basis of the Bayes space, such as the
(transformed) logistic polynomials, the exponential truncated series is more robust
with respect to an enlargement of the domain I , reproducing better the tails of the
distribution.

The overview of Bayes Hilbert spaces in Sect. 2, along with the convergence proof
in this section, is presented in a one-dimensional setting for convenience. How-
ever, the exposition, and particularly Proposition 1, can be readily generalized to a
multidimensional setting. In fact, if {ψ1, j } j≥0 and {ψ2, j } j≥0 are orthonormal bases
of L2(I1 ⊆ R, ν1) and L2(I2 ⊆ R, ν2), respectively, then {ψn,m}n≥0,m≥0 with
ψn,m(x1, x2) := ψ1,n(x1)ψ2,m(x2) for (x1, x2) ∈ I1 × I2 is an orthonormal basis
for L2(I1 × I2 ⊆ R

2, ν1 ν2). The above procedure to build the orthonormal basis in
two dimensions can be iterated to achieve any desired dimensionality. Then in a multi-
dimensional setting the truncated expansion series of the pdf p(x) with x ∈ I ⊆ R

d

is given by

pN (x) = exp

⎛
⎝ N∑

j1=1

· · ·
N∑

jd=1

c j1,..., jd ψ j1,..., jd (x)

⎞
⎠ ,

with

c j1,..., jd =
∫

I
clr(p)(x)ψ j1,..., jd (x)

d∏
i=1

νi (xi )dx. (12)

4 Amoment-based estimation of coefficients

In this section, we present a moment-based technique to estimate the coefficients of
the Fourier series c j , defined in Proposition 1. In fact, it is often the case that the exact
moments of a continuous-type statistic can be explicitly determined, while its density
function either resists numerical evaluation or presents mathematical complexities.
A notable example is found in stochastic volatility models widely utilized in finance,
such as the Hestonmodel. Consequently, density approximations could be constructed
based on the first n moments of the corresponding distribution. Techniques proposed
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byMuscolino and Ricciardi (1999) and Rompolis and Tzavalis (2008) present a linear
system to approximate the coefficients of the C-type Gram–Charlier expansion via
these moments. We extend their approach to encompass any orthogonal polynomial
basis of the Bayes space, while retaining the straightforward implementation, that is
a simple linear system of equations.

Let {h j } j≥0 be the set of (normalized)Hermite polynomials, that forms an orthonor-
mal basis for L2(R, ω), where ω is the Gaussian density function with mean m ∈ R

and standard deviation σ > 0, that is ω(x) = 1
σ
√
2π

exp
(
− (x−m)2

2σ 2

)
. In particular,

h j (x∗) = (−1) j√
j !

1
η(x∗)

d j η(x∗)
d(x∗) j , with x∗ = x−m

σ
and η is the standard normal PDF.

Then, let assume that {ϕ j (x∗)} j≥0 is a set of polynomial functions that represents an
orthonormal basis of L2(R, ν), with ν a valid positive weighting function on R.

By Ackerer and Filipović (2020), any polynomial ϕn with n = 0, 1, 2, ... on R can
be expressed as a linear combination of Hermite polynomials in the following way

ϕn(x∗) =
n∑

j=0

qn, j h j (x∗), (13)

where the vector qn, j for j = 0, 1, 2, .. is the representation of ϕn in the basis {h j } j≥0.
Let Hn ∈ R

(n+1)×(n+1) denotes the matrix, whose element (i, j) is given by the
coefficient in front of the monomial x j−1 in the (i − 1)th Hermite polynomial hi−1
for i, j = 1, 2, ..., n +1. Define similarly the matrix Bn ∈ R

(n+1)×(n+1), with respect
to the polynomial basis {ϕ j } j≥0. The matrices Hn and Bn are widely recognized in
the literature, particularly for the polynomial bases most commonly employed. Then,
the coefficients qn, j can be obtained solving the following linear system

Bn = Hn Qn, (14)

where Qn is thematrix, whose elements are qi−1, j−1 for i, j = 1, 2, ..., n+1.We note
that Bn , Hn and Qn are upper triangular matrices, then the system (14) is a triangular
system of equations that can be solved very efficiently.

By taking into account of the property of the derivative of the Hermite polynomi-
als and the change of basis formula (13), we obtain the following linear system for
approximating the coefficients {c j }N

j=1 of the expansion defined in (7),

AN ĉN = bN ,

AN
i,n =

n∑
j=0

√
j qn, j ÃN

i, j , for i, n = 1, 2, ..., N . (15)

The matrix ÃN and the vector bN are obtained as

ÃN
i, j =

i+ j−2∑
k=0

1

k!�i−1, j−1,k mh
k ,
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with

�p,q,r =
∏

a=p,q,r

(a + 1)

(b − a + 1)
, if p + q + r is even, b = (p + q + r)/2 ≥ p, q, r

�p,q,r = 0, otherwise

and

bN
i = −√

i − 1 mh
i−1, for i = 1, 2, ..., N

where mh
k is the exact k − th normalized Hermite moment of p(x), that is

mh
k =

∫
I

hk(x∗) p(x)dx .

The (non-normalized) k − th Hermite moment, that is
√

k! mh
k , can be calculated

knowing thefirst k exactmoments of p(x), see (Rompolis andTzavalis 2008) equations
(2) and (3). For the detailed derivation of the matrix ÃN and the vector bN in (15), we
refer the interested reader to Muscolino and Ricciardi (1999).

Finally, the true PDF p(x) is approximated by the following exponential truncated
series

p̂n(x) = Ĉ0 exp

⎛
⎝ N∑

j=1

ĉN
j ϕ j (x∗)

⎞
⎠ ,

Ĉ0 =
⎛
⎝∫

I
exp

⎛
⎝ N∑

j=1

ĉN
j ϕ j (x∗)

⎞
⎠ dx

⎞
⎠

−1

, (16)

where x∗ = x−m1
σ

, σ =
√

m2 − m2
1 and m1, m2 are the first two exact moments of

p(x).
The extension to a multidimensional setting of the method described above for the

analytical estimation of the series coefficients ĉN is not trivial. In Appendix B, we
discuss the extension of the method for PDFs in two variables, using the product of
Hermite polynomials.

5 Numerical examples

In this section, we apply our proposed approximation (16) to three PDFs: Variance
Gamma (VG),Normal InverseGaussian (NIG) andHestonmodels. The three examples
represents different levels of skewness and excess kurtosis, reported in Table 1. For the
Variance Gamma model example, we use the parameters defined in Heston and Rossi
(2016), that gives skewness equal to zero and excess kurtosis of 2. For the Heston
model, we use parameters defined in Rompolis and Tzavalis (2008), that produce a
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Table 1 Skewness and excess
kurtosis of the three PDFs

Model Skewness Excess kurtosis

VG 0 2

NIG 0.2 1

Heston −1.2 2.5

negative skewness of −1.2 and excess kurtosis of 2.5. For the NIG model, we choose
the parameters such that the values of skewness and kurtosis are intermediate between
VG and Heston, the parameters values and the specification for the NIG model are
reported in Appendix A. As orthonormal basis for the Bayes Space B2, we use the
transformed3 Hermite or Logistic polynomials.

In particular, we study the convergence of the approximated PDF p̂N defined in
(16) to the true PDF, as the number of terms N of the truncated series increases. As
a benchmark for the numerical estimation of the true PDF, we use the COS method
proposed in Fang and Oosterlee (2009), with a grid size equal 212. We emphasize
that, while the COS method offers enhanced numerical accuracy in PDF estimation, a
significant advantage of our proposed approach lies in providing an explicit analytical
formula for the coefficients {c j } j≥1 and the approximated PDF.

Firstly, we show the convergence of the estimated coefficient ĉN obtained solving
the system (15), to the exact coefficients of the Fourier series {c j } j≥1 defined in
(9). The benchmark value for the coefficients {c j } j≥1 is obtained by numerically
calculating the integral in Eq. (9), with clr(p)(x) estimated via COS method. The
series of coefficients {c j } j≥1 is square summable, that is,

∑∞
j=1 c2j < ∞, then we

verify that the following distance converges to zero as N increases,

d2(ĉ
N , c) =

N∑
j=1

(
ĉN

j − c j

)2
, (17)

with ĉN
j = 0 for j > N . Figures1, 2 and3 illustrate the plots ofd2(ĉN , c) as the number

of terms N increases. Results show a very good convergence of both the Hermite and
theLogistic coefficients for theVGand theNIGmodel,while the estimated coefficients
struggles to converge in the case of the Heston model, which is the example with the
most extreme values of skewness and kurtosis.

The convergence of the approximation p̂N to the benchmark PDFs is illustrated
using three type of distances. Firstly, we adopt the Atchinson distance defined in (4)
and used in Proposition 1, that is

dA( p̂N , p) =
∫

I

(
clr( p̂N )(x) − clr(p)(x)

)2
ν(x)dx . (18)

3 As detailed in the proof of Proposition 1, an orthonormal basis for B2 is obtained applying the inverse
clr transform to a basis for L2.
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Fig. 1 These figures show the convergence of the sequence of coefficients ĉN of the VG model, using
distance defined in (17), for the Hermite basis, a on the left, and for Logistic basis, b on the right

Fig. 2 These figures show the convergence of the sequence of coefficients ĉN of the NIG model, using
distance defined in (17), for the Hermite basis, a on the left, and for Logistic basis, b on the right

Fig. 3 These figures show the convergence of the sequence of coefficients ĉN of the Heston model, using
distance defined in (17), for the Hermite basis, a on the left, and for Logistic basis, b on the right
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Then, we use also the L2 distance between the logarithms of the two pdfs, that is

d2(ln p̂N , ln p) =
∫

I

(
ln p̂N (x) − ln p(x)

)2
dx . (19)

This second type of distance is adopted in order to compare the distances obtained
by using different reference PDFs ν, that are the Gaussian and Logistic. Furthermore,
we check the convergence also using the L1 and the L2 distances directly on the
approximated and true PDFs, that are

d1( p̂N , p) =
∫

I
|pN (x) − p(x)| dx, (20)

and

d2( p̂N , p) =
∫

I

(
p̂N (x) − p(x)

)2
dx . (21)

To guarantee the convergence of the approximation towards the true PDF, it is
necessary that the two assumptions on the true PDF in Proposition 1 are respected.
Firstly, that p(x) > 0 holds strictly for all x ∈ I , and secondly, that its logarithm is
square integrable, i.e.,

∫
I ln p(x)2ν(x)dx < ∞. For all the three considered examples,

these twoassumptions are numerically achievedby the truncationof the infinite domain
I .4 Particularly delicate is the strict positivity assumption. In functional statistics, a
common heuristic rule of thumb is that the absolute value of the clr of the true PDF
must not be greater than 10, i.e., |clr(p)(x)| < 10 for all x ∈ I . This rule implies that,
for negative values of ln p(x), p(x) > 5 × 10−5 for all x ∈ I . This establishes the
tolerance of the proposed method towards the assumption of strict positivity. Then, we
compare the truncated range I achieved using the rule just delineated with the range
derived from the utilization of the first four exact cumulants, ki for i = 1, 2, 3, 4, as
adopted in Fang and Oosterlee (2009), that is

I = [k1 − L
√

k2 + √
k4, k1 + L

√
k2 + √

k4], (22)

with L > 0, in general, the parameter L is fixed greater or equal to 3. In Fig. 4, we
compare the clr of the three standardized PDFs in an interval I , fixed as in (22) with
L = 4. We note that for the Heston model, that is the example with the most extreme
values of skewness and kurtosis, the clr exceeds the tolerance value of −10.

Then, in the case of the VG and NIG models, the convergence analysis of both
Hermite and Logistic series is conducted utilizing a domain I defined as in Eq. (22)
with L = 4. For the VG and NIG models, the plots of different distances outlined in
Eqs. (18), (19), (20), and (21) are presented in Figs. 5 and 6. These figures illustrate
the behavior of the mentioned distances as the number of terms N increases. In case of
Heston model, we adopt and compare two procedures. Firstly, we truncate the domain
I in such a way that the clr does not exceed the tolerance, that is clr(p)(x) > −10

4 We notably remark that the estimation method for the coefficients of series ĉN does not depend on the
truncated domain I .
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Fig. 4 The figure reports the
logarithm of the three considered
PDFs: Variance Gamma,
Normal Inverse Gaussian and
Heston. The plot is obtained
using the COS method described
in Fang and Oosterlee (2009)

Fig. 5 These figures show, for the VG model, the convergence of the approximated PDF p̂N towards the
true PDF p(x), using: the Atchinson distance defined in (18) (a-above left), the log-square distance defined
in (19) (b-above right), the L1 distance defined in (20) (c-below left) and the L2 distance defined in (21)
(d-below right)
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Fig. 6 These figures show, for the NIG model, the convergence of the approximated PDF p̂N towards the
true PDF p(x), using: the Atchinson distance defined in (18) (a-above left), the log-square distance defined
in (19) (b-above right), the L1 distance defined in (20) (c-below left) and the L2 distance defined in (21)
(d-below right)

for all x ∈ I . In this first case, both the Hermite and the logistic series converges
towards the true PDF and, given a fixed number of terms N , the Hermite series is
more accurate. Figure7 reports the plots of the distances between the approximate and
the true distribution, with the limited domain I , as the number of terms N increases.
However due to the restricted domain, we lose information in tails of the distribution.
Secondly, we adopt the original domain I with L = 4. In this second case, the
Hermite series diverges and it cannot be used to approximate the distribution. The
Logistic series, instead, remains stable and converges toward the Heston PDF. Then,
we conclude that the Logistic series is more robust with respect to the enlargement
of the domain I , reproducing better the tails of the distribution. In this second case,
Fig. 8 reports the plots of the distances only for Logistic series, as the number of terms
N increases.

Figures 9, 10, 11 and 12 provide graphical comparisons between the true PDF (or
log-PDF) p(x) and the approximated PDF (or log-PDF) p̂N using either N=6 or N=16
terms. In the context of the VGmodel, the Logistic series surpasses the Hermite series,
particularly in accurately representing the tails of the distribution. Conversely, for the
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Fig. 7 These figures show, for the Heston model, the convergence of the approximated PDF p̂N towards
the true PDF p(x), using: the Atchinson distance defined in (18) (a-above left), the log-square distance
defined in (19) (b-above right), the L1 distance defined in (20) (c-below left) and the L2 distance defined
in (21) (d-below right). The domain of the PDF I is truncated in such a way that clr(p)(x) > -10 for all
x ∈ I

Table 2 For the three considered
PDFs, the table reports the CPU
time in seconds for the COS
method with a grid size equal
212 and the exponential
expansion method with N=16
using Hermite or Logistic
polynomials

Model COS Hermite pol Logistic pol

VG 0.1475 0.0164 0.0614

NIG 0.3919 0.0205 0.0926

Heston 0.6552 0.0150 0.0492

NIG model, it appears that the Hermite series slightly outperforms the Logistic series.
Concerning the Heston model, when a more constrained domain I is utilized, the
Hermite series exhibits superior performance, as evidenced in Fig. 11. However, with
an expanded domain I , the Logistic series approximation experiences a substantial
improvement, as illustrated in Fig. 12, while the Hermite series diverges.

Finally, for the three considered PDFs, in Table 2, we report the CPU time in
seconds for the COS method with a grid size equal 212 and the exponential expansion
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Fig. 8 These figures show, for the Heston model, the convergence of the approximated PDF p̂N towards
the true PDF p(x), using: the Atchinson distance defined in (18) (a-above left), the log-square distance
defined in (19) (b-above right), the L1 distance defined in (20) (c-below left) and the L2 distance defined
in (21) (d-below right). The domain of the PDF I is defined using Eq. (22) with L = 4

method with N=16 using Hermite or Logistic polynomials. The numerical outcomes
presented herein were generated on a computational system furnished with an Intel
Core i3-9100F CPU clocked at 3.60 GHz and equipped with 32.0 GB of RAM. The
results show that the proposed method is very fast and efficient.

6 Conclusions

In this work, we study the expansions of exponential form for the approximation of
probability density functions, through the utilization of diverse orthogonal polynomial
bases. Firstly, we introduce novel findings concerning the convergence of this series
towards the true density function, employing mathematical tools of functional statis-
tics. In particular, we show that the exponential expansion is a Fourier series of the true
probability with respect to a given orthonormal basis of the so called Bayesian Hilbert
space. Moreover, we extend to any orthogonal polynomial defined on the real line
the numerical technique proposed by Muscolino and Ricciardi (1999) for the Hermite
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Fig. 9 For the VG model, these figures compare the true PDF (or log-PDF) p(x) with the approximated
PDF (or log-PDF) p̂N , using N=6 or N=16 number of terms

polynomials to estimate the coefficients of the expansion, using the first n moments of
the corresponding true distribution. Finally, we illustrate numerical examples, apply-
ing our proposed approximation to three PDFs with different degrees of skewness
and kurtosis and studying the convergence of the exponential series as the number
of terms increases. Our results confirm the accuracy and straightforward implemen-
tation of our proposed approach. Furthermore, we show that adopting orthogonal
basis different from Hermite polynomials, such as Logistic polynomials, can make
the approximation more robust, when we enlarge the PDF domain, improving the
accuracy of reproducing distribution tails.

6.1 Further researches

This preliminary study opens the way for several further researches. Firstly, continue
the exploration of alternative bases could be beneficial. One approach could involve
changing the reference weighting function, such as by considering a mixture of Gaus-
sian distributionswith non-zero skewness. Another possibility is to explore Riesz basis

123



Exponential expansions for approximation of...

Fig. 10 For the NIG model, these figures compare the true PDF (or log-PDF) p(x) with the approximated
PDF (or log-PDF) p̂N , using N=6 or N=16 number of terms

functions (or bi-orthogonal bases), such as the class of B-splines, to approximate the
centered-log-ratio transformation of the density function via orthogonal projections
onto the basis span, see for instance (Ortiz-Gracia and Oosterlee 2013) and Kirkby
(2015). In this case, an interesting target for further investigation is the estimation
of projection coefficients in analytical form, given the first n exact moments of the
corresponding true distribution, as done for orthonormal basis in the present paper.
Secondly, it could be very interesting to analyse the robustness of the coefficient esti-
mation with respect to noise in the estimated moments of the true PDF. Finally, a
significant advantage of our proposed approach lies in providing an explicit analytical
formula for the approximated PDFs. The explicit analytical formula can be used to
calculate the derivatives of the PDF with respect to the model parameters, improving
the results of different sensitivity analysis applications.
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Fig. 11 For the Hestonmodel, these figures compare the true PDF (or log-PDF) p(x)with the approximated
PDF (or log-PDF) p̂N , using N=6 or N=16 number of terms. The domain of the PDF I is truncated in such
a way that clr(p)(x) > -10 for all x ∈ I

A Specification of the NIGmodel

The characteristic function of the NIG model is the following

φ(u) = exp

(
i u μ dt + dt

κ
:
(
1 −

√
1 + u2 σ 2 κ − 2i u θ κ

))

where the parameters values are μ = 0, θ = 0.05, σ = 0.2 and κ = 0.3.

B Amoment-based estimation of coefficients for a PDF of two
variables

In this section we discuss the moment-based estimation of the coefficients of the
Fourier series c j defined in formula (12) for the dimension d=2. Let us consider a
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Fig. 12 For the Hestonmodel, these figures compare the true PDF (or log-PDF) p(x)with the approximated
PDF (or log-PDF) p̂N , using N=6 or N=16 number of terms. The domain of the PDF I is defined using
Eq. (22) with L = 4

(strictly positive) PDF p(x) defined in R
2. Then, as in Sect. 4, we consider {h j } j≥0

be the set of (normalized) Hermite polynomials, that forms an orthonormal basis for
L2(R, ω), where ω is the a standard Gaussian density function. The {h j hi } j≥0,i≥0 is
a orthogonal basis for L2(R2, ω ω).

Following a similar procedure as the one dimension procedure of Muscolino and
Ricciardi (1999) and in Sect. 4, by the integration by part formula and the property
of the derivative of Hermite polynomials, that is h

′
j (x) = √

jh j−1(x), we obtain the
following system of linear equations for i, j = 1, ...N

N∑
n=1

N∑
m=1

Ai, j,n,m ĉn,m = bi, j ,

123



A. M. Gambaro

where

Ai, j,n,m = √
n

i+n−2∑
k=0

j+l−1∑
l=0

1

k!l!�i−1,n−1,k � j−1,m,l mh
k,l ,

bi, j = −√
i − 1 mh

i−2, j−1,

with mh
i, j is the mixed normalized Hermite moment of p(x), that is

mh
i, j =

∫
hi (x1)h j (x2)p(x)dx.
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