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a b s t r a c t 

We classified the alertness levels of 17 subjects in different experimental sessions in a six-month longi- 

tudinal study based on a daily sampling system and related alertness to performance on a psychomotor 

vigilance task (PVT). As to our best knowledge, this is the first EEG-based longitudinal study for real- 

world fatigue. Alertness and PVT performance showed a monotonically increasing relationship. Moreover, 

we identified two measures in the entropy domain from electroencephalography (EEG) and heart rate 

variability (HRV) signals that were able to identify the extreme classes of PVT performers. Wiener en- 

tropy on selected leads from the frontal-parietal axis was able to discriminate the group of best perform- 

ers. Sample entropy from the HRV signal was able to identify the worst performers. This joint EEG-HRV 

quantification provides complementary indexes to indicate more reliable human performance. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Stress, fatigue, and sleep deprivation have each been demon-

strated to affect human performance [1–3] . Being stressed or

fatigued means that a person is over- or under-aroused and will

not perform to the best of his/her ability. Early studies established

the existence of an empirical relationship between performance

and arousal. This relationship is usually referred to as the Yerkes–

Dodson law [4] . This curvilinear performance-arousal relationship

has been challenged by many other theories in the past. For some

authors, performance on complex tasks degraded with increased

arousal [5] , while others suggested a linear relationship when task

complexity was low [6] . 

Electroencephalography (EEG) provides a neurophysiological

measure in situations where stress, mental fatigue and drowsiness

are involved. In healthy people not experiencing stress, there is

a balance between the sympathetic and parasympathetic arms

of the autonomic nervous system. Stress causes activation of the

emotional and vigilance systems, affecting the production of alpha

waves [7] over frontal regions. When people become fatigued,

they usually report difficulties concentrating and focusing on tasks

that they are required to perform. EEG alpha and theta oscillations
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eflect cognitive and memory performance [8] and are possible

arkers of fatigue-induced changes. Drowsiness is easily detected

hrough EEG by measuring the power spectrum in the alpha band

t parieto-occipital sites [9] . 

By its nature, heart rate variability (HRV) provides an indicator

f parasympathetic and sympathetic balance. HRV modifications in

ow-frequency (LF, 0.04 to 0.15 Hz) and high-frequency (HF, 0.15 to

.4 Hz) domains are associated with stress exposure. A reduction

n the high-frequency component of HRV and an increase in the

ow-to-high-frequency ratio were observed in the stress condition

ompared with those in the control condition [10] in a mental

orkload study. Modifications of the LF/HF ratio were also noted

y another study [11] on mental stress. A test of mental fatigue af-

er a long arithmetic task showed that total power, low-frequency

ower and the LF/HF ratio increased after the task [12] . Drowsiness

as measured in car drivers by HRV in a recent study [13] . The

uthors reported increased HF and decreased LF and LF/HF ratio

n comparison with the initial values before driving. Laboratory

ndings on drivers’ alertness and drowsiness can be generalized

o real-world situations [22] . 

The correlation between electroencephalography and heart rate

ariability has been investigated during sleep [14] , and one short-

erm study also examined its modulation during event-related

ttention shifts [15] . This last study focused on time and fre-

uency parameters from the HRV signal and frequency parameters

rom EEG signals in the alpha and theta bands. We designed a

https://doi.org/10.1016/j.neucom.2018.05.043
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imilar study with a different approach. Specifically, we sought

o analyze how hemispheric attentional shifts and cardiovascular

arameters relate to human performance at different levels of

atigue. 

Interactions between EEG- and electrocardiography (ECG)- 

erived measures have also been proposed in hybrid brain-

omputer interface (BCI) systems [15,16] . BCIs translate brain

ntentions into commands deliverable to a machine. Usually,

on-invasive BCI uses EEG as its main data source. Hybrid BCIs

ombine a different kind of physiological signal with EEG to im-

rove the overall performance. The combination of EEG with ECG

ignals has been proposed to improve classification accuracy in

otor imagery (MI) [16] . This goal could be achieved using an ex-

erimental paradigm with HRV, taking advantage of the increased

espiratory and cardiac activity during task execution. For example,

n the case of MI, subjects who have the ability to vividly imagine

he limb movement also display a significant shift in HRV. The

nvolvement of the subject is also increased in the case of virtual

eality experiments where the subject is immersed in the environ-

ent and emotions are heightened. However, stress and emotion

lso cause heart rate changes. The impact of these changes could

e reduced using an adaptive autoregressive filter. For BCIs, it may

lso be possible to take advantage of such changes associated with

ser stress level. If the stress level detected through heart rate

ises above a certain threshold and causes the user’s performance

o change, this phenomenon could be interpreted by the machine

s a warning signal associated with the decision to recalibrate the

ystem. In fact, performance stability over time is an unresolved

ssue with BCIs. A hybrid EEG/HRV system that adapts to user

ental state could be useful for achieving performance stability. 

In the field of adaptive BCIs, an approach using brain entropy

as proposed recently [17] . The authors’ hypothesis was that

erformance would decrease over multiple sessions, caused by

 lack of novelty in the stimuli. In fact, according to Bayesian

ognitive science, there should be a relationship of some sort

etween brain energy expenditure and novelty. The authors argue

hat BCI systems could take advantage of this relation, which re-

ates directly to inter-session performance decay in many machine

earning algorithms. A possible application of this principle is that

CI paradigms could adjust the level of interaction with the user

ccording to his/her cognitive state. Theoretically, brain entropy

nd its relation to cognitive workload or attentional orientation

ould be used not only to change the information level streaming

o the user in BCI systems but also to build a bidirectional com-

unication channel between humans and machines though brain

tate manipulation. 

In this study, we conducted a psychomotor vigilance task (PVT)

ith 17 subjects to measure their fatigue level while simultane-

usly measuring EEG and HRV correlates of their performance.

ntropy was then calculated through the acquired EEG and HRV

ata. Our goal was to find a way to measure event-related atten-

ion and monitor HRV changes to build a complete framework

ncorporating neurophysiological variables affected by fatigue and

o describe the overall impact of these variables on performance. 

. Materials and methods 

Twenty-two students attending National Chiao Tung University

Hsinchu, Taiwan) were recruited to participant this longitudinal

tudy for continuous six months. Five subjects were unable to

omplete all sessions of this experiment and were not included

n this study. Included participants were 13 males and 4 females,

ged 22.4 ± 1.5. Their fatigue level was monitored using an E3

ristband (Fatigue Science, USA) with effectiveness scores as out-

omes [18] . Effectiveness scores are an output number from the

AFTE algorithm (proprietary, Fatigue Science, USA) based on the
arameters extracted from the E3 smart-watch, mainly actigraphy

or sleep evaluation. Relevant sleep factors included acute sleep

nterruptions, cumulative sleep debt, and the consistency of sleep

nset and wake times. In a previous study, E3 resolution in sleep

etection was compared with standard clinical polysomnography

nd reached 92% accuracy [18] . However, the E3 wristband also

ecords other physiological parameters, such as heart rate and

alvanic skin response. These additional parameters contribute to

he SAFTE algorithm for fatigue detection, integrating sleep data

ith homeostatic and circadian rhythm and considering their in-

uence on cognitive functions. The ES index is a continuous output

rom the SAFTE algorithm that uses data gathered over a period

f three days. For this reason, subjects wore the smart watch

hroughout the longitudinal experiment, even at home. Each day,

he subjects’ ES at wake time was collected and sent to a cloud

erver. Participants received notifications through text message to

ome in to the laboratory for the PVT experimental trial within

2 hours if the ES score was suitable for an experimental session.

nitially, the ES score at wake time was classified into three classes

orresponding to well-rested (normal state), sleep-deprived (a

igh-fatigue level) or sleep–restricted states (a low-fatigue level).

ased on SAFTE guidelines, we classified the wake-time ES into

he normal class if the effectiveness score was in the 90–100%

ange, the well-rested state if ES was in the 70–90% range and the

leep-deprived state if ES was below 70%. Subjects performed the

VT test three times for each class. We divided the starting time

f the experiment into three time slots (morning, afternoon and

vening). Each recording of each class started at a different time. 

For each subject, we recorded two EEGs: one before starting the

VT test and another during the PVT test. EEG was recorded with

 Neuroscan SynAmps 2 64-channel device using extracephalic

eference A1 and a sampling frequency of 500 Hz. Before starting

he experiment, three minutes of free-running EEG were recorded

ith the subject’s eyes open to assess individual baseline activity.

ach participant sat in front of a desktop computer and completed

en minutes of the PVT paradigm. Subject reaction time was

easured according to a button press after the appearance of a

ed dot in the center of the screen. All subjects were right-handed,

nd they pressed the response button with their dominant hand.

n this way, we tried to reduce the impact of movement artifacts

n E3 signals. A response was regarded as ‘valid’ if the reaction

ime (RT) was between 100 ms and 1.2 seconds; otherwise, the

esponse was recorded as a lapse. For performance calculation,

n RT of less than 500 ms was accepted as a ‘correct’ response.

RV was extracted from the E3 Readiband photoplethysmographic

aveforms recorded from the left wrist. 

Preprocessing and analysis were carried out in a MATLAB

nvironment under an academic license. Preprocessing of photo-

lethysmographic data included removal of ectopic beats, trend

emoval and resampling. For ectopic beat removal, an HRV value

igher than 20% of the previous value was considered a distur-

ance of the cardiac rhythm and was substituted with the median

f all subjects’ adjacent HRV points. The signal after trend removal

as resampled at 16 Hz. 

EEG preprocessing included an initial finite impulse response

FIR) bandpass filter in the range of 1–45 Hz. Artifactual sources

ere removed by independent component analysis (ICA) de-

omposition using EEGLAB [19] , and after back-projection, the

requency content of the EEG signals was further reduced in the

ange of 4–30 Hz. The frequencies included in the analysis were

he theta, alpha and lower/higher beta bands. We included drowsi-

ess indicated by theta (4–8 Hz), relaxed wakefulness indicated by

lpha (8–12 Hz), alertness indicated by lower beta (13–20 Hz) and

ntense mental activity indicated by higher beta (20–30 Hz). 

During PVT, one second before the appearance of the dot was

onsidered the EEG epoch of maximal alertness for the partici-
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Fig. 1. 64 Channels and the electrode position system used in the experiment to 

acquire the EEG signals. The highlighted electrodes are from frontal (red) and lat- 

eral parietal areas (blue) used to build the W.E. index (formulas [A] and [B]). (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Table 1 

GROUP DEFINITIONS. 

Group definitions 

Group Description Label Group size 

ES > “Mean + SD” Best alertness BA 12 

“Mean” > ES > “Mean + SD” Above mean alertness AM 50 

“Mean-SD”< ES < “Mean” Under mean alertness UM 28 

ES < “Mean-SD” Worst alertness WA 19 
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pants. During this period, we expected to find a peak in alertness,

namely, the time when the probability of the dot appearing on

screen was maximal. The subjects were instructed to press the

button quickly after the appearance of the dot. We named this

epoch “attentional climax” and compared it with the baseline ac-

tivity on the resting EEG. For this comparison, we selected Wiener

entropy as an index of attentional shifts from the resting EEG. 

Wiener entropy [20] (WE) is a measure of the complexity of a

system, describing its degree of organization. An EEG application

using the same 1 s time window has already been discussed in

a paper by Burns at el. [21] . The Wiener entropy of the power

spectrum during attentional climax and resting EEG was obtained

through the following formula: 

 E = 

exp 
(∑ N−1 

n =0 ln x (n ) 
)

1 
N 

∑ N−1 
n =0 x (n ) 

where x(n) represents the magnitude of bin number n . Wiener

entropy tends to zero when the spectral distribution of the fre-

quency band exhibits a salient peak and is equal to one when

the spectral distribution of the frequency band is flat. For each

electrode, the index Wiener entropy = attentional climax/resting

EEG was calculated and averaged for all PVT epochs. The resting

EEG was adjusted to the same time window as attentional climax,

averaging 1 s epochs. 

According to a literature review of the influence of mental fa-

tigue on EEG signals, the main brain areas involved are the frontal

electrodes near the midline and one or more parietal areas, with

a reported lateralization around electrodes P7 and P8 [22–27] .

Considering that EEG activity reflects the neural activity of brain

areas more effectively than the activation of a single electrode,

we decided to include three electrodes to provide more consis-

tent findings than a single-electrode study could. We selected

three electrodes for each of these areas (frontal right, frontal left,

parietal left and parietal right) and built an index based on the

hemispheric differences as shown in the following figure. In this

study, AF3, F3, and F1 were selected to represent the mid-frontal

area in the left hemisphere. Electrodes AF4, F4 and F2 represented

the right frontal area. Electrodes TP7, P7 and P5 represented the

left parietal area. Electrodes TP8, P8 and P6 represented the right

parietal region.3 Fig. 1 

We chose an electrode montage according to these observations

so that we could average the Wiener entropy indexes from frontal

and parietal electrodes, as shown in the following formulas. 

Le f t Hemisphere 

= 

mean ( W .E.index F 3 + W .E.index AF 3 + W .E.index F 1 ) 

mean ( W .E.index P 7 + W .E.index P 5 + W .E.index T P 7 ) 
(A)

Right Hemisphere 

= 

mean ( W .E.index F 4 + W .E.index AF 4 + W .E.index F 2 ) 

mean ( W .E.index P 8 + W .E.index P 6 + W .E.index T P 8 ) 
(B)

Dividing the results from the left [A] and right side [B] of

the scalp over the mid-frontal and lateral parietal regions is also

consistent with previous findings [28] on visuospatial attention.

In this way, we could show lateralized hemispheric functionality

changes in relation to fatigue across important attention-related

regions. Models of arousal level in emotion detection [29] or

attention [30] include asymmetric indexes based on frontal EEG.

The close relation between arousal and the subject’s psychological

state could be captured by the frontal components of our index. 

For HRV, we used sample entropy (SE) to investigate cardio-

vascular dynamics. Sample entropy is already a tested measure of

HRV complexity, and we followed the approach suggested in an

article by Richman et al. [31] . SE was calculated over the whole

10-min PVT experiment. 
Each PVT session for each subject was labelled according to

he effectiveness score returned by the SAFTE model to quantify

lertness/fatigue measured at arrival in the laboratory right before

tarting the PVT test. In this way, we had an evaluation of the fa-

igue/alertness level of the subject closer to when the PVT test was

dministered. We used four classes to obtain better resolution and

nderstanding of the impact of fatigue on human performance.

able 1 summarizes the four group labels established by compar-

ng the single ES of each recording with the mean and standard

eviation (SD) of all ES values stored for all 153 recordings. 

Although we ran nine sessions with different starting times, the

nding days on which ES reflected an extreme (BA or WA) alert-

ess level was difficult. Consequently, the group sizes were differ-

nt, which could decrease the statistical power of the tests. For this

eason, we carefully selected statistical measures compatible with

nequal group sizes. Paired t -tests of ES, corrected for unequal

roup sizes, were significant for all pairwise comparisons between

roups. Furthermore, a between-group ANOVA ( F = 170.6658,

 = 3.1514 × 10 −40 ) and post hoc t -tests with Bonferroni correc-

ion showed significant differences between all pairs of groups.

NOVAs were performed as a one-way analysis of variance. With

hese ANOVA tests, we tested the hypothesis that the samples were

rawn from populations with the same mean against the alterna-

ive hypothesis that the population means were not all the same. 
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Fig. 2. Relation between ES ( x -axis) and PVT performance ( y -axis) for the four 

groups. The arms of the crosses are standard deviations on the x - and y -axes. The 

center of the crosses is the bivariate mean. 

3

3

 

b  

s  

i

 

e  

a  

(  

E  

s  

o

3

 

t  

A  

i  

(  

g  

a  

i  

p  

a  

A  

(  

p

 

i  

l  

f  

p  

p  

c  

o  

d  

c  

Fig. 3. Relationship between PVT performance and WE in the left hemisphere. Leg- 

end: BA (green), AM (blue), UM (cyan), WA (red). (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 4. Relationship between HRV sample entropy and PVT performance. Legend: 

BA (green), AM (blue), UM (cyan), WA (red). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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. Results 

.1. Performance 

PVT performance was calculated as the percentage of correct

utton presses out of valid responses, as explained in the Methods

ection. The relation between performance and alertness is shown

n Fig. 2 . 

Paired t -tests of PVT performance indicated significant differ-

nces between the BA and UM groups ( t = 2.9827, p = 0.0050), AM

nd WA groups ( t = 2.2387, p = 0.0321), and BA and WA groups

 t = 3.5568, p = 0.0013). The relation between performance and

S appeared to be approximately quadratic. There was also a

ignificant difference between groups in PVT performance in the

ne-way ANOVA ( F = 3.5693, p = 0.0166). 

.2. EEG 

Wiener entropy in the left hemisphere was significantly related

o between-group differences as tested by a balanced one-way

NOVA (F = 4.2122, p = 0.0074) and within-group differences us-

ng post hoc Bonferroni correction between BA and AM groups

 p = 0.0324), BA and UM groups ( p = 0.0052), and BA and WA

roups ( p = 0.0228). Fig. 3 plots EEG-derived Wiener entropy

gainst PVT performance. Paired t -tests of W.E. showed signif-

cant differences between the BA and UM groups ( t = −3.5165,

 = 0.002), BA and AM groups ( t = −2.8906, p = 0.0097) and BA

nd WA groups ( t = −3.2568, p = 0.0038). T-tests between the

M and WA groups ( t = −0.7403, p = 0.4632), WA and UM groups

 t = −0.3409, p = 0.7348) and UM and AM groups ( t = −1.1111,

 = 0.2711) were not significant. 

W.E. in the right hemisphere did not reach statistical signif-

cance ( F = 1.3808, p = 0.2528). A similar result with a prevalent

eft hemispheric effect (but only in alpha band) caused by mental

atigue was found in [32] on prolonged Stroop task. Sun et al. ap-

lied PVT (intra-session analysis) to demonstrate the asymmetrical

attern of connectivity (right > left) in fronto-parietal regions asso-

iated with sustained attention, supporting the right-lateralization

f this function [33] . Interestingly, in the fatigue state, significance

ecreases were observed in left, but not right fronto-parietal

onnectivity. This last result is compatible with our findings on
.E. hemispheric index that changes significantly over left regions

n this longitudinal study. 

.3. HRV 

In terms of sample entropy, there was a significant differ-

nce between groups as tested by a balanced one-way ANOVA

 F = 3.4869, p = 0.0184), and there was also a significant within-

roup difference between the AM and WA groups ( p = 0.0122)

sing post-hoc tests with Bonferroni correction. The following

gure displays the relationship between PVT performance and

ample entropy ( Fig. 4 ). 

Paired t -tests of SE showed significant differences between the

M and WA groups ( t = −3.3382, p = 0.002), WA and UM groups

 t = 2.0207, p = 0.0498) and BA and WA groups ( t = −2.1655,

 = 0.0418). Other comparisons did not reach significance (BA vs
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Fig. 5. Joint analysis between WE and HRV SE. Data are rendered as confidence 

ellipses (confidence level 68%). Legend: BA (green), AM (blue), UM (cyan), WA (red). 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Table 2 

Summary of results. 

ES Performance WE left hemi. SE 

BA 94.50 0 0 ± 2.1110 0.8073 ± 0.1197 0.9146 ± 0.0607 6.0601 ± 0.4089 

AM 87.0720 ± 2.7501 0.7242 ± 0.1965 0.9722 ± 0.0673 6.0419 ± 0.3846 

UM 76.9500 ± 2.7439 0.6231 ± 0.2709 0.9892 ± 0.0633 6.1459 ± 0.3997 

WA 65.3579 ± 8.3185 0.6065 ± 0.1947 0.9835 ± 0.0516 6.3722 ± 0.3603 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Correlation coefficients. 

Linear Correlation 

ES Perf. WE SE 

ES 1 0.2854( ∗) −0.2008( ∗) −0.2781( ∗) 

Perf. 0.2854( ∗) 1 −0.0957 −0.0 0 09 

WE −0.2008( ∗) −0.0957 1 0.1164 

SE −0.2781( ∗) −0.0 0 09 0.1164 1 

Fig. 6. The x -axis from left to right shows performance, WE and SE. The y -axis from 

top to bottom shows performance, WE and SE. 
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UM, t = −0.6120, p = 0.5472; AM vs UM, t = −1.1175, p = 0.2687;

AM vs BA, t = 0.1404, p = 0.8901). The relationship between the

WE index in the left hemisphere and the HRV SE during the PVT

test is plotted in Fig. 5 . 

While the BA and WA groups could be drawn on a straight line,

the middle groups had a non-linear relationship. What emerges

from the figure is the possibility of using W.E. (x-axis) to discrim-

inate the best performers from others and the possibility of using

SE (y-axis) to identify the worst performers. Jointly, WE and SE

identified the extreme groups. 

The results of sections A, B and C are summarized in Table 2 . 

After these steps, we can conclude that WE and SE reflect

two different behaviors within the four groups. Wiener entropy

is more effective than SE in describing the differences between

the best performers (BA) and others. In contrast, sample entropy

is the better of the two measures for differentiating the worst

performers from others. Together, these two indicators are able to

represent shifts between alertness and fatigue and their influence

on performance. 

Linear dependence was investigated through correlations

among the four performance variables, WE from our montage

on the left hemisphere, SE and alertness level as quantified by

ES. Table 3 shows the correlation coefficients, with significant

values marked by an asterisk. Effectiveness scores are shown in

relation to other variables. These correlations may be useful in

future studies because they can indicate the relationship between

alertness levels and other measurements. 

We can change the point of view and analyze the results from

the subjects’ alertness levels. Multivariate analysis of variance

using the EEG entropy-based index, HRV sample entropy and per-

formance as factors returned 1 dimension ( p = 0.0 0 03), rejecting

the null hypothesis that any difference observed in the sample
as due to random chance. These results suggest that the group

eans were different but linearly related. The variations in these

actors move together following a straight trajectory, with different

roupings along this trajectory representing different alertness

evels. This finding is compatible with the relationship previously

escribed between performance and alertness. A complete view of

ach factor is shown as an array of scatter plots in Fig. 6 . 

. Discussion 

In our work, we found that measures of entropy from EEG and

RV could, when used together, describe the relationship between

erformance and alertness. Entropy in EEG signals, calculated as

iener entropy from baseline, was able to identify groups of indi-

iduals with higher levels of alertness. Conversely, sample entropy

ould identify groups with low levels of alertness. We performed

 PVT experiment and found that there was a relation between

lertness level and performance outcome: the higher the alertness,

he better the performance. Consequently, higher WE and lower

E were able to detect the best and worst performers in the

xperiment. Our results aren’t influenced by emotional, anxiety or

tress factors typical of an intellectually demanding task requiring

ndurance and persistence from the subjects in the current ex-

eriment design. For this reason, a straightforward interpretation

f results is possible similarly to a monotonically increasing trend

linear or exponential) performance-arousal. A different article

34] proposed a mathematical method to correlate increases in

eart rate that follow mental arousal level. The authors reported a

onotonically increasing function correlating those two measures

imilarly to what we show in Fig. 4 of our paper. In Fig. 4 , we

erived a sample entropy index from heart rate and showed a

on-linear trend related to performance. EEG entropy analysis is a

ell-established methodology of analysis in modern neuroscience.

e reported in the Introduction of the paper the theories about

ntropy in an energy-spending system, similar to in our brain, and
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ts relation to the novelty of the stimulus. Here, we can add that

 different paper [35] reported findings using emotion analysis.

motions are related to arousal level because emotional strength

odulates the subjective arousal state. The authors calculated

uadratic entropy (derived from sample entropy) and used it to

etermine the complexity or irregularity of EEG signals under dif-

erently elicited degrees of arousal. Non-linear analysis of entropy

eems to be a good indicator of the brain’s working dynamics

nder different arousal levels. In their results, the authors found

hat states of excitement produced lower entropy levels than calm

tates. In our paper, we based our non-linear analysis on the

emispheric Weiner entropy index. According to our results, we

lso found a non-linear trend from the lowest alertness to the

ighest alertness levels as shown in Fig. 3 in the Results section. 

Wiener entropy modifications were significant mainly in the

eft hemisphere electrodes of the chosen montage. This finding

ould be explained by the involvement of the left hemisphere

n executing familiar actions [36] for efficient handling of rou-

ine situations. The PVT is a routine task in which the subject

s instructed to press a button as quickly as possible when a

go” signal appears. All subjects in the present study were right-

anded, but we do not think motor commands influenced our

ndings in the mid-frontal and lateral parietal areas. One reason

or this conclusion is that we were analyzing what we defined

s “attentional climax”, which occurs before the delivery of the

otor signal. Furthermore, we avoided motor-related areas when

hoosing electrode sites for our montage. 

This study confirmed that alertness correlates with PVT perfor-

ance within a testing session, as found in a recent investigation

37] . We observed that the relationship between alertness level

escribed by effectiveness scores and performance was not linear.

he mean points seemed to fall on a slowly increasing non-linear

urve. In terms of the empirical relationship between arousal and

erformance, this finding appears to contradict the Yerkes–Dodson

aw [38] and seems more in accordance with drive theory [39] .

rive theory is a theory of arousal that proposes a linear relation-

hip between arousal and performance where, as arousal increases,

o does the quality of performance. Many papers in the scientific

iterature debate the different performance-arousal relationships

nd have proposed new theories. The debate continues today. In

 recent Neuron paper, McGinley et al. (2015) [40] investigated

he link between arousal state and behavioral performance and

emonstrated neural correlates of an “optimal” state for an au-

itory detection task in mice. The authors demonstrated that,

ollowing a Yerkes-Dodson curve, the relationship between mem-

rane potential and arousal is a U curve, as is the variability in

embrane potential. In their approach mice, were not restricted

o periods of high performance, but they were allowed to drift

etween behavioral states, which enabled the authors to map out

 continuum of arousal. This approach provides a clear demon-

tration that just because an animal is awake and performing,

t is not in a specific, well-defined state. In our study, we used

he same principle, recording subjects at different alertness levels

using ES) and at different moments in the day. Our experiment

nvolving human subjects at certain moments of their real-world

ife is even more appropriate than those involving captive mice

hose life is restricted to cages. Electroencephalogram offers a

eliable neural correlate of human brain activity. However, in our

ndings with humans, the alertness-performance relationship was

etter modeled by drive theory than an inverted U-shape. 

Considering the significant differences in performance, we

onclude that WE in the left hemisphere can identify the best PVT

erformers, whereas the HRV SE can identify the worst perform-

rs. Past studies also showed a relationship between performance

nd measured brain activation, but here, we characterized which

arameters differentiated the best and worst performance from
he nearest “average” level, dividing the broad average group in

wo subsets. 

A possible future application of this study could be the trans-

ation of our findings into a longitudinal monitoring system

onsisting of a hybrid BCI device. A crucial issue in BCIs is the

ariation in performance within the same subject across different

essions. A monitoring system for the entropy domain for both

EG and HRV signals could track human performance and adapt

he system to the user’s cognitive state. Adaptation could be

chieved by changing the information flow to the user. In the

nterest of saving computational resources in the BCI system, it

ould be limited to HRV oscillations. In our case, HRV correlated

ith the shift in user performance from the below-mean to the

orst alertness class. We classified the lowest level of alertness

s WA. Our ability to identify this category by HRV means the BCI

ystem can recognize critical performance degradation and warn

he subject to rest. A recalibration for this BCI system could also

e necessary when user’s performance is too low. Fluctuations in

lertness could be compensated by the system slowing down or

ncreasing the data flow to the user. This adaptive BCI paradigm

ould also adjust the training of the classifier “on the fly”, adapting

he underlying classifier model. In fact, one goal for actual BCI

ystems is to autocalibrate, skipping the initial training phase for

he classifier. An alternative could be to use the HRV channel as

 “switch” for hybrid BCIs. When the subject reaches the lowest

lertness level as detected by HRV, the BCI system could change

odality. For example, it could change from a synchronous (cue-

ased) to an asynchronous (self-paced) mode. This modality shift

ould restore higher user performance for a limited period of time,

aintaining the compliance of the device. The functionality of

he system might decay after the user performed the task for an

xtended time. Nonetheless, the system could still continue to run

eyond the expected time. Some futuristic visions of BCI systems

arget them toward human brain enhancement. In this case, the

utcomes during the highest performance peak (our BA class in

able 2 ) could be monitored and stored. When the subject is in a

erformance class near his/her mean (AM or UM in Table 2 ), the

ystem could fill the gap between actual performance values and

he values recorded during the best period. In this way, the system

ould be operated as a performance enhancer for the user. This

pplication could be mainly targeted toward BCI usage in normally

bled users. Another application of joint EEG and HRV analysis

ould be driver fatigue detection: fatigue in drivers is not directly

easurable but inferred from other sources of information. EEG-

nd HRV-related changes could be modeled as a neural network

ble to simulate the brain’s behavior under different fatigue levels.

 similar concept was explored previously [41] where they mod-

led a Bayesian network to recognize driver mental states. The

ifference with our study is that authors also used eye tracking to

btain more insights into alertness state. Eye tracking could be an

mportant parameter to refine our findings and experiments. 

. Conclusions 

This study applied joint analysis of entropy in EEG signals and

RV under varying real-world fatigue states. Seventeen subjects

articipated six-month longitudinal study for monitoring the real-

orld fatigue levels through daily sampling system. As to our best

nowledge, this is the first EEG-based longitudinal study for real-

orld fatigue. According to the statistic and correlation analyses,

E of EEG signals is a stable index to identify BA group, and SE of

RV can stably represent the changes in WA group. This work sug-

ests the joint EEG-HRV quantification provides complementary in-

exes for a reliable indication of human performance and how per-

ormance is influenced by different arousal or fatigue levels. These

ndicators could have a practical application in real-life activities. 
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