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Summary (in english)

The work carried out during the Ph.D. in Medical Sciences and Biotechnology course
tested the application of machine learning models in several precision medicine top-
ics. In bioinformatic biomarker analysis, the publications focused on discretizing the
gene expression levels to obtain a manageable and insightful granularity. The works
demonstrated novel analysis pipelines to detect survival and tumor stages from onco-
logic patients’ biomarkers. The same chapter presented a procedure for a public health
decision support system based on machine learning, which has also been demonstrated
on the same dataset. The chemoinformatics numerical experiments for drug toxicity,
bioaccumulation prediction, or P450 enzyme bioactivity evaluation all exploited spiking
neural networks, showing the ability of this technique to handle structural information
of the compounds for predictive analysis. For clinical precision medicine, an algorithm
has been tested fusing clinical variables (ordinal and binary) from nearly 300 patients
to forecast the risk of developing lymphedema after breast cancer therapy. Moreover,
free software has been released to measure the volumetry of the affected limb in case of
edema or other pathologies requiring tracking of body parts over time. Another chapter
reported the development of a free Python library to run equivalence tests in the biomed-
ical sector, focusing on advanced visualization of the statistical outcomes. This library
also fills a gap in the biostatistical tools available to Python users requiring biomedical
equivalence analysis. Regarding regenerative medicine, a study has been introduced to
track octacalcium phosphate synthesis through a machine-learning methodology centered
on a novel algorithm exploiting an ad-hoc solution on merged XRD and FTIR peak de-
scriptors. Octacalcium phosphate is found in biological systems, particularly in the early
bone formation and mineralization stages. It is a precursor to hydroxyapatite, the main
mineral component of bones and teeth. The last chapter introduced a mass spectrometry
proteomic analysis sequence to detect aberrant protein expression levels. The procedure
has been tested on mesenchymal stem cells’ extracellular vesicle protein content cultured
on biomaterials doped or not with metallic ions.

Sommario (in italiano)

Le attività svolte durante il corso di Dottorato in Scienze Mediche e Biotecnologie si
sono concentrate sull’applicazione di modelli basati sul machine learning in diversi set-
tori della medicina di precisione. Per l’analisi bioinformatica dei marcatori tumorali, le
pubblicazioni si sono concentrate sulla discretizzazione dei valori di espressione genica
per ottenere una granularità dei dati più gestibile e rilevante per classificare i pazienti. I
lavori svolti hanno dimostrato l’uso di nuove sequenze di analisi per determinare sia la
sopravvivenza che gli stadi tumorali partendo dai biomarcatori nei pazienti oncologici.
Lo stesso capitolo ha presentato una procedura per creare un sistema di supporto alle
decisioni di sanità pubblica basato sull’apprendimento automatico, dimostrato sullo stes-
so tipo di dati. Gli esperimenti numerici nell’ambito della informatica chimica si sono
concentrati sulla tossicità delle molecole, la previsione del bioaccumulo delle sostanze
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negli esseri viventi o la valutazione della bioattività dell’enzima P450. Tutti questi lavori
hanno sfruttato le reti neurali spiking per l’analisi predittiva, dimostrando la capacità
di questa tecnica di gestire le informazioni contenute nella sola struttura chimica dei
composti. Per la medicina clinica di precisione, è stato testato un algoritmo che fonde
le variabili cliniche (ordinali e binarie) di quasi 300 pazienti per predeterminare il rischio
di sviluppare linfedema dopo la terapia del cancro al seno. Inoltre, è stato rilasciato un
software gratuito per misurare la volumetria dell’arto interessato in caso di edema o altre
patologie che richiedono il monitoraggio nel tempo della morfologia degli arti. Un ulterio-
re capitolo ha descritto lo sviluppo di una libreria Python gratuita per eseguire i test di
equivalenza specifici del settore biomedico, concentrandosi sulla visualizzazione tramite
grafici dei risultati statistici. Questa libreria colma anche una lacuna negli strumenti
biostatistici disponibili per gli utenti Python che necessitano dei test per l’equivalenza in
medicina. Per quanto riguarda la medicina rigenerativa, un algoritmo capace di tracciare
la sintesi del fosfato ottacalcico attraverso una metodologia di apprendimento automatico
ha sfruttato una soluzione ad–hoc per quantificare le fasi di produzione partendo da nove
descrittori delle caratteristiche dei picchi nei segnali XRD e FTIR. Il fosfato ottacalcico
si trova in diversi tessuti anatomici, in particolare nelle prime fasi di formazione e mi-
neralizzazione delle ossa. È un precursore dell’idrossiapatite, il principale componente
minerale di ossa e denti. L’ultimo capitolo ha introdotto una sequenza di analisi nel
campo della proteomica che ha utilizzato i dati di spettrometria di massa per rilevare
livelli abnormali di espressione proteica. La procedura è stata testata sul contenuto pro-
teico delle vescicole extracellulari nelle cellule staminali mesenchimali coltivate su diversi
biomateriali drogati con ioni metallici o puri.
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1 Introduction

Precision medicine, also known as personalized medicine, is an approach to healthcare
that considers individual variability in genes, environment, and lifestyle for each person.
It seeks to customize medical treatment to each patient’s unique characteristics, aiming
to improve treatment effectiveness and minimize side effects. Precision medicine consid-
ers factors such as a person’s genetic makeup, the molecular profile of their disease, and
other specific characteristics to tailor prevention, diagnosis, and treatment strategies.
By utilizing advanced technologies, such as genetic sequencing, molecular diagnostics,
and big data analytics, precision medicine allows healthcare professionals to make more
informed decisions when determining patients’ most suitable treatment plans. This ap-
proach enables the identification of specific treatments that are more likely to be effective
for certain individuals or groups, leading to better health outcomes and potentially reduc-
ing healthcare costs in the long run. Precision medicine has applications across various
medical disciplines, including oncology, cardiology, neurology, and infectious diseases. It
represents a shift from the traditional “one-size-fits-all” approach to medicine toward more
targeted and personalized treatments that consider each patient’s unique characteristics.

Machine learning (i.e., ML) is a subset of artificial intelligence that focuses on devel-
oping algorithms and statistical models that enable computers to learn from and make
predictions or decisions based on data without being explicitly programmed for those
tasks. Machine learning algorithms allow computer systems to improve their perfor-
mance on a specific task over time as they are exposed to more data. There are several
types of machine learning techniques, exemplified in Figure 1.1.

Each machine learning approach has its strengths and weaknesses, making them suit-
able for different types of problems and datasets.

• Supervised Learning: In supervised learning, the algorithm is trained on a labeled
dataset, where the corresponding correct output accompanies the input data. The
algorithm learns to map the input to the output and make predictions or deci-
sions based on new data. Popular supervised learning algorithms include linear
regression, logistic regression, decision trees, support vector machines, and neural
networks.

• Unsupervised Learning: Unsupervised learning involves training the algorithm on
data that is not labeled or classified. The algorithm must find patterns and rela-
tionships within the data on its own. Clustering and association are typical tasks in
unsupervised learning. Popular unsupervised learning algorithms include k-means
clustering, hierarchical clustering, and association rule learning.

• Semi-Supervised Learning: Semi-supervised learning combines elements of both
supervised and unsupervised learning. It uses a small amount of labeled data and
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Figure 1.1: Main learning methodologies
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a more significant amount of unlabeled data to improve learning accuracy. This
technique is beneficial when obtaining a large amount of labeled data is difficult or
expensive.

• Reinforcement Learning: Reinforcement learning involves training the algorithm to
make decisions in a specific environment to achieve a goal. The algorithm learns
through trial and error, receiving positive or negative feedback based on its ac-
tions. Popular reinforcement learning algorithms include Q–learning and deep Q–
networks.

• Deep Learning: Deep learning is a subset of machine learning that uses artificial
neural networks with multiple layers to model and understand complex patterns
and relationships within data. Deep learning excels in image and speech recog-
nition, natural language processing, and other complex pattern recognition tasks.
Convolutional Neural Networks and Recurrent Neural Networks are popular deep
learning architectures.

• Ensemble Learning: Ensemble learning involves combining multiple machine learn-
ing models to improve the performance and robustness of the system. Techniques
such as bagging, boosting, and stacking are used to create ensemble models, such
as random forests and gradient boosting machines.

In recent years, the intersection of machine learning and precision medicine has opened
up new avenues for personalized and effective healthcare interventions. Algorithm–based
medicine can be considered an active component of precision medicine, as it involves
the application of computational algorithms and decision rules to guide clinical decision-
making and patient management. On the other hand, precision medicine is an approach
to healthcare that customizes medical treatment and interventions to individual charac-
teristics, such as genetic makeup, environmental factors, and lifestyle choices. Algorithm–
based medicine contributes to personalized medicine by providing standardized and ef-
ficient protocols for diagnosing, treating, and managing patients. By leveraging compu-
tational algorithms and decision-support systems, healthcare providers can make more
informed and data-driven decisions that are tailored to the individual patient’s needs.
These algorithms can help interpret complex patient data, identify potential treatment
options, and predict patient outcomes, thereby supporting the delivery of personalized
care in line with the principles of precision medicine. While algorithm-based medicine
is a valuable tool within the broader framework of precision medicine, it is just one of
the many components that contribute to the goal of delivering targeted and personalized
healthcare interventions to optimize patient outcomes. Integrating various technologies,
data analytics, and clinical expertise plays a crucial role in advancing the practice of pre-
cision medicine and improving patient care. Under this view, evidence–based medicine
emphasizes the integration of clinical expertise, patient values, and the best available
research evidence in the decision-making process for patient care. In the context of pre-
cision medicine, evidence–based medicine is critical in ensuring that medical decisions
are based on the most current and reliable scientific evidence. By incorporating the
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1 Introduction

findings of rigorous clinical research, such as randomized controlled trials, systematic re-
views, and meta–analyses, evidence-based medicine helps healthcare professionals make
informed decisions about the most effective treatments and interventions for individual
patients. The principles of evidence-based medicine are essential in selecting appropri-
ate diagnostic and therapeutic strategies, thereby contributing to delivering precise and
effective healthcare interventions. By integrating evidence-based practices with a per-
sonalized approach to patient care, precision medicine can optimize treatment outcomes
and improve patient satisfaction and quality of life. Indeed, the evidence–based paradigm
of medicine could be integrated with machine learning (or algorithm–based medicine),
playing important roles in improving healthcare outcomes [Subbiah, 2023].

1.1 Overview of machine learning models for precision
medicine

Precision medicine, or personalized medicine, is an approach to medical treatment and
healthcare that considers individual variability in patients’ genes, environments, and
lifestyles. Machine learning is crucial in advancing precision medicine by helping health-
care professionals make more accurate and tailored treatment decisions for individual
patients [MacEachern and Forkert, 2021]. Integrating machine learning into medicine
promises to improve patient care, reduce costs, and advance our understanding of dis-
eases and treatments. Indeed, machine learning is crucial in advancing precision medicine
by helping healthcare professionals make more accurate and tailored treatment decisions
for individual patients. Some specific ways in which machine learning is utilized in pre-
cision medicine include:

1. ML algorithms could analyze vast amounts of genomic data; this encompasses iden-
tifying genetic mutations, understanding gene expression patterns, and predicting
disease risks based on an individual’s genetic makeup. Machine learning can help
uncover hidden patterns and associations in genomic data. In this context, ML
could be applied to discover and validate biomarkers, that are molecular or genetic
indicators of disease presence, progression, or response to treatment. For clinical
trials management, ML could identify suitable candidates for clinical investigations
based on their genetic profiles, increasing the chances of successful trial outcomes
and the development of personalized therapies.

2. ML could be employed for drug discovery and development to predict how specific
drugs interact with a patient’s genetic profile [Vamathevan et al., 2019]. By virtual
screening and quantitative structure-activity relationship analyses, researchers can
help in drug repurposing, identifying potential drug candidates, and optimizing
the design of clinical trials. Additionally, in chemoinformatics, ML can predict how
individual patients will respond to specific medications, allowing for more precise
and effective treatment plans with fewer adverse effects.

3. Another crucial aspect of tailoring treatment and intervention strategies to specific
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1.1 Overview of machine learning models for precision medicine

patient populations is identifying subgroups with similar characteristics and dis-
ease profiles. Stratifying patients at a population level can help healthcare systems
and providers identify high-risk patient groups, allocate resources accordingly, and
deliver patient-centered care. Accurate patient evaluation also has the final goal of
enabling clinicians to adjust treatment plans and interventions in real-time. More-
over, identifying health trends and risk factors for population health management
informs public health initiatives and interventions. For example, analyzing medical
imaging data, such as MRI and CT scans, algorithms could classify subtle patterns
and markers that may not be apparent to the human eye, aiding early disease
diagnosis and treatment planning [Plant and Barton, 2021].

This summary of the ML involvement in precision medicine only reported a few appli-
cation areas where predictive algorithms could be implemented [Wilkinson et al., 2020;
Nayarisseri et al., 2021]. For example, more in-depth discussion could be addressed on
genomics ML-based in-silico models operating on genomic sequence analysis, gene ex-
pression analysis, functional annotation, genomic variation analysis or association stud-
ies, epigenomics, metagenomics, or single-cell genomics. Indeed, genomics is the study
of the complete set of an organism’s genes, including their sequences and structures.
However, other “omics” techniques offer exploitable biological data for ML algorithms
to understand biological systems at different molecular levels. They include transcrip-
tomics, proteomics, metabolomics, metagenomics, epigenomics, phenomics, lipidomics,
glycomics, and pharmacogenomics. Omics fields are highly interdisciplinary, involving bi-
ology, genetics, bioinformatics, and various laboratory techniques to generate and analyze
large datasets. The big datasets created with omics outputs have transformed biological
and medical research by providing comprehensive insights into complex biological sys-
tems, enabling advances in personalized medicine, drug discovery, and understanding the
molecular basis of diseases. Indeed, the term multi-omics refers to the integration and
analysis of data from multiple "omics" fields; this approach should enable a more com-
prehensive understanding of complex biological systems by considering various molecular
layers simultaneously. ML provides methods to combine and integrate different omics
sources for multi-omics dataset building, aligning them to provide a holistic view of bi-
ological systems. The multi-source data could result in many featured genes, proteins,
and metabolite expression indicators. Therefore, in a standard ML analysis pipeline (a
summary in Figure 1.2), selecting a subset of relevant descriptors helps focus on the most
informative variables for downstream analyses. Alternatively, dimensionality reduction
could be employed to produce a lower set of virtual features summarizing the character-
istics of the original ones. Selecting relevant features and reducing the dimensionality
of data is crucial for identifying the most important factors contributing to a patient’s
health condition and improving the interpretability of models. The outcomes of ML-
centered multi-omics analysis might have the potential to drive advancements in fields
like personalized medicine, not only by predicting various biological outcomes or clinical
responses, but also constructing biological pathways or networks to highlight interactions
(gene-gene interactions, protein-protein interactions, and regulatory networks), show sig-
nificant differences between experimental conditions which is essential for understanding
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1 Introduction

the molecular basis of diseases and variations, or discover biomarkers by identifying sig-
natures associated with specific clinical diseases.

Also, drug development, metabolism, and toxicity are topics that ML has successfully
applied in their various connotations. Machine learning is used to predict the properties
of molecules and identify potential drug candidates. By analyzing large datasets of chem-
ical and biological information, ML models can suggest novel compounds that are highly
likely effective against specific diseases [Wale, 2011]. Additionally, ML algorithms can
help identify potential drug targets by analyzing complex biological data [Kalinin et al.,
2018]. They can sift through genetic, proteomic, and other biological data to pinpoint
specific molecules or pathways crucial in disease development. For predictive toxicol-
ogy, machine learning models are used to predict the toxicity of new drug candidates,
helping researchers identify potential safety issues early in the development process. Un-
derstanding compound toxicology can help prioritize the most promising ones and reduce
the time and costs associated with drug development. As optimization tools, ML is used
to manage clinical trials by identifying the most relevant patient populations, predicting
patient responses to treatments, and improving trial design. Proper management can
accelerate the development process and improve the chances of success in clinical trials.
With “drug repurposing”, machine learning can help identify new uses for existing drugs
by analyzing large datasets of biological and clinical information. By understanding the
molecular mechanisms of different diseases, researchers can repurpose existing drugs for
new indications, potentially reducing the time and costs associated with traditional drug
development. In the view of precision medicine, ML-driven drug discovery allows for
the production of targeted therapies tailored to a patient’s unique genetic makeup and
disease characteristics.

Patient stratification, also known as patient segmentation, is one core concept of
precision medicine, and it refers to dividing patients into subgroups based on specific
characteristics in terms of genome to phenotype expression [Glaab et al., 2021], dis-
ease biomarkers, or clinical presentation. Data-driven ML plays a crucial role in patient
stratification in medicine, enabling more precise and personalized approaches to treat-
ment and care by identifying distinct disease subtypes. In particular, machine learning
algorithms can predict disease progression, treatment responses, and patient outcomes by
analyzing patient-specific factors. One goal is to build decision-support systems assist-
ing healthcare professionals by integrating patient data, clinical guidelines, and research
evidence. Eventually, such decision systems able to work in real-time can strengthen
doctors’ confidence in making more accurate and personalized treatment decisions, ul-
timately improving patient outcomes and safety. However, the effective implementation
of decision support systems for patient stratification requires robust data quality, model
interpretability, and validation using real-world clinical data [Beaulieu-Jones et al., 2021].

Another aspect ML can introduce to precision medicine is the concept of causality
[Sanchez et al., 2022]. Causal machine learning refers to using machine learning tech-
niques to infer and understand causal relationships between variables in a system. Unlike
traditional machine learning, which focuses on predicting outcomes based on patterns in
data, causal machine learning seeks to identify cause-and-effect relationships, allowing
for a deeper understanding of how changes in one variable affect another. Causal ma-
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1.1 Overview of machine learning models for precision medicine
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Figure 1.2: A typical machine learning workflow for omics data
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1 Introduction

chine learning could play a crucial role in precision medicine by helping researchers and
healthcare practitioners uncover causal relationships between variables, identify treat-
ment effects, and make more informed decisions about patient care. Precision medicine
aims to tailor medical treatments to the individual characteristics of each patient, tak-
ing into account genetic, environmental, and lifestyle factors. Causal machine learning
techniques contribute to this goal by providing a deeper understanding of the causal
mechanisms underlying diseases and treatment responses. For example, causal machine
learning methods, such as propensity score matching, instrumental variable analysis, and
regression discontinuity design, are used to estimate the causal effect of a treatment or
intervention: it can aid in determining the effectiveness of specific treatments for indi-
vidual patients based on their characteristics. Moreover, for biomarker identification,
causal inference methods help identify biomarkers and genetic factors that are causally
linked to diseases [Lecca, 2021]. Understanding the causal relationships between genetic
variations and disease outcomes can guide the development of targeted therapies. Ad-
ditionally, by analyzing causal relationships in patient data, machine learning models
can assist in developing personalized treatment plans. To optimize treatment outcomes,
these plans consider various factors, such as genetic information, patient history, and
lifestyle. Causal machine learning can enhance the design of clinical trials by identifying
patient subgroups that are more likely to benefit from a particular treatment, leading to
more efficient and targeted clinical trials, reducing costs, and expediting the development
of effective therapies. Another interesting point is that causal models enable counterfac-
tual reasoning, allowing researchers to simulate “what-if” scenarios [Karim et al., 2023].
It is beneficial in assessing the potential outcomes of different treatment strategies and
understanding how alternative interventions might impact patient outcomes. In clinical
settings, causal reinforcement learning is applied to develop dynamic treatment regimes
that adapt over time based on patient responses and changing conditions. This approach
is precious for chronic and complex diseases where treatment strategies may need to be
adjusted throughout the disease.

1.2 In–silico ML models

In silico or computational models are mathematical or computer-based models that sim-
ulate and predict biological, chemical, or physical processes. Machine learning is in-
creasingly applied to enhance the accuracy and predictive power of in silico models in
various fields, including chemoinformatics [Lo et al., 2018; Fox and Kriegl, 2006; Niazi
and Mariam, 2023], materials science [Morgan and Jacobs, 2020; Jablonka et al., 2020;
Batra et al., 2021; Wang et al., 2020], and biology [Greener et al., 2022; Shastry and
Sanjay, 2020; Cao et al., 2020; Auslander et al., 2021; Reel et al., 2021]. A visual map of
the fields of application and the subbranches of machine learning in medicine and biology
is displayed in Figure 1.3. However, it should be noted that in–silico models might rely
on different technologies, and ML is only one of the available ones [Faulon and Faure,
2021]. The complete in–silico scenario is reported below:

• Molecular Modeling : This involves simulating and predicting the structure and
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1.2 In–silico ML models

behavior of molecules, such as proteins, DNA, and small molecules. It includes
techniques like molecular dynamics simulations and docking studies to understand
molecule interactions [Noé et al., 2020; Glielmo et al., 2021].

• Systems Biology Models: These models integrate biological components, such as
genes, proteins, and biochemical reactions, to simulate and analyze complex bio-
logical systems. They help understand the behavior of entire biological systems,
including signaling pathways and regulatory networks [Kim et al., 2020].

• Network Models: Network models represent and analyze complex biological net-
works, such as gene regulatory networks, protein-protein interaction networks, and
metabolic networks. They help understand the relationships and interactions be-
tween various components within a biological system [Liu et al., 2020].

• Quantitative Structure-Activity Relationship (QSAR) Models: These models are
used in drug discovery and development to predict chemical compounds’ biological
activity or properties based on their structure [Carracedo-Reboredo et al., 2021].
QSAR models help in the design and optimization of new drug candidates [Chen
et al., 2018].

• Pharmacokinetic/Pharmacodynamic Models: These models are used to study the
absorption, distribution, metabolism, and excretion (pharmacokinetics) of drugs,
as well as their pharmacological effects (pharmacodynamics) in the body [Ota and
Yamashita, 2022]. PK/PD models help in predicting drug behavior and optimizing
dosage regimens.

• Bioinformatics Models: Bioinformatics models involve applying computational tech-
niques to analyze and interpret biological data, such as DNA sequences, protein
structures, and gene expression data. They help understand biological processes at
the molecular level and design experiments for further analysis [Koumakis, 2020;
Yang et al., 2020].

• Artificial Intelligence and Machine Learning Models: AI and machine learning mod-
els are increasingly used in biology to analyze complex biological data, predict out-
comes, and identify patterns or trends that might not be easily discernible using
traditional statistical methods.

In–silico models built with machine learning are faster, cost–effective, and capable of
handling large–scale data. However, validating and refining these models using experi-
mental data is crucial to ensure their reliability and accuracy [Faulon and Faure, 2021].

Apart from the vast set of methodologies applicable to biology and medicine, all share
a joint proposition called the “Goldilocks principle” (also known as the “principle of the
golden mean”). The level of detail in an in-silico model should be sufficient to accurately
represent the biological system or process being studied while balancing computational
feasibility and practical constraints. Indeed, the Goldilocks principle in modeling under-
scores the importance of finding a “just right” balance for optimal outcomes regarding
the size and complexity of the model [Ko and Wren, 2021].
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Phenomenological Mechanistic
Phenomenological models in medicine are
typically empirical and based on observed
clinical data and patterns.

Mechanistic models in medicine aim de-
scribe biological mechanisms and physio-
logical processes using mathematical equa-
tions.

They focus on describing and predicting
the behavior of a disease or biological pro-
cess without necessarily understanding the
underlying mechanisms causing the ob-
served phenomena.

Require a detailed understanding of the
pathophysiology, molecular interactions,
and physiological changes associated with
the disease or treatment response.

These models are often statistical or prob-
abilistic in nature and are useful for pre-
dicting clinical outcomes, disease progres-
sion, and treatment responses based on
historical data and trends.

These models often involve the integration
of biochemical, physiological, and phar-
macological knowledge into mathemati-
cal or computational frameworks, such
as systems biology or pharmacokinetic–
pharmacodynamic models.

They are commonly used when the ex-
act biological mechanisms contributing to
a disease are not fully understood, but
there is enough data to establish correla-
tions and patterns.

Mechanistic models are parameter-
dependent for simulating the effects of
biological systems and demand strong
mathematical and biological knowledge.

Can be handled with open source software. Often require licensed computer simula-
tors.

Table 1.1: Features of in–silico phenomenological vs. mechanistic models

In biology and medicine, another type of categorization of the in–silico models involves
the so–called phenomenological and mechanistic models [Vert and Jacob, 2008]. They
differ in their approach to understanding and predicting biological phenomena and dis-
eases. While phenomenological medical models help make predictions based on observed
correlations, mechanistic models offer an understanding of the biological processes driv-
ing disease progression and treatment responses. Both types of models play a crucial role
in different aspects of medical research, including disease modeling, drug development,
and personalized medicine, each providing unique insights and applications for improving
patient outcomes and healthcare practices [Rodrigue and Philippe, 2010]. The Table 1.1
highlights the main differences between them.

Among mechanistic, compartmental models are a type of mathematical modeling used
to represent and study the flow of quantities or substances through different compart-
ments in a system. In these models, compartments represent distinct groups or locations
where the quantities of interest are stored or transferred. The most common compart-
mental models in medicine are sets of mathematical equations that describe the distri-
bution, metabolism, and elimination of drugs or other substances in the body. These
models are precious in pharmacokinetics, which studies how drugs are absorbed, dis-

17



1 Introduction

tributed, metabolized, and excreted by the body [Jia and Gao, 2022]. Compartments
in these models represent various physiological or anatomical locations within the body,
such as blood, tissues, organs, or specific physiological systems. The flow of substances
between these compartments is described using mathematical equations that account
for the rates of absorption, distribution, metabolism, and excretion of the substances.
These models help in predicting how the concentration of a drug or substance changes
over time in different parts of the body. They can also be used to optimize dosage reg-
imens, estimate drug clearance rates, and understand how factors such as age, weight,
and physiological conditions affect the pharmacokinetics of a drug [Vodovotz and An,
2019]. While compartmental models are widely used and valuable tools in various fields,
including medicine, they have limitations and potential challenges. Some common issues
and limitations associated with compartmental models include:

• Simplifying Assumptions: Compartmental models often rely on simplifying as-
sumptions to describe complex physiological processes, which can lead to an over-
simplification of the actual system and may only partially capture some of the
dynamics and interactions.

• Limited Representation of Biological Variability: These models may need to ade-
quately account for the individual variability in physiological parameters and re-
sponses among different patients or experimental subjects, potentially leading to
discrepancies between model predictions and real-world observations.

• Complexity in Model Development: Creating a comprehensive compartmental model
that accurately represents the intricate physiological processes in the body can be
challenging and may require a significant amount of data and specialized expertise.

• Difficulty in Model Validation: Validating compartmental models can be complex,
mainly when experimental data is limited or when the model involves numerous
assumptions. Assessing the model’s predictive accuracy and reliability in real-world
scenarios can be challenging.

• Incorporating Time Variability: Some compartmental models may not effectively
capture the dynamic changes that occur over time, especially in cases where phys-
iological processes exhibit time-dependent behaviors.

• Assumptions of Instantaneous Mixing: Certain compartmental models assume in-
stantaneous and uniform mixing within each compartment, which might not accu-
rately reflect the true physiological processes, especially in cases where spatial or
temporal heterogeneity exists.

Another frequent modeling strategy inside mechanistic models are agent–based models
[An et al., 2009]. These computational models simulate the behavior and interactions of
individual agents, such as cells, microorganisms, or individuals, within a complex bio-
logical system. Agent–based models are beneficial for studying the dynamics of disease
spread, population health, and the effects of various interventions in healthcare. Com-
pared to traditional mathematical models, these models provide a more granular and
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detailed representation of the heterogeneity and interactions among agents within a sys-
tem [Hadzic et al., 2009]. In the context of medicine, agent-based models are used in
various areas, including:

• Epidemiology and Disease Spread: Agent–based models can simulate the spread of
infectious diseases within a population by modeling interactions between individ-
uals, incorporating factors such as contact patterns, transmission dynamics, and
individual behaviors.

• Cancer Modeling: Agent–based models are used to simulate the growth and pro-
gression of tumors, the interactions between cancer cells and the immune system,
and the effects of different treatment strategies on tumor development and response.

• Healthcare Delivery and Policy: Agent–based models can simulate healthcare sys-
tems to analyze the impact of various policies, resource allocation strategies, and
interventions on healthcare outcomes, patient flow, and healthcare costs.

• Drug Development and Pharmacokinetics: Agent–based models can be used to sim-
ulate the pharmacokinetics and pharmacodynamics of drugs, allowing researchers
to assess drug effectiveness, optimize dosing regimens, and predict potential side
effects.

Agent-based models also come with specific challenges and limitations [Macal, 2020].
Some of the issues and considerations associated with the use of agent–based models
include:

• Computational Complexity: Simulating large-scale systems with a high number of
agents can be computationally demanding and time–consuming; this can limit the
scalability of agent–based models for certain applications and may require high–
performance computing resources.

• Model Validation and Calibration: Validating and calibrating agent-based models
can be challenging due to the complex and stochastic nature of the simulations.
It can be not easy to ensure that the model accurately represents the real–world
system it is intended to simulate.

• Parameterization and Sensitivity Analysis: Agent–based models often involve nu-
merous parameters and rules that govern agent behavior, and small changes in
these parameters can lead to significantly different model outcomes. Conducting
sensitivity analyses to assess the robustness of the model results is essential but
can be complex.

• Data Requirements and Availability: Agent–based models may require substantial
data to inform the development and calibration of the model. Obtaining detailed
and accurate data on agent characteristics and interactions can be challenging,
especially in the case of biological systems and complex social behaviors.
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• Interpretability and Transparency: Agent–based models can be highly complex,
making it challenging to interpret and understand the underlying dynamics of the
simulated system. Ensuring transparency in model assumptions, rules, and outputs
is crucial for facilitating stakeholders’ trust and acceptance of the model.

• Model Complexity and Design: Designing an ABM that adequately captures the
essential dynamics of a system while remaining computationally feasible can be
a delicate balance. Simplifying the model too much can lead to losing critical
details, while overly complex models may become challenging to understand and
analyze. Addressing these challenges often requires a careful balance between model
complexity, data availability, computational resources, and the specific goals of the
simulation.

In general, the limitations of mechanistic models relate to high–quality data require-
ments because developing and calibrating mechanistic models often requires superior–
quality data, which may only sometimes be readily available. Obtaining accurate and
comprehensive data for all model parameters can be challenging, especially in cases where
the biological system is complex or not well–characterized [Liang et al., 2022]. Also,
mechanistic models can be highly complex, involving numerous interconnected compo-
nents and processes. Managing the complexity of these models and ensuring that all
relevant biological interactions are adequately represented can be challenging [Parry,
2020]. Connected with this issue is the extensive set of parameters needed to correctly
estimate the process under exam and account for its uncertainty [Krivorotko et al., 2022].
Assessing model parameters accurately can be complicated, and these estimations are of-
ten associated with inherent uncertainty. It is essential to conduct sensitivity analyses
and assess the robustness of model predictions to variations in parameter values. Ad-
ditionally, the researcher’s deep knowledge and expertise are essential to ensure correct
parameter choice. Another aspect that could be relevant is the demand for computa-
tional resources. Running simulations using mechanistic models can be computationally
intensive, especially for large-scale or highly detailed models. Adequate computational
resources and efficient algorithms are required to handle the computational demands of
these models. Also, the validation of mechanistic models can be complex, as it often
involves comparing model predictions with experimental data collected under different
conditions [Craver, 2006]. Ensuring that the model accurately represents the real-world
system it is intended to simulate is crucial for establishing the model’s reliability and
predictive capability. Regarding model interpretability, communicating the intricacies of
mechanistic models to non-experts can be challenging, as these models often involve com-
plex mathematical equations and biological concepts. Ensuring the model outputs are
presented clearly and understandably facilitates effective communication and decision-
making [Transtrum and Qiu, 2016].

On the contrary, phenomenological models remain valuable for data–driven predic-
tions and guiding decision–making, especially when the underlying mechanisms of the
system are not well understood or when detailed data are limited [Waters et al., 2021].
Some of the common issues associated with the use of phenomenological models include
the limited insight offered into biological mechanisms. Phenomenological models often
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focus on correlations and patterns without fully elucidating the underlying biological
processes. Another factor is the model generalizability, which should be ensured through
a robust data analysis to extend the outcomes toward different contexts or populations.
Sometimes, it might be difficult to distinguish between causality and correlation in phe-
nomenological models, which may lead to misinterpretations of relationships between
variables and phenomena [Attanayake et al., 2020]. Correlation is a statistical measure
describing the extent to which two variables change together. In other words, it quanti-
fies the degree to which a change in one variable is associated with a change in another
variable. Correlation does not imply causation. Conversely, causality refers to a cause-
and-effect relationship between two variables, where a change in one variable directly
influences a change in the other. Establishing causality is more complex than estab-
lishing correlation and typically requires experimental design or sophisticated statistical
methods to control for confounding variables. A final remark about phenomenological
models is about data availability: they heavily rely on available observational data, and
their accuracy and reliability are contingent upon the quality and quantity of the data
used for model development and validation [White and Marshall, 2019].

Machine learning algorithms can be used to build phenomenological models, which
are often data–driven and rely on statistical relationships between input features and
output variables. Phenomenological models in machine learning can be helpful when the
primary objective is to make accurate predictions or classifications based on available
data without requiring an explicit understanding of the underlying causal relationships.
These models are particularly effective when the underlying mechanisms of the system
are complex or not fully understood.

1.3 Data mining and machine learning

Data mining is discovering patterns and knowledge from raw data, and machine learn-
ing provides the computational tools to automate and enhance this process. Machine
learning plays a significant role in data mining by providing techniques and algorithms
that extract valuable patterns, knowledge, and insights from large datasets. Machine
learning algorithms can handle large volumes of data and automate extracting valuable
information. Scalability is essential in data mining, where the datasets can be massive
and complex, and machine learning algorithms excel at recognizing patterns in data
[Hirschman et al., 2002]. They can identify complex relationships and trends within
large datasets, a crucial aspect of data mining. Machine learning techniques such as
decision trees, support vector machines, and neural networks are often used for classifi-
cation and prediction tasks in data mining [Weber et al., 2009]. These algorithms can
categorize data into different classes and predict future trends based on historical data.
Also, clustering algorithms in machine learning, like k-means or hierarchical clustering,
are utilized in data mining to group similar data points together; clustering helps discover
inherent structures within the data, revealing natural divisions or patterns. Association
rule mining is a technique used in data mining to discover relevant relationships, pat-
terns, or associations among a set of variables or items in datasets. It aims to uncover
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hidden patterns that indicate relationships between variables, helping to identify rules
that describe the co-occurrence of certain events or items in a dataset [Tzanis, 2014]. For
example, it could identify associations between symptoms and diseases in healthcare. An
association rule is a statement that describes the relationship between two sets of items.
It is typically written in the form “if A, then B”, where A is the antecedent (the condi-
tion) and B is the consequent (the result). The rule is considered attractive if it satisfies
predefined support and confidence thresholds. Another concept in association rules and
data modeling is the lift, which is a measure that indicates how much more likely item-
set B is to occur when itemset A is present compared to when itemset B is considered
independent of A. Lift values greater than 1 suggest a positive association, while values
less than 1 suggest a negative or unlikely association. For data mining, machine learning
models, mainly unsupervised learning algorithms, can be applied to identify anomalies or
outliers in datasets; in data mining, it is helpful in detecting unusual patterns that may
indicate aberrant or other interesting phenomena. Another technique widely adopted is
regression analysis, which supports modeling the relationship between variables. It is
advantageous in data mining when trying to understand the strength and nature of re-
lationships between different factors. With machine learning, selecting relevant features
or variables from large datasets is possible, improving the efficiency and effectiveness of
data mining processes: feature extraction methods help transform raw data into a more
suitable representation for analysis. In summary, by integrating machine learning into
data mining processes, organizations can make more informed decisions based on the
patterns and insights uncovered.
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By leveraging machine learning capabilities, precision medicine can transform healthcare,
making it more targeted, effective, and patient–centric, ultimately leading to improved
health outcomes and a better quality of life for patients. In the present thesis, various
works have been undertaken to address the challenges of precision medicine and illus-
trate the potential applications of machine learning within the field. By delving into
these specific applications, the aim was to provide a comprehensive understanding of
how machine learning is shaping and advancing the field of precision medicine and the
potential challenges and opportunities that lie ahead. The machine learning algorithms
and software tools developed during the Ph.D. tackled some specific problems related
to precision medicine in different fields: biomarkers analysis in bioinformatics, virtual
screening in chemoinformatics, dedicated volumetric software, and risk stratification in
clinical medicine, a free-to-use programming library for biostatistics, biomaterials pro-
duction tracking for regenerative medicine, and proteomics analysis in biological samples.
In all these works, machine learning has been demonstrated to provide supportive and
assistive technologies to advance the classic paradigm of evidence-based medicine. The
common thread of all the works has been applying machine learning methods to solve
various issues connected with the analysis. In chemoinformatics, a novel methodology
has been proposed to the scientific community, exploiting the efficient power manage-
ment provided by spiking neural networks to solve computationally intensive tasks. In
bioinformatics, algorithms using biomarker expression values discretization proved ade-
quate computer methods to predict tumor stage and outcome in bladder cancer patients.
Machine learning has been studied on clinical datasets to stratify patients’ risk of devel-
oping lymphedema, employing patients’ factors and variables. For biomaterials produc-
tion tracking, a sequence of operations has been conceived to merge heterogeneous data
sources and categorize the stages of octacalcium phosphate synthesis. Working on a pro-
teomic dataset, machine learning offered a solution to highlight proteins with aberrant
expression.

Another aspect of the works presented throughout the thesis is that all machine learn-
ing models were developed on commodity hardware. This term refers to implementing
machine learning algorithms and models on standard, readily available hardware, such
as traditional computers, laptops, or servers, without requiring specialized or high-end
computing infrastructure. This approach has gained significant popularity due to the
widespread availability and affordability of commodity hardware, which makes it accessi-
ble to a broader audience, including researchers, developers, and small businesses. Lever-
aging commodity hardware for machine learning applications can significantly reduce
costs, eliminating the need for expensive specialized hardware or cloud-based computing
resources. Additionally, desktop computers offer a high degree of flexibility, allowing users
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to configure and customize their machine–learning environment based on their specific
requirements and computational needs. While budget hardware may have limitations
in terms of processing power and memory, it can still support scalable machine-learning
tasks, especially when combined with efficient algorithms and optimization techniques.
Despite its advantages, machine learning on commodity hardware may face challenges
related to limited processing capabilities, memory constraints, and longer processing
times for complex tasks compared to specialized hardware or cloud-based solutions. One
key aspect of all models presented is efficient data preprocessing and model optimization
strategies to help mitigate the challenges associated with limited computational resources
[Jordan and Mitchell, 2015].

2.1 Chemoinformatics

Chemoinformatics is a field that involves the application of informatics techniques to
solve problems in chemistry, particularly in the analysis and interpretation of chemical
data. In computational chemistry, the Ph.D. workflow has primarily focused on the
development and implementation of advanced methods for the prediction of toxicity in
chemical compounds from their structural configuration only. The research has made
significant contributions to the field by introducing novel ML techniques, such as spiking
neural networks, to verify the efficiency on toxicity and activity prediction. The ad-
vantages of applying spiking neural networks in chemoinformatics include efficient and
biologically inspired processing. Additionally, improved versions of the algorithms have
been successfully tested on bioaccumulation and P450 enzyme bioactivity (Chapter 3).
The investigations overcame several challenges, the most important one being the rep-
resentation of the chemical structures in a way that captures relevant information for
machine learning models. Moreover, models in chemistry are computationally inten-
sive, requiring substantial resources for training and inference. Additionally, datasets in
chemoinformatics often suffer from class imbalance, where certain classes or outcomes
are underrepresented.

2.2 Clinical precision medicine and risk stratification

Machine learning plays a crucial role in enabling the implementation of clinical precision
medicine by leveraging computational algorithms to analyze complex patient data and
provide personalized treatment strategies. In this field, a collaboration with medical
doctors led to software production and digital methodologies to assess upper limb vol-
ume changes due to pathological conditions such as lymphedema. Upper limb volumetry,
which involves measuring the volume of the upper extremities (arms), is a valuable assess-
ment in clinical settings, particularly for conditions such as lymphedema, post-surgical
evaluation, and monitoring of certain diseases. However, several challenges are associ-
ated with conducting upper limb volumetry in clinical settings or hospitals. Different
healthcare professionals may use varying techniques for upper limb volumetry, leading
to measurement inconsistencies. Achieving consistent and reproducible measurements
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requires standardized patient positioning. For example, some clinics may only have the
equipment needed for water displacement calculation, and this methodology can take
time and effort. This may lead to practical challenges in incorporating volumetric as-
sessments into routine patient care in a busy clinical setting. The volumetric software
developed employed computerized reconstructions of the patient’s upper limb to calculate
the volume and facilitate this evaluation over time (Chapter 4).

Additionally, ML algorithms can analyze patient data, including genetic information,
medical history, and lifestyle factors, to predict the risk of developing specific diseases or
adverse health outcomes. In this topic, a stratification algorithm has been published to
evaluate the risk of lymphedema by analyzing several patient-specific factors in breast
cancer. In general, clinical datasets may suffer from missing or incomplete information,
errors, and inconsistencies, which can impact the performance of machine learning mod-
els. Obtaining large, well-labeled datasets for training robust machine learning models
can be challenging in the clinical domain. Additionally, clinical practitioners often require
models to be interpretable and explainable to trust and understand the reasoning behind
predictions. These challenges were tackled, and an innovative solution was proposed for
patient risk stratification (Chapter 4).

2.3 Bioinformatics’ biomarkers analysis

Genetic biomarkers play a critical role in various healthcare and medical research as-
pects, offering valuable insights into an individual’s health, disease susceptibility, and
treatment response. Genetic biomarkers can help assess an individual’s susceptibility to
certain diseases; by identifying genetic variations associated with particular health con-
ditions, healthcare professionals can evaluate a person’s risk and implement preventive
measures or personalized screening protocols. Moreover, by analyzing an individual’s ge-
netic profile, healthcare providers can identify potential disease markers before the onset
of symptoms, allowing for timely interventions and more effective treatment strategies.
Also, genetic biomarkers can guide the selection of appropriate treatments for individual
patients: they can help predict a patient’s response to specific medications or therapies,
enabling healthcare professionals to tailor treatment plans based on genetic information,
ultimately improving treatment efficacy and reducing the risk of adverse reactions.

Genetic biomarkers contribute to population-level studies and research on the preva-
lence and distribution of certain diseases. They aid in understanding the genetic basis
of diseases within specific populations, guiding public health initiatives and preventive
healthcare strategies. By analyzing specific genetic factors, healthcare providers can
predict the likelihood of disease advancement, allowing for better disease management
and more informed decision–making regarding treatment options and patient care. In
the present work, bladder cancer biomarkers have been analyzed to predict survival and
identify cancer staging (Chapter 5). Biological systems are complex and exhibit inherent
variability: genetic expression patterns may vary across individuals, tissues, and time.
Furthermore, employing interpretable models is crucial for understanding the biological
relevance of the identified biomarkers. The proposed solutions were codified in analysis
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pipelines that were able to predict patient status through prognostic maps and efficient
data discretization preprocessing.

2.4 Biostatistics: equivalence analysis

Equivalence testing in biostatistics is a statistical method used to determine whether
the effect of a treatment or intervention is within a pre-specified equivalence margin
rather than focusing solely on whether there is a statistically significant difference. It is
particularly relevant in clinical trials and studies where demonstrating the absence of a
meaningful difference is as important as detecting a significant effect. Equivalence testing
helps researchers assess whether the new treatment is not clinically worse than the stan-
dard treatment or whether two treatments are essentially similar within a predetermined
margin of equivalence.

During the Ph.D., a software library was developed and released to the general audi-
ence to run specific statistical analyses for equivalence testing; these statistical functions
were not previously available to the Python community, and the developed software
filled this gap. Equivalence testing is essential in fields such as pharmaceutical research
and clinical trials, where demonstrating the non-inferiority or bioequivalence of a new
drug compared to an established treatment is crucial for regulatory approval and clinical
practice. It allows researchers to assess whether the new treatment can be considered a
viable alternative without compromising efficacy or safety compared to existing standards
(Chapter 6).

2.5 Regenerative medicine: biomaterials production tracking

Machine learning is increasingly being applied in materials science and regenerative
medicine to accelerate the discovery and development of innovative materials and thera-
pies. Machine learning algorithms are being used to design and optimize biomaterials for
tissue engineering and regenerative medicine applications. These algorithms can analyze
the structure-property relationships of various biomaterials, facilitating the identification
of optimal material compositions and characteristics that promote tissue regeneration
and integration. During the development of the Ph.D., a specific work tested a novel
algorithm to track the production phases of bone replacement biomaterials. By leverag-
ing the capabilities of machine learning in materials science and regenerative medicine,
researchers can expedite the development of advanced biomaterials (Chapter 7). Apply-
ing machine learning to biomaterials involves various challenges due to the complexity
of materials science: biomaterials datasets, especially those with specific properties or
applications, may be limited in size. Biomaterials often have complex compositions, and
characterizing them may involve many features and multiple experimental techniques, re-
sulting in multi-modal data. The solution found merged different sources of information
to characterize biomaterials synthesis, including feature selection methods, dimensional-
ity reduction techniques, and domain knowledge that can aid in managing this kind of
data.
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2.6 Proteomics: anomaly expression identification

In proteomics, machine learning techniques are increasingly being used for anomaly de-
tection, which involves the identification of abnormal patterns or outliers in protein
expression data. By leveraging machine learning algorithms, researchers can detect devi-
ations from normal protein expression profiles, which may signify the presence of disease,
the impact of environmental factors, or other irregular biological processes. Unsuper-
vised machine learning algorithms, such as clustering and density-based methods, can
identify unusual patterns in proteomic data without needing pre–labeled samples. These
techniques help detect outliers or abnormal clusters corresponding to protein expression
profiles associated with specific diseases or biological conditions. A study on a proteomics
dataset has been carried out to demonstrate a novel analysis pipeline able to solve this
task (Chapter 8). The nature of proteomic datasets involves highly variable and hetero-
geneous data, both within and across biological samples. The variability may arise from
biological differences, sample preparation methods, and technical variations. Proteomic
data reflect the intricate biological processes involving proteins, making it challenging
to accurately capture the complexity and dynamics of cellular systems. The machine
learning analysis sequence proposed on this topic can help researchers address variability
and heterogeneity challenges and help evaluate biological complexity.

2.7 Data sources

The Ph.D. activities were funded through the European Union grant No. 860462 as part
of the Horizon 2020 research and innovation program (i.e., “Precision Medicine for Muscu-
loskeletal Regeneration, Prosthetics, and Active Aging”, https://premurosa.eu/). The
project involved six continental European institutions, supported by ten external part-
ners. The main goal of this initiative was to train scientists to develop expertise and tech-
nologies addressing the various challenges associated with all aspects of musculoskeletal
regeneration. The analysis carried out on Sections 7 and 8 involved data acquired during
wet–lab experiments performed in the context of this European Union research project.
Musculoskeletal regeneration technologies are crucial in precision medicine, aiming to pro-
vide personalized and targeted solutions for individuals with musculoskeletal disorders,
injuries, or degenerative conditions [Li et al., 2021]. Notable technologies and approaches
in musculoskeletal regeneration within the context of precision medicine involve genetic
profiling as it can help identify optimal cell sources for regenerative therapies, such as
autologous (patient’s own) stem cells, ensuring compatibility and reducing the risk of
rejection. Analysis through OMICS of stem cells, including mesenchymal and induced
pluripotent stem cells, are being investigated for their regenerative potential in repair-
ing damaged bone, cartilage, and muscle tissues [Lan et al., 2018]. Additionally, gene
therapy may involve introducing therapeutic genes to enhance tissue regeneration, modu-
late inflammation, or promote the synthesis of growth factors crucial for musculoskeletal
health. Another important aspect is tailoring biomaterials to match the mechanical and
biological properties of the target tissue. Advanced biomaterials and scaffolds provide
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a supportive cell growth and tissue regeneration environment. They can be designed
to degrade over time as new tissue forms. Orthobiologics refers to medical treatments
involving biological substances to promote the healing and regeneration of musculoskele-
tal tissues, such as bones, joints, muscles, ligaments, and tendons [Calcei and Rodeo,
2019]. These biological substances can be naturally occurring or derived from the pa-
tient’s body, donors, or synthetic sources. Orthobiologics aims to enhance the body’s
natural healing processes and stimulate tissue repair. Understanding individual varia-
tions in growth factor responses and signaling pathways helps customize the selection
and dosage of ortho-biologic agents. Orthobiologics are considered a minimally invasive
and potentially safer alternative to traditional surgical interventions.

The data processing and analysis, algorithm development, and numerical experiments
of Sections 3 and 5 was performed on public domain datasets. Public domain datasets
are freely accessible to anyone, fostering inclusivity and providing equal opportunities
for researchers and developers worldwide. They eliminate financial barriers, allowing
individuals with limited resources to research and experiment in machine learning. The
most important aspect is that public datasets provide a common ground for benchmark-
ing and comparing different machine-learning algorithms and models, facilitating fair
evaluations of novel approaches and techniques. Researchers can reproduce experiments
and validate findings more quickly when using publicly available datasets, contributing
to the transparency and reliability of research outcomes. Access to various datasets en-
courages creative exploration, enabling researchers to apply machine learning techniques
to unconventional or interdisciplinary problems, often representing real-world scenarios,
making it easier for researchers and practitioners to develop models that can be applied
to practical problems. The datasets employed in the computational chemistry investiga-
tions performed in Chapter 3 were [Judson et al., 2010; Richard et al., 2020; Wu et al.,
2018; Kuhn et al., 2016; Gayvert et al., 2016; Grisoni et al., 2016; Nembri et al., 2016],
whereas in Chapter 5 the dataset was from [Zhang et al., 2020].

The data in Section 4 employed clinical data collected during the course of patient care
and medical research in Italian hospitals. Clinical data often includes individualized and
longitudinal information, and it has direct relevance on medical practice. While clinical
data offers significant advantages, it’s essential to note that there are challenges associated
with its use, including data interoperability issues, potential biases, and variability in data
quality across healthcare systems.
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This chapter is based upon the article
Mauro Nascimben and Lia Rimondini. Molecular toxicity virtual screening ap-
plying a quantized computational SNN–based framework. Molecules, 28(3):1342,
2023
the book chapter
Mauro Nascimben, Silvia Spriano, Lia Rimondini, and Manolo Venturin. Molec-
ular fingerprint based and machine learning driven QSAR for bioconcentra-
tion pathways determination. In Gabriella Bretti, Roberto Natalini, Pasquale
Palumbo, and Luigi Preziosi, editors, Mathematical Models and Computer Sim-
ulations for Biomedical Applications, pages 193–215, Cham, 2023c. Springer Na-
ture Switzerland. ISBN 978-3-031-35715-2
and the conference presentations
Mauro Nascimben. Molecular fingerprint based and machine learning driven
QSAR for bioconcentration pathways determination. Rome, Italy, Sept 2021b.
National Research Council of Italy, Virtual Workshop of Mathematical Mod-
elling and Control for Healthcare and Biomedical Systems
Mauro Nascimben. Quantized computational QSAR framework for molecular
toxicity virtual screening. Rome, Italy, July 2022. Sapienza University of Rome,
3rd Molecules Medicinal Chemistry Symposium - Shaping Medicinal Chemistry
for the New Decade
Mauro Nascimben. Virtual screening by spiking neural networks: a case study
on cytochrome P450. Padua, Italy, Sept 2023a. University of Padua, 18th Con-
ference on Computational Intelligence Methods for Bioinformatics and Bio-
statistics
Mauro Nascimben. Low–power or resource–constrained environments for virtual
screening and quantitative structure-activity relationship analysis for in silico
precision medicine. Rome, Italy, Sept 2023c. Italian Association for Industrial
Research, NanoInnovation Conference and Exhibition

Original contribution to knowledge

Chemoinformatics is a specialized field that applies various informatics methods to
solve chemical problems. It is a critical component of drug discovery, materials science,
and other areas of chemistry. The key aspects commonly employed in chemoinformat-
ics analysis include chemical structure representation in alphanumerical codes, chemi-

29



3 Chemoinformatics

cal databases gathering chemical structures, chemical similarity and diversity analysis
techniques, quantitative structure-activity relationship (QSAR), molecular docking, and
specialized chemical informatics software for chemical data processing, analysis, and visu-
alization. These methods are often integrated into a holistic workflow to address specific
challenges in drug discovery, toxicity prediction, materials design, and other areas of
chemistry. For instance, in chemical structure representation, SMILES and InChI (i.e.,
International Chemical Identifier) enable easy storage and exchange of chemical infor-
mation, while chemical databases of chemical structures like PubChem, ChEMBL, and
ChemSpider facilitate efficient retrieval and analysis of chemical data. For molecular
docking and virtual screening, the preferred orientation of molecules can be predicted,
and large compound libraries can be screened for potential drug candidates. Molecular
docking predicts the preferred orientation of one molecule to a second when bound to-
gether to form a stable complex. Chemical similarity and diversity analysis could take
advantage of representing molecules as binary fingerprints to quantify structural similar-
ity, querying the molecules in a database. On the other hand, diversity analysis involves
selecting diverse compounds from a chemical library to ensure a broad representation
of chemical space. Cheminformatics software commonly employed for chemoinformat-
ics purposes are RDKit, Cheminformatics Toolkit, and Open Babel for chemical data
processing, analysis, and visualization.

Machine learning in chemoinformatics, which is the application of computational meth-
ods to solve chemical problems, involves chemical data analysis, including molecular
structures, properties, and activities. Machine learning plays a vital role in chemoin-
formatics, enabling the analysis and interpretation of complex chemical data for various
applications in drug discovery, molecular modeling, and chemical property prediction.
The availability of high–quality, well–curated chemical datasets is crucial for training
accurate and reliable machine learning models in chemoinformatics. Indeed, access to
comprehensive and diverse datasets allows effective feature engineering involving selecting
and extracting informative molecular descriptors, fingerprints, or molecular representa-
tions that effectively capture the relevant chemical information needed for the specific
modeling task [Idakwo et al., 2018]. Thoughtful feature engineering can significantly
enhance the predictive performance of ML models in chemoinformatics.

Machine learning algorithms can be applied to predict the properties or activities of
chemical compounds, with clustering and classification techniques used to group com-
pounds based on similarities or classify them into predefined categories. Also feature
selection techniques help identifying relevant molecular descriptors for use in predictive
models.

The primary fields of application of machine learning in chemoinformatics are:

1. Quantitative Structure-Activity Relationship (QSAR) Modeling: QSAR models use
machine learning algorithms to predict chemical compounds’ biological activity or
properties based on their structure. These models can be used in drug discovery
to prioritize compounds for further experimental testing. Usually, quantitative
descriptors (molecular properties) are used as features, and statistical methods
(linear regression, support vector machines, etc.) are employed to build predictive
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2. Virtual Screening and Compound Prioritization: Machine learning can be used to
screen large chemical libraries to identify potential drug candidates or compounds
with desired properties, reducing the need for costly and time-consuming exper-
imental research. ML algorithms can be used to prioritize compounds based on
their likelihood of being active against a specific target.

3. Molecular Property Prediction: Machine learning algorithms can be applied to
predict various molecular properties, such as solubility, lipophilicity, and bioavail-
ability, which are crucial in drug design and development based on molecular de-
scriptors (physicochemical, topological, electronic, etc.). Regression models or clas-
sification algorithms are trained using descriptor values as input features.

4. De Novo Molecule Design: Machine learning can aid in generating novel chemical
structures with desired properties by learning from existing data and generating
new molecules that are likely to exhibit specific characteristics. Deep learning tech-
niques, such as artificial neural networks, can be applied to learn complex patterns
from chemical data for molecular generation. In particular, deep generative models
like variational autoencoders (VAEs) or generative adversarial networks (GANs)
can be used to create new chemical entities.

5. Chemical Reaction Prediction: Machine learning models can be used to predict
the outcomes of chemical reactions, helping chemists identify the most efficient
synthetic routes and optimize reaction conditions. This task is often achieved by
representing each molecule (reactants and products) using molecular descriptors
(numerical representations of chemical properties) and then developing a represen-
tation for the entire reaction, considering the relationships and interactions between
reactants and products. Recurrent neural networks are suitable for sequence-based
data, making them helpful in modeling the sequential nature of reactions. Other-
wise, graph neural networks are designed for graph-structured data, making them
effective for capturing the relationships between atoms and molecules in reactions,
or transformers, known for their success in natural language processing, can also
be applied to reactions by treating them as sequences.

Spiking neural networks have the potential to offer unique advantages in the field of
chemoinformatics due to their ability to model complex temporal dynamics and process
spatiotemporal information, which are essential for understanding molecular interactions
and chemical processes [Xiaoxue et al., 2023; Tavanaei et al., 2019]. Indeed, SNNs could
capture and model the temporal dynamics of molecular interactions and reactions. This
capability allows for the analysis of complex chemical processes, such as protein-ligand
binding kinetics, enzymatic reactions, and molecular signaling pathways, providing in-
sights into the time-dependent behavior of chemical systems. Moreover, SNNs process
information in an event-driven manner, making them efficient in handling sparse and
asynchronous data, which is common in chemoinformatics; it enables SNNs to simulate
molecular events, such as chemical reactions, diffusion processes, and signaling cascades,
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more accurately than traditional neural networks. SNNs can be used for pattern recog-
nition and feature extraction in molecular structures, aiding in identifying molecular
fingerprints, functional groups, and structural motifs essential for characterizing chem-
ical compounds and predicting their properties. Another aspect is that SNNs enable
the simulation of neural networks and chemical systems, allowing researchers to explore
the analogies between neural processing and chemical reactions. This interdisciplinary
approach facilitates understanding complex biochemical processes and developing inno-
vative computational models for drug discovery and design. For bioactivity and toxicity
Prediction, SNNs can be utilized to predict the bioactivity and toxicity of chemical
compounds by modeling their interactions with biological targets and cellular systems.
By integrating molecular dynamics simulations and SNN-based predictive models, re-
searchers can more accurately assess the pharmacological and toxicological properties of
potential drug candidates. In this sector, SNNs can aid in optimizing drug design by sim-
ulating the interactions between drugs and their target receptors, predicting drug binding
affinities, and facilitating the virtual screening of large chemical libraries to identify novel
drug candidates with improved efficacy and specificity. Like other ML techniques, SNNs
can integrate multimodal data sources, including chemical, biological, and structural in-
formation, to provide a comprehensive and dynamic view of molecular systems. This
integrative approach supports the analysis of complex relationships between chemical
structures, biological activities, and physiological responses, enhancing the understand-
ing of drug action and toxicity mechanisms. By leveraging the capabilities of SNNs
and considering all these aspects, researchers in chemoinformatics can advance their un-
derstanding of molecular interactions, chemical processes, and drug-target interactions,
leading to more accurate predictions and insights for drug discovery, toxicity assessment,
and personalized medicine applications.

The leaky integrate-and-fire (LIF, [Rast et al., 2010; Tal and Schwartz, 1997]) neu-
ron model is a mathematical model used in computational neuroscience to describe the
behavior of individual neurons in spiking neural networks. It is a popular and widely
used model due to its simplicity and computational efficiency, making it well-suited for
large-scale simulations of neural systems. The LIF neuron model is based on integrating
incoming signals and generating an output spike when a certain threshold is reached.
The neuron is modeled as a “leaky integrator” of its input current I(t).

τm
dv

dt
= −v(t) +RI(t)

with v(t) representing the membrane potential at time t, τm the time constant and R
the resistance of the membrane neuron respectively. This equation could be interpreted
as a resistor–capacitor circuit where the leakage term is due to the resistor and the
integration of I(t) is obtained from the capacitor placed in parallel to the resistor [Orhan,
2012; Nascimben et al., 2023c]. The firing or spiking events in the LIF model are modeled
when the membrane potential v(t) reaches a certain threshold: in that occasion, it is
instantaneously reset to a lower value called reset potential, and the process described
by the above equation re-starts with the initial value equal to the reset potential. This
behavior is depicted in Figure 3.1 from [Nascimben and Rimondini, 2023]. It could
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Figure 3.1: The spiking and resetting mechanisms in the LIF (from [Nascimben and Ri-
mondini, 2023]).

be possible to add an absolute refractory period to improve the biological plausibility
immediately after v(t) reached the voltage threshold.

In [Nascimben et al., 2023c; Nascimben and Rimondini, 2023] and related works
[Nascimben, 2021b, 2022, 2023a,c], we exploited binary molecular fingerprints as input
sequences for the SNN. The choice of fingerprints as input data for the SNN is derived
from the observation, according to which binary vectors are the natural input of SNNs.
Indeed, SNNs receive incoming information encoded as bit sequences that simulate neu-
ronal spike trains. Molecular fingerprints (MF) are binary (or numerical) representations
of chemical compounds that capture their structural and physicochemical characteris-
tics [Wigh et al., 2022]. These fingerprints are commonly used in chemoinformatics,
computational chemistry, and drug discovery for various purposes, including compound
classification, similarity analysis, and the prediction of biological activities. Molecular
fingerprints represent the structural features of a chemical compound, such as its atom
types, bond types, and connectivity. Each feature is typically assigned a binary (1 or 0)
value or a numerical value. In a binary fingerprint, each feature is represented as a binary
digit (1 or 0), indicating the presence or absence of a specific structural element or sub-
structure in the compound. Numerical fingerprints assign numeric values to each feature,
representing the frequency or occurrence of the structural elements in the compound. In
chemoinformatics, molecular fingerprints are often used to calculate the similarity or
dissimilarity between chemical compounds. Similarity measures, such as the Tanimoto
coefficient or the Jaccard index, are applied to binary fingerprints, while numerical fin-
gerprints can be used with various distance or similarity metrics. Applications of MF
include virtual screening, used to compare potential drug candidates with known active
compounds to identify molecules with similar structural features and potential biological
activity, or QSAR to build predictive models that relate chemical structure to biologi-
cal activity or other properties. Additionally, MF analysis helps assess the diversity of
chemical libraries to ensure a broad range of compounds for drug discovery, or they are
employed to find compounds containing specific chemical substructures (aka Substructure
and Fragment Searching). There are various types of molecular fingerprints, including
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Daylight, MACCS (Molecular ACCess System), ECFP (Extended Connectivity Finger-
print), and many others. These fingerprints vary regarding the structural information
they capture and the algorithms used to generate them: the length of molecular finger-
prints is determined by the number of features or substructures that are being encoded
for each compound. Indeed, shorter fingerprints may capture basic structural informa-
tion, such as the presence or absence of specific substructures or molecular fragments,
while longer fingerprints can provide more detailed and comprehensive representations
of the molecular structure, including information about bond types, atom types, and
topological features.

All the experiments followed the workflow exemplified in the Figure 3.2. Regarding the
ML assessment, repeated nested cross-validation was selected as a medium to evaluate
both hyperparameters and model performance. Nested cross-validation is a technique
used in the appraisal of machine learning models, particularly for assessing the perfor-
mance and generalization ability of a model on a limited dataset. It is an extension of
the standard k-fold cross-validation technique and is commonly employed when there
is a need to perform both model selection and model evaluation simultaneously. The
primary purpose of nested cross-validation is to provide a more accurate estimate of the
model’s performance by addressing the issue of overfitting during model selection. The
dataset is divided into multiple folds, as in k-fold cross-validation. The outer loop of
nested cross-validation splits the data into training and testing sets. Each iteration of
the outer loop involves training the model on a subset of the data (training set) and
evaluating its performance on the remaining data (testing set). Within each iteration of
the outer loop, a separate inner loop is used for model selection. This involves further
dividing the training set into multiple folds. The inner loop is used to select the best
hyperparameters or features for the model. Various combinations of hyperparameters or
features are tested, and the best combination is selected based on the performance met-
ric, such as accuracy or ROC–AUC. The model’s performance is then assessed using the
testing set in the outer loop; it provides an unbiased estimate of the model’s performance
on unseen data, as the model has not been directly exposed to the testing data during
the training phase. Nested cross-validation helps to address the issue of overfitting that
can occur during standard cross–validation, as it separates the process of model selection
from model evaluation. Performing model selection within each iteration of the outer
cross-validation loop it ensures that the selected model is not biased towards the spe-
cific dataset splits used in the cross-validation process. This technique is beneficial when
working with limited datasets or when the model has multiple hyperparameters that
must be tuned. It helps provide a more reliable estimate of the model’s performance and
generalization ability, enabling more robust model selection and evaluation in machine
learning tasks.

3.1 Predictive toxicity

Predictive toxicity refers to predicting the potential toxicity of a chemical, drug, or sub-
stance before it is extensively tested in animals or humans. It involves using various
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Figure 3.2: Overview of the numerical experiments involving SNNs (modified from
[Nascimben and Rimondini, 2023]).

computational models, in–vitro tests, and in–silico simulations to assess the potential
adverse effects of a substance on human health or the environment. This approach is
crucial in toxicology and drug development, as it allows researchers and regulators to
identify potentially harmful substances early in the development process, thereby reduc-
ing the need for extensive animal testing and minimizing risks to human health and the
environment. Predictive toxicity is essential for several reasons: early identification of
toxic substances, reduction of animal testing, regulatory compliance and drug develop-
ment, and cost reduction. By predicting the toxicity of a compound at an early stage,
researchers can avoid investing time and resources in the development of potentially
harmful substances, thereby reducing the risk of adverse effects on human health and the
environment. Predictive toxicity methods can help reduce the need for animal testing,
which is often expensive, time-consuming, and ethically controversial. Using computa-
tional models and in–vitro tests, researchers can obtain valuable toxicity data without
relying solely on animal experiments. Regulatory agencies often require comprehensive
toxicity data before approving new chemicals or drugs. Predictive toxicity helps gen-
erate the necessary data to meet regulatory requirements, ensuring that only safe and
effective substances are approved for use in various applications. Additionally, predictive
toxicity methods can significantly reduce the time and costs associated with traditional
toxicity testing. By employing computational models and in–vitro assays, researchers
can quickly screen large numbers of compounds for potential toxicity, allowing them to
focus their resources on developing safer and more effective substances. Predicting com-
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pounds’ toxicity is critical in the pharmaceutical industry to identify potential adverse
effects of drug candidates early in the development process; this enables researchers to
make informed decisions and optimize the safety profile of new drugs before they enter
clinical trials, ultimately improving the success rate of drug development and reducing
the risk of unexpected toxicities in human subjects.

In [Nascimben and Rimondini, 2023], we presented an innovative SNN–based frame-
work as a virtual screening tool aiming at demonstrating SNN for toxicity prediction
using datasets of compounds converted into MAACS fingerprints. Using spiking neu-
ral networks in quantitative structure-activity analysis represents a groundbreaking ad-
vancement in chemoinformatics and computational toxicology. Spiking neural networks,
inspired by the functioning of the human brain, offer a promising alternative to tradi-
tional machine learning algorithms, mainly due to their energy efficiency and applica-
bility to specialized hardware. The successful application of spiking neural networks in
the evaluation of public-domain databases of compounds for toxicity prediction under-
scores their potential in addressing complex tasks that require significant computational
resources. By achieving accuracies comparable to those of established high-quality frame-
works, these networks demonstrate their capacity to handle challenging chemoinformatics
tasks effectively. Furthermore, the analysis of hyperparameters and the testing of spik-
ing neural networks on molecular fingerprints of varying lengths highlight the versatility
and adaptability of these networks in accommodating different data representations and
model configurations. This adaptability is crucial in handling the diverse and complex
molecular structures often encountered in chemoinformatics. The potential of spiking
neural networks to offer alternatives to conventional software and hardware in compu-
tationally demanding tasks, such as toxicity prediction, can pave the way for significant
advancements and innovations in the field. This development not only opens up new
avenues for research but also holds the promise of improving the efficiency and accuracy
of predictive models in chemoinformatics, ultimately contributing to the identification
and development of safer and more effective chemical compounds.

Our methodology has been tested on five public–domain toxicological datasets, each
evaluated in separate numerical experiments through specific SNNs. All SNNs had in
common the neuronal model, the leaky integrate-and-fire and the architecture shown in
Figure 3.3.

The compounds in SMILES format (simplified molecular-input line-entry system) con-
verted to MF were obtained from the following benchmark datasets:

• TOXCAST [Judson et al., 2010], containing results of in vitro toxicological exper-
iments. In particular, the outcomes for “Tox21–TR–LUC–GH3–Antagonist” were
considered due to the best sample ratio between labels;

• Tox21 [Richard et al., 2020], predicting the toxicity on biological targets, includ-
ing nuclear receptors or stress response pathways. Activities selected were “SR–
ATAD5”, “NR–EL–LBD”, and “NR–AR” for the relatively low number of missing
entries compared to the others inside the dataset;

• BBBP [Wu et al., 2018] assessing drug’s blood–brain barrier penetration;
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Figure 3.3: Overview of the SNN employed for predictive toxicity in [Nascimben and
Rimondini, 2023]
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Dataset AUC mean AUC st. dev.
BBBP 0.946 0.008
Clintox 0.974 0.01

ISD 0.795 0.008
NR–AR 0.988 0.002

NR–ER–LBD 0.986 0.003
NSD 0.97 0.008

SR–ATAD5 0.991 0.002
TOXCAST 0.912 0.007

Table 3.1: Summary of the best SNNs’ models in [Nascimben and Rimondini, 2023].

• SIDER [Kuhn et al., 2016], employed for predicting drug’s side effects on the im-
mune and nervous systems;

• Clintox [Gayvert et al., 2016], containing drugs that failed or passed clinical trials
for toxicity.

In the datasets, the dissimilarity between compounds measured by the Tanimoto index
ranged from 79.2% to 66.5%, ensuring a heterogeneous aggregation of molecules to be
tested. This aspect is crucial for the generalizability of the model because using mixed
samples can help to solve assorted problems; these SNN models trained on diversified
molecules describing composite compounds can adapt appropriately to new, previously
unseen data. Under this view, a proper balance of the input data was ensured by over-
sampling the minority class.

The successful application of spiking neural networks using structural information de-
rived from molecular fingerprints represents a significant breakthrough in toxicity pre-
diction and chemoinformatics. By leveraging the structural details encoded in molecular
fingerprints, SNNs have demonstrated remarkable performance (Table 3.1), as highlighted
by the meta–analysis in [Nascimben and Rimondini, 2023]. The consistent performance
of SNNs compared to other high-quality methods previously utilized for toxicity predic-
tion underscores the potential of SNNs in advancing the field. These findings suggest
that SNNs can effectively harness the structural information embedded in molecular
fingerprints to make accurate toxicity predictions, thereby facilitating the identification
and evaluation of potentially harmful chemical compounds. By leveraging the power of
SNNs, researchers can enhance the efficiency and accuracy of toxicity prediction, leading
to improved decision-making processes in various domains, including drug development,
environmental risk assessment, and chemical safety regulation. The promising results
obtained from the application of SNNs underscore their potential to revolutionize the
field of chemoinformatics and computational toxicology, offering a valuable tool for re-
searchers and practitioners to assess the safety and potential risks associated with various
chemical compounds. As SNNs continue to demonstrate their efficacy and reliability in
toxicity prediction, they are poised to play a pivotal role in shaping the future of predic-
tive toxicology and facilitating the development of safer and more sustainable chemicals
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and drugs.

3.2 Bioaccumulation pathways prediction

Bioaccumulation pathway prediction involves using computational models to assess and
predict the potential pathways through which chemical substances may accumulate in
living organisms, particularly in environmental exposure. Understanding bioaccumula-
tion pathways is crucial for evaluating the potential risks associated with the long-term
exposure of organisms to various chemicals, including pollutants and environmental con-
taminants. By predicting bioaccumulation pathways, researchers and regulatory agencies
can assess the potential risks of chemical substances to human health and the environ-
ment. This information is crucial for designing effective risk management strategies,
setting regulatory guidelines, and promoting the development of environmentally sus-
tainable practices [Nichols et al., 2009].

In [Nascimben et al., 2023c], the use of quantitative structure-activity relationship
(QSAR) models in combination with machine learning techniques represents a powerful
approach for evaluating the potential risks associated with chemical compounds, par-
ticularly in terms of their bio-activity and potential for accumulation in living organ-
isms. This integrated approach allows for predicting the bioaccumulation pathways of
candidate molecules, aiding in identifying potentially risky chemicals. The previously
developed SNN framework for toxicity prediction has been extended testing the a more
complex SNN based on synaptic neurons that include the synaptic current modulation to
simulate the information flow between pre– and post–synaptic neurons. The analysis con-
ducted in this study compared various machine learning algorithms, including extreme
gradient boosting, support vector machines, neural networks, and, notably, spiking neu-
ral networks. While the former algorithms have been previously employed in similar
studies, applying spiking neural networks with molecular fingerprints as direct inputs is
a novel and potentially pioneering development in computational toxicology. The anal-
ysis on the dataset from [Grisoni et al., 2016] featuring a three-class predictive problem,
revealed that the support vector machines outperformed other models, demonstrating
high balanced accuracies of 86.9% and 87.85% in forecasting the bioaccumulation path-
ways. Furthermore, the spiking neural network architectures also achieved satisfactory
results, showcasing correctness levels of 83.77% (employing LIF) and 81.96% (SNN with
synaptic neurons). These findings highlight the potential of advanced machine learning
techniques, including spiking neural networks, in accurately predicting the bioaccumu-
lation pathways of chemical compounds. The incorporation of molecular fingerprints as
direct inputs for spiking neural networks opens up new possibilities for leveraging bio-
logically inspired neural networks in the field of computational toxicology. The results
obtained from this analysis have significant implications for the identification and assess-
ment of potentially risky chemicals, thereby contributing to the advancement of chemical
safety evaluation and environmental risk assessment.
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3.3 P450 enzyme bioactivity prediction

The bioactivity of P450 enzymes, also known as cytochrome P450 enzymes, is essential
in drug metabolism, toxicology, and various biochemical processes in living organisms
[Ioannides and V Lewis, 2004; Reilly and Yost, 2006]. Some key reasons why P450
enzyme bioactivity is essential include:

• Drug Metabolism: P450 enzymes play a crucial role in metabolizing a wide range
of drugs and xenobiotics in the body. They are involved in the oxidation and bio-
transformation of many foreign compounds, including medications, environmental
toxins, and industrial chemicals, making them more water-soluble and facilitating
their excretion from the body.

• Toxicology and Detoxification: P450 enzymes are essential in detoxifying various
environmental pollutants and harmful substances. They catalyze the conversion of
lipophilic toxins into more hydrophilic forms that the body can easily eliminate,
thereby reducing the potential toxic effects of these compounds.

• Endogenous Metabolism: P450 enzymes metabolize endogenous compounds like
steroids, fatty acids, and cholesterol. They participate in the synthesizing and
degradation of various biomolecules, including hormones, signaling molecules, and
lipid derivatives, essential for maintaining normal physiological functions.

• Pharmacokinetics and Drug Interactions: Understanding the bioactivity of P450
enzymes is critical for predicting drug interactions and potential adverse effects
that may result from altered drug metabolism. Certain drugs can induce or inhibit
specific P450 enzymes, leading to changes in the metabolism of co-administered
medications and affecting their efficacy and toxicity.

• Personalized Medicine: Variations in the activity and expression of P450 enzymes
can influence individual responses to medications and may contribute to inter-
individual variability in drug efficacy and adverse reactions; this has implications
for developing personalized medicine approaches tailored to an individual’s specific
metabolic profile.

• Environmental and Occupational Health: P450 enzymes metabolize environmen-
tal pollutants, such as polycyclic aromatic hydrocarbons and pesticides. Under-
standing their bioactivity is essential for assessing the potential health risks associ-
ated with exposure to these contaminants and implementing appropriate regulatory
measures to minimize environmental and occupational hazards.

The investigation presented in [Nascimben, 2023a], reported the application of SNN to
predict the complex behavior of P450 in response to the interaction with several molecules
using the dataset from [Nembri et al., 2016]. The application of spiking neural networks
to molecular fingerprints for predicting the bioactivity of the P450 enzyme, specifically
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MF length Val. BA MEAN Test BA MEAN Test BA STD
256 bits 80.46% 79.23% ±0.80%
512 bits 78.24% 80.19% ±0.94%
1024 bits 78.43% 80.05% ±0.95%
2048 bits 82.81% 81.52% ±0.88%

Table 3.2: Summary of the SNN’s outcomes when tested on longer MF from [Nascimben,
2023a].

its 3A4 and 2C9 isoforms, represents a significant advancement in quantitative structure-
activity analysis. The numerical experiments conducted in the study focused on eval-
uating different network configurations and determining the optimal fingerprint length
for the prediction task. The results obtained from the experiments were consistent with
those of other machine learning techniques previously utilized in related studies, indicat-
ing the effectiveness of spiking neural networks in this domain. By demonstrating the
capability of spiking neural networks in effectively predicting the bioactivity of specific
enzyme isoforms, the current work contributes to the growing body of evidence support-
ing the utility of these networks in quantitative structure-activity analysis. The findings
suggest that spiking neural networks hold promise for facilitating the identification and
assessment of compounds with potential interactions with the P450 enzyme, thereby
aiding in drug development and the discovery of new therapeutic agents. Furthermore,
the potential integration of spiking neural networks with neuromorphic hardware offers
a pathway toward developing energy–efficient and accelerated virtual screening methods.
Leveraging neuromorphic hardware can significantly enhance the computational efficiency
of spiking neural networks, enabling rapid and cost-effective analysis of large chemical
datasets. This approach can potentially revolutionize virtual screening processes, facili-
tating the identification of promising drug candidates and accelerating the drug discovery
pipeline. The findings from this study underscore the importance of exploring the appli-
cation of spiking neural networks in the field of quantitative structure-activity analysis
and highlight the potential for future advancements in both methodology and hardware
integration, ultimately contributing to the development of more efficient and effective
drug discovery processes.

The length of molecular fingerprints is not fixed and can vary depending on the specific
fingerprint generation method and the desired level of molecular detail and complexity.
The numerical experiments tested the applicability of SNN to MF of different bit length,
showing that longer MF improve the predictive ability of SNN on P450 bioactivity (Table
3.2, BA means Balanced Accuracy). The best accuracies pertain to the MF with 2048
bits in length, and in general, all values are higher than those obtained with MAACS
MF.

Moreover, it resulted that also in this investigation the LIF neuron achieved slightly
better performance compared to the SNN employing the synaptic neuron model. The
Figure 3.4 depicts a part of the hyperparameter space of one numerical experiment with
LIF–based SNN; it shows the Torch optimizers and the associated learning rate over a
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Figure 3.4: The figure illustrates the Torch optimizer and the associated learning rate for
each validation and test set BA pair of LIF–based MAACS MF analysis. The
red rectangle might reference the non–overfitting area where both validation
and test BA lay below 2% (from [Nascimben, 2023a]).

scatterplot with test versus validation sets BA. The red rectangle shows the area where
the difference between BAs was below 2%, meaning reduced overfitting. The top–right
corner of the rectangle contains several values from the Adamax optimizer with small
learning rates. This kind of hyperparameter space visual analysis highlights patterns and
characterize the SNN behavior for this P450 dataset.

The prediction of P450 enzyme activity has garnered significant interest among re-
searchers, primarily owing to the crucial role of this enzyme in the metabolism of xeno-
biotics, which are foreign chemical substances that enter the body. Understanding the
interaction of small molecules with the P450 enzyme is vital in various fields, including
pharmacology, toxicology, and environmental sciences, as it influences the efficacy and
safety of drugs, as well as the potential toxicity of environmental chemicals. The P450
enzyme system is responsible for the metabolism and elimination of numerous exogenous
compounds, including drugs, environmental pollutants, and other xenobiotics, making it
a critical determinant of their bioavailability and potential effects on living organisms.
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3.4 Final remarks

The works presented in this chapter introduced to the chemoinformatics community the
possibility of using SNN as a virtual screening or QSAR tool employing chemical struc-
tures. Several aspects of the application of SNN on structural descriptors were explored
and investigated. Future work might merge the functional information of the compounds
with the structural data to produce more powerful insights. So far, SNNs were tested on
traditional hardware; however, applying SNN to neuromorphic hardware could produce
an energy–efficient platform for chemoinformatics as introduced in [Nascimben, 2023c].
Neuromorphic hardware represents a promising avenue for the future of computing, par-
ticularly in the realm of artificial intelligence and cognitive computing. These hardware
systems are inspired by the architecture of the human brain and aim to emulate the
parallel processing and energy efficiency observed in biological nervous systems. Neuro-
morphic hardware is particularly well-suited for implementing and running spiking neural
networks, which are computational models based on the biological principles of how neu-
rons communicate through discrete, asynchronous spikes. Several research initiatives and
projects around the world are focused on advancing neuromorphic hardware: companies
(i.e., Intel, IBM, Samsung among others) and academic institutions are investing in the
development of neuromorphic chips and architectures to unlock their potential for a va-
riety of applications. Researchers are actively working on testing systems able to make
neuromorphic computing practical and widely applicable to offer alternatives to tradi-
tional computing structures, which are based on the von Neumann architecture [Chen
et al., 2017; Jeong and Hwang, 2018].
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Original contribution to knowledge

Clinical precision medicine customizes medical care and treatment strategies based on
a patient’s specific characteristics and needs. It involves the integration of various data
sources, including genetic information, molecular profiling, clinical data, and lifestyle
factors, to inform the development of personalized healthcare interventions. Clinical
precision medicine aims to improve patient outcomes, enhance treatment efficacy, and
minimize adverse effects by tailoring medical decisions and therapies to each patient’s
unique profile. Risk stratification, conversely, is the process of categorizing patients into
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different risk groups based on specific criteria or predictive factors. In healthcare, risk
stratification is often used to identify individuals at a higher risk of developing certain
diseases or experiencing adverse health outcomes. By stratifying patients based on risk
profiles, healthcare providers can prioritize interventions, allocate resources more effi-
ciently, and implement targeted preventive measures to reduce the likelihood of adverse
health events. In clinical practice, the integration of precision medicine and risk stratifi-
cation allows healthcare professionals to:

• Tailor Treatment Approaches: By understanding the unique genetic, molecular,
and clinical profiles of individual patients, clinicians can select the most appropriate
treatment strategies and medications that are more likely to be effective and well-
tolerated based on the patient’s specific characteristics.

• Predict Disease Progression: Risk stratification models can help predict the like-
lihood of disease progression and identify patients who may benefit from early
intervention or aggressive treatment approaches, thereby improving disease man-
agement and patient outcomes.

• Optimize Preventive Measures: By identifying individuals at higher risk for certain
diseases, healthcare providers can implement targeted preventive measures, such
as lifestyle interventions, regular screenings, and vaccination programs, to mitigate
the risk of disease development and promote overall wellness.

• Facilitate Patient-Centered Care: Integrating clinical precision medicine and risk
stratification promotes patient-centered care by empowering patients to partici-
pate in their treatment decisions actively, understand their risk profiles, and make
informed choices regarding their healthcare management and preventive measures.

By leveraging the principles of clinical precision medicine and risk stratification, health-
care providers can deliver more personalized, proactive, and effective care tailored to
individual patients’ specific needs and risk profiles.

Breast cancer is a type of cancer that begins in the cells of the breast. It can occur
in men and women but is far more common in women. Breast cancer usually starts in
the inner lining of milk ducts or the lobules that supply them with milk. The diagnostic
path for breast cancer often begins in various ways, depending on the context and the
individual’s circumstances: screening, follow-up with clinical examination, or emergen-
cies related to a new palpable nodule. Regardless of the initial pathway, the diagnostic
process for breast cancer often involves a series of steps, including imaging studies (like
mammography, ultrasound, or MRI), biopsy for tissue sampling, and pathological analy-
sis to confirm the presence of cancer and characterize its type and characteristics. Once a
diagnosis is confirmed, a treatment plan is developed based on the case’s details [Ginsburg
et al., 2020].

According to statistics from 2023, breast cancer affected 55900 individuals in Italy,
leaving 834200 women living with the diagnosis. Notably, survivorship at the five-year
mark after diagnosis was 88%, while the probability of living an extra four years after the
first year post-diagnosis was 91% (from [Associazione italiana oncologia medica, 2023]).

46



4.1 Upper arm volumetry software

These numbers provide insight into the state of breast cancer in Italy and highlight the
importance of early detection and effective treatment.

Breast cancer treatment, significantly more intensive and prolonged regimens, can
have significant impacts on employment and contribute to a greater healthcare burden
for individuals undergoing treatment. Intensive treatment protocols, such as aggressive
chemotherapy or extended surgeries, may require extended periods away from work;
this can result in lost income and potentially impact job security. Prolonged treatment
and recovery periods may interrupt an individual’s career trajectory. It could affect
opportunities for advancement, job promotions, or the ability to pursue specific career
goals. Moreover, the side effects of cancer treatments, such as fatigue, nausea, pain, and
cognitive issues, can affect an individual’s ability to work during and after treatment.
Recovery time varies from person to person, and some may need an extended period to
regain full strength and functionality. Also, the costs associated with cancer treatment,
including medical bills, medications, and additional expenses related to managing side
effects, can lead to financial strain; it may further contribute to the stress associated with
the disease [Greenup et al., 2019]. In public health, intensive breast cancer treatment
often involves numerous medical appointments, tests, and follow-up care. Managing
this healthcare burden can be challenging, requiring coordination of various treatment
and follow–up care aspects. Regarding the emotional and psychological spheres, the
emotional and psychological toll of a breast cancer diagnosis and treatment can affect
an individual’s ability to cope with work-related stressors. Emotional involvement may
lead to changes in priorities, perspectives, and career choices.

Research has shown that surgical procedures, such as lymph node or axillary node
dissection, radiation therapy, and systemic treatments like chemotherapy can lead to
an upper limb impairment or considerable decline in upper extremity disability among
women [Chrischilles et al., 2019]. Furthermore, women with lower income, health literacy,
and previous diabetes, arthritis, or shoulder pain diagnoses exhibited a more significant
decline in upper extremity movements. Patients with worse upper extremity disability
also report a poorer quality of life.

4.1 Upper arm volumetry software

Post–breast cancer lymphedema is the condition where lymphedema develops as a result
of treatments for breast cancer, particularly surgeries and radiation therapy involving
the lymph nodes. Lymphedema is a chronic condition characterized by the accumulation
of lymphatic fluid, resulting in swelling, usually in the arms or legs. In the context of
breast cancer, lymphedema typically affects the arm on the same side as the treated
breast. Breast cancer treatments that can lead to lymphedema include Lymph Node Re-
moval or Radiation Therapy. Surgical procedures such as axillary lymph node dissection
or sentinel lymph node biopsy can disrupt the normal flow of lymphatic fluid, leading to
lymphedema. Also, radiation treatment for breast cancer can cause scarring and damage
to the lymphatic system, impairing its ability to drain fluid effectively and resulting in
lymphedema. Post-breast cancer lymphedema can manifest in various ways, including
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persistent swelling in the arm, hand, fingers, or chest on the side where the breast can-
cer treatment was administered, sensation of heaviness, tightness, or discomfort in the
affected arm, reduction in the arm’s range of motion due to the swelling and stiffness,
increased risk of developing infections due to the compromised lymphatic system. Early
detection and proactive management of post–breast cancer lymphedema are crucial in
preventing complications and improving breast cancer survivors’ overall quality of life
[Lippi et al., 2023a].

The circumferential method for limb volume measurement is a commonly used ap-
proach in clinical practice and research for assessing changes in limb size or volume,
particularly in the context of edema, lymphedema, or other pathological conditions. How-
ever, several challenges and limitations are associated with the circumferential method,
which may impact the accuracy and reliability of the volume measurements. Some of
these problems include:

• Assumption of uniform limb shape: The circumferential method often assumes
that the limb has a uniform shape along its length, which may not be the case in
individuals with irregular limb contours or variations in tissue composition. This
assumption can lead to inaccuracies in volume calculations, particularly in cases
where there are significant variations in tissue density or composition along the
limb.

• Lack of three-dimensional information: The circumferential method relies solely on
measuring the circumference of the limb at specific intervals, thereby overlooking
the three-dimensional shape and variations in limb geometry. This limitation can
result in an underestimation or overestimation of limb volume, especially in cases
where the limb shape deviates from a standard cylindrical or conical model.

• Influence of edema or tissue compression: The presence of edema or tissue com-
pression can significantly affect limb circumference measurements, leading to fluc-
tuations in the apparent limb volume. In conditions such as lymphedema or post-
surgical swelling, the circumferential method may not accurately capture the true
changes in limb volume, as it does not account for the complex interplay between
fluid dynamics and tissue properties.

• Inter-observer variability: The accuracy and reliability of the circumferential method
can be influenced by inter-observer variability, as different individuals may apply
varying degrees of pressure or use different measurement techniques when assessing
limb circumference. Inconsistent measurement practices among different observers
can introduce errors and discrepancies in the recorded data, compromising the
overall reliability of the measurements.

• Difficulty in capturing non–cylindrical limb shapes: The circumferential method
may encounter challenges when dealing with non-cylindrical limb shapes, such as
irregularly shaped limbs or limbs with indentations or protrusions. In such cases,
accurately defining the measurement points and ensuring consistent measurements
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Figure 4.1: The user interface of the three apps composing the software.

along the limb circumference can be challenging, leading to potential errors in
volume calculations.

For all these reason, clinician started using complementary techniques, such as wa-
ter displacement methods, imaging modalities (e.g., MRI or CT scans), or advanced
three–dimensional scanning technologies, to obtain a more comprehensive and accurate
assessment of limb volume changes. Three–dimensional laser scanning in medicine is a
technology that uses lasers to create 3D models or scans of various structures within
the human body. It is a non–invasive imaging technique with applications in different
medical fields, including surgery, orthopedics, prosthetics, and dentistry. The process
typically involves a laser scanner to capture the body’s surface topography or a specific
body part. The laser rapidly and precisely measures the contours and dimensions of
the target area, creating a detailed and accurate 3D representation. The data collected
from the laser scanning process are processed using specialized software that analyzes
the collected data points and generates a digital 3D model that accurately replicates
the scanned body part. Surgeons can use 3D models generated from laser scans to plan
and simulate complex surgical procedures, or 3D laser scanning facilitates the creation
of custom-fitted prosthetics and orthotic devices. Additionally, 3D computer reconstruc-
tions of the patient’s limbs could be measured to obtain surface area or volume computed
digitally.

In the published manuscript [Nascimben et al., 2022a], we introduced a free–to–use
software to calculate limb volume based on 3D laser scans. The software is made up
of three apps, each one with peculiar features and computational capabilities. Their
interface is shown in Figure 4.1, and it is downloadable from the Zenodo platform at the
address https://zenodo.org/records/7243978.

Using three-dimensional scanning devices in medicine has significantly enhanced the
measurement and quantification of anatomical features and volumes in patients, partic-
ularly in pathological conditions. However, the scarcity of freely available software for
processing and analyzing the data obtained from these devices has led to challenges in
the reproducibility and comparison of studies across different medical centers. To ad-
dress this gap, a software package comprising three programs has been developed and
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released, accompanied by supporting materials, to promote standardized volume assess-
ment and facilitate cross–center comparisons. The article introduces the functions of
the software programs and outlines the steps for volume assessment, focusing specifically
on the quantification of upper limb volume in a pilot study that compared the digital
outcomes to the values calculated with the circumferential method. The primary ob-
jective of the study was to evaluate the performance of digital volumes derived from
the convex-hull gift-wrapping algorithm and other alternative analysis methods incorpo-
rated into the software. Notably, some of the digital volumes generated by the software
were found to be dependent on specific parameters, necessitating careful value selec-
tion during the analysis process. The pilot study, conducted on a small group of young
adults comprising both genders, provided valuable insights into the agreement between
the clinical measurements and the digital volumes produced by the software package
(Figure 4.2 summarizes the results digital versus CM). The results indicated a strong
correlation between the digitial and circumferential sets of measurements, with the coef-
ficient of determination (R2) ranging from 0.93 to 0.97 and the correlation coefficient (r)
ranging from 0.965 to 0.984. Furthermore, the study highlighted the potential influence
of gender as a variable in upper limb volume quantification, emphasizing the impor-
tance of considering gender-specific models in such analyses. Overall, the development
of the software package and the findings of the pilot study demonstrate the potential
for standardized, reproducible, and parameter-controlled volume assessment using three-
dimensional scanning data. The software package is poised to enhance the comparability
of results across different medical centers and improve the accuracy and reliability of
volume quantification in clinical practice and research. Even if the published article con-
tains all the information to reproduce the results obtained during the upper limb volume
quantification employing the software suite, supplementary materials, video tutorials,
and user guides are available on the following website https://mn-visions.gitbook.
io/software-kit-for-3dls-limb-volume-quantification/.

In conclusion as reported in the narrative review of [Lippi et al., 2023b] offering a
comprehensive overview of various methods proposed in the literature for volumetric as-
sessment, highlighting their respective strengths, limitations, and implications in clinical
practice, the utilization of various volumetric assessment methods holds great poten-
tial in improving patient care, treatment outcomes, and research advancements in the
field of upper–limb lymphedema management. By continually refining and validating
these techniques, healthcare professionals can make significant strides in providing ef-
fective and personalized care for individuals affected by this chronic condition. Each
method has unique attributes, with variations in accuracy, reliability, practicality, and
cost-effectiveness, making the selection of the most appropriate method crucial in the
clinical management of upper-limb lymphedema. Furthermore, factors such as operator
experience, equipment availability, and patient population characteristics can signifi-
cantly influence the choice and efficacy of the volumetric assessment method. Ensuring
precise and standardized volumetric assessments is critical for enhancing rehabilitation
strategies, patient education, and research outcomes in the context of upper-limb lym-
phedema management. The integration of emerging technologies is essential to further
improve the tailored management of patients with upper-limb lymphedema. Future re-
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Figure 4.2: The Bland–Altman limits of agreement for the differences between circumfer-
ential measurement (CM) and digital volumes obtained from the apps (image
as in [Nascimben et al., 2022a]).
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search should prioritize the validation and implementation of these innovative solutions
on larger patient cohorts to enhance the reproducibility, accuracy, accessibility, and clin-
ical utility of volumetric assessment methods in the complex treatment framework of
upper–limb lymphedema.

4.2 Hand volumetry algorithms

Hand volumetry, a technique used to assess the volume of the hand, can be challenging
due to its complex structure with numerous small joints, intricate soft tissues, and irreg-
ular contours, making it difficult to accurately measure its volume without sophisticated
imaging techniques or specialized equipment. The irregular shape of the hand, with vari-
ations in finger length, hand width, and palm curvature, presents challenges in obtaining
precise and consistent measurements, especially when using manual techniques; for this
reason, digital scans for volume estimation might be a valuable alternative. Traditional
hand volumetry techniques often involve water displacement methods or circumferential
measurements, which may not provide highly accurate or precise volume measurements,
especially in cases where there is non-uniform swelling or changes in tissue density. To
address these challenges, medical professionals may use advanced imaging techniques,
such as 3D scanning, to obtain more accurate and detailed measurements of hand vol-
ume. These imaging techniques can provide a comprehensive evaluation of the hand’s
anatomy and aid in the precise assessment of changes in hand volume over time, especially
in conditions like lymphedema, where regular monitoring of hand volume is essential for
treatment management.

To address hand volumetry challenges, an ad–hoc study has been proposed and pub-
lished as a separate work in [Nascimben et al., 2023b]. The comparison of clinical hand
volumes computed through water displacement or circumferential measurements with
digital volumetry derived from 3D laser scans represents an essential advancement in
volume quantification and assessment. Using digital volume quantification algorithms,
including applying the gift wrapping concept and cubic tessellation, offers a more pre-
cise and comprehensive approach to accurately capturing and analyzing the complex
geometry of the human hand (Figure 4.3).

In particular, the gift-wrapping concept in digital volume quantification allows for a
3D hand representation, enabling a more detailed and nuanced analysis of its shape and
volume. By utilizing the gift-wrapping concept, the digital volumetry algorithm can ef-
fectively enclose the entire hand surface, capturing its intricate features and contours
with high precision and accuracy. Additionally, applying the cubic tessellation technique
in digital volume quantification provides a parametric approach to volume calculation,
allowing for the precise definition of the resolution of the tessellation. This parametric
nature of the technique ensures that the digital volume quantification process can be
tailored and calibrated according to specific measurement requirements, enhancing the
reproducibility and accuracy of the volume calculations. The validation of the calibration
methodology for defining the resolution of the tessellation further solidifies the reliability
and accuracy of the digital volume quantification approach. By establishing a robust
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Figure 4.3: Two views of convex envelope edges (black lines) enclosing the scanned hand
vertices (red dots) by the gift wrapping algorithm. On the right an example
of hand tessellation (from [Nascimben et al., 2023b]).

calibration methodology, researchers can ensure consistency and standardization in the
digital volume quantification process, enabling reliable comparisons between different
measurement techniques and data sources. Overall, the integration of digital volumetry
techniques derived from 3D laser scans, along with the calibration of the tessellation
resolution, represents a significant advancement in accurately quantifying and analyzing
hand volumes. This approach can potentially enhance our understanding of hand mor-
phology and volume dynamics in various clinical and research settings, facilitating more
precise and reliable assessments of hand-related pathologies, functional impairments, and
treatment outcomes.

4.3 Algorithm–based post–breast cancer lymphedema risk
stratification

Lymphedema risk stratification is crucial after breast cancer treatment because it helps
identify patients at a higher risk of developing lymphedema, a chronic condition charac-
terized by the accumulation of lymphatic fluid and subsequent swelling, typically in the
arms or legs. Healthcare providers can implement proactive monitoring and preventive
measures early in the post-treatment phase by identifying patients at a higher risk of
lymphedema. Early detection allows for timely intervention, which can help prevent the
progression of lymphedema and improve the overall quality of life for the patients.

In the manuscript published in Cancers journal [Nascimben et al., 2023a], we pro-
posed an example of algorithm–based medicine applied to patient risk stratification for
lymphedema. Algorithms provide a standardized approach to medical decision-making,
ensuring patients receive consistent, high-quality care regardless of the specific healthcare
provider they consult. Additionally, by utilizing algorithms based on the best available
evidence, healthcare professionals can make more informed decisions about patient care,
leading to improved treatment outcomes and reduced medical errors; another benefit
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is that algorithm-based medicine can streamline clinical workflows, allowing healthcare
providers to make accurate diagnoses and treatment plans more efficiently. Consequently,
improved efficiency can save costs by reducing unnecessary procedures, tests, and hospital
stays.

With the increasing availability of large-scale healthcare data, algorithms can analyze
and interpret biomarker data to generate insights that help clinicians make informed deci-
sions, leading to more personalized and precise treatments: in complex medical situations,
algorithms can guide the best course of action, considering various factors such as patient
history, comorbidities, and treatment options, which can be challenging for healthcare
providers to manage on their own. Algorithm-based medicine allows for continuous eval-
uation and updating of protocols based on new evidence and clinical outcomes, enabling
the healthcare system to stay current with the latest advancements in medical research.
By providing standardized guidelines for medical practice, algorithms can help reduce
variability in clinical decision-making, minimizing the potential for disparities in patient
care based on individual biases or preferences of healthcare providers.

The mentioned study focuses on the development of a risk stratification model for
upper limb unilateral lymphedema (BCRL) in patients with breast cancer. We used
data from 294 patients from two hospitals in northern Italy to identify factors associ-
ated with the development of BCRL. The multi-centric dataset consisted of twenty-three
clinical features from patients who had undergone axillary dissection for breast cancer
(BC) and were either presenting with or without upper limb unilateral lymphedema
(BCRL). By employing unsupervised low-dimensional data embeddings and clustering,
the study aimed to create a prognostic map that divides the patient cohort into three
distinct clusters based on specific characteristics. By modeling the patients’ clinical vari-
ables separately in two distinct embeddings, considering ordinal and binary variables
separately. After creating distinct models for the patients’ variables, we merged the
two models into a bi-dimensional prognostic map. This data fusion helped integrate the
insights from both embeddings to provide a comprehensive understanding of the rela-
tionships between the clinical features and the presence or absence of BCRL. The use of
a Gaussian mixture model, a statistical method for estimating the underlying probabil-
ity distributions of the data, facilitated the categorization of patients into three distinct
clusters based on their specific clinical characteristics and features. By categorizing the
patients into three clusters (Figure 4.4), the study likely aimed to identify and delineate
the different subgroups of patients based on their clinical profiles and the presence or
absence of BCRL. This approach allowed us to uncover patterns and associations be-
tween the various clinical features and the development of BCRL, thereby contributing
to developing a more comprehensive risk stratification model for this condition. The
study’s findings have potential implications for developing a more precise risk stratifica-
tion model for BCRL. By identifying the factors associated with the high-risk cluster,
we have uncovered valuable insights that can be used to tailor therapeutic interventions
specifically for patients at a higher risk of developing BCRL. Furthermore, the study’s
results could guide the allocation of healthcare resources, ensuring that patients at high
risk receive the necessary attention and targeted interventions to mitigate the onset and
progression of BCRL. This personalized approach has the potential to improve patient
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Figure 4.4: Low-dimensional embedding of the patients into a bi-dimensional map: each
point is a patient colored according to clustering into the three groups A, B,
and C. In the above figure, dots depict patients without BCRL, while crosses
represent patients with the disease. (image as published in [Nascimben et al.,
2023a]).

outcomes and overall quality of life for breast cancer survivors.
From the medical records of 294 women with a mean age of 59.823±12.879 years, the

patients were grouped into three distinct clusters, each one had a different proportion
of subjects affected by upper limb unilateral lymphedema. Specifically, the probability
that a patient with BCRL belonged to each cluster was reported as follows:

• Cluster A: 5.71%

• Cluster B: 71.42%

• Cluster C: 22.86%

Evaluating cluster composition, we delved into a comprehensive appraisal of intra- and
inter-cluster factors. By examining these factors, we aimed to gain a deeper understand-
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Figure 4.5: Possible usage of the proposed methodology in prospective studies. (image
as published in [Nascimben et al., 2023a]).

ing of the characteristics and clinical profiles that were unique to each cluster. Further-
more, the study identified a subset of clinical variables that played a significant role in
determining cluster membership; these variables were also found to be significantly asso-
ciated with the biological hazard of developing BCRL. Identifying these critical clinical
variables and their associations with both cluster membership and the biological hazard
of BCRL is crucial for enhancing the understanding of the underlying mechanisms and
risk factors contributing to the development of this condition. By pinpointing these in-
fluential variables, we might have paved the way for developing targeted interventions
and personalized treatment strategies for patients at different risk levels within each
cluster. This tailored approach could lead to improved patient outcomes and a more
effective allocation of healthcare resources for the prevention and management of BCRL,
as illustrated in Figure 4.5.

4.4 Final remarks

Analyzing post-breast cancer lymphedema in the upper limb using machine learning
can provide several advantages, contributing to a better understanding of the condition,
improved diagnosis and assessment, and the development of more effective treatment
strategies. We built software algorithms that can facilitate the quantitative assessment
and monitoring of lymphedema progression in the upper limb by analyzing changes in
limb circumference, volume, and functional impairment. Automated monitoring can
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provide clinicians with objective measures for tracking treatment efficacy and disease
progression, enabling personalized interventions and timely adjustments to the treatment
plan. Moreover, it has been released a paper establishing how machine learning can aid in
the identification of specific risk factors and biomarkers associated with disease severity
and progression in post-breast cancer lymphedema patients. By stratifying patients
based on risk profiles, machine learning models can provide insights into the likelihood
of developing complications and guide healthcare providers in implementing preventive
measures and targeted interventions to mitigate the risk of disease exacerbation.
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This chapter is based upon the articles
Mauro Nascimben, Manolo Venturin, and Lia Rimondini. Double–stage dis-
cretization approaches for biomarker-based bladder cancer survival modeling.
Communications in Applied and Industrial Mathematics, 12(1):29–47, 2021
Mauro Nascimben, Lia Rimondini, Davide Corà, and Manolo Venturin. Poly-
genic risk modeling of tumor stage and survival in bladder cancer. BioData
Mining, 15(1):23, 2022b
and the conference presentation
Mauro Nascimben. A machine learning based decision support system in oncol-
ogy. Parma, Italy, Sept 2021a. University of Parma, 2020+2021 Italian Society
of Applied and Industrial Mathematics (SIMAI) Conference

Original contribution to knowledge

In bioinformatics, biomarker analysis involves identifying, characterizing, and analyz-
ing biomarkers, which are measurable indicators of biological processes, disease states,
or pharmacological responses in living organisms. Biomarkers can be molecular, ge-
netic, proteomic, or phenotypic and are used to assess normal biological processes,
pathogenic processes, or responses to therapeutic interventions [Durairaj and Ranjani,
2013; Ichimura et al., 2005]. Biomarker analysis in bioinformatics typically includes the
following key aspects:

• Biomarker Discovery: Bioinformatics tools and techniques are used to analyze
large-scale omics data, such as genomics, transcriptomics, and proteomics data,
to identify potential biomarkers associated with specific diseases, biological pro-
cesses, or drug responses; this involves the application of various statistical and
machine-learning methods to detect patterns and correlations in complex biologi-
cal datasets.

• Biomarker Validation: Once potential biomarkers are identified, bioinformatics ap-
proaches are used to validate their clinical relevance and utility; validation includes
assessing the robustness of biomarker candidates across different patient cohorts,
evaluating their specificity and sensitivity, and determining their predictive value
for disease diagnosis, prognosis, or treatment response.

• Pathway and Network Analysis: Biomarker analysis often involves the examina-
tion of molecular pathways and biological networks associated with the identified
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biomarkers. Bioinformatics tools enable the visualization and analysis of complex
molecular interactions and signaling pathways, providing insights into the under-
lying biological mechanisms and the relationships between biomarkers and disease
processes.

• Integration of Multi-Omics Data: Bioinformatics facilitates data integration from
multiple omics platforms, allowing researchers to comprehensively analyze and in-
terpret the molecular signatures and interactions associated with biomarkers. Inte-
grative analyses of genomics, transcriptomics, proteomics, and metabolomics data
can provide a holistic understanding of disease mechanisms and facilitate the iden-
tification of robust and reliable biomarkers.

• Clinical Translation and Application: Bioinformatics is crucial in translating biomarker
discoveries into clinical applications by developing computational tools and algo-
rithms for biomarker-based diagnostic tests, patient stratification, and personalized
treatment approaches, as well as the design and implementation of clinical trials to
evaluate the efficacy and utility of biomarker-driven interventions.

By leveraging bioinformatics for biomarker analysis, researchers can advance our un-
derstanding of disease mechanisms, facilitate early detection and diagnosis of diseases,
and contribute to processing targeted and personalized therapeutic strategies, ultimately
improving patient outcomes and healthcare practices.

The bioinformatic biomarker analysis presented in the subsequent paragraphs will test
pipelines enclosing a data discretization step. Data discretization, or binning, involves
converting continuous data into discrete intervals or bins. Discretization simplifies com-
plex continuous data by reducing the number of unique values; this simplification makes
data more interpretable, especially for non-technical stakeholders who find it easier to
understand discrete categories or ranges. In data analysis, granularity is crucial because
it affects the level of insight that can be derived from the data: finer granularity provides
more detailed information but may also result in larger datasets and increased complex-
ity, whereas coarser granularity simplifies data but may lead to loss of detail [Pal et al.,
2017]. Data discretization and granularity are related concepts, as both involve dividing
continuous data into distinct intervals or categories. Data discretization is a general term
that refers to converting continuous data into discrete intervals or bins; it can be done for
various reasons, including simplification, noise reduction, and compatibility with specific
algorithms. Discretization involves grouping similar or nearby values to create categories
or bins. The number and size of these bins can be determined based on particular criteria
or algorithms. Granularity, on the other hand, refers to the level of detail or precision in
a dataset. It describes how finely the data is divided into individual units or elements.
Granularity can be applied to various aspects of data, such as time, geography, or other
dimensions. For example, in time series data, granularity could refer to whether the data
is recorded at the level of seconds, minutes, hours, days, or other time units. The rela-
tionship between data discretization and granularity lies in the fact that discretization
often involves defining the boundaries or categories that determine the granularity of the
resulting data. When discretizing continuous data, one must decide on the size and num-
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ber of bins, effectively choosing the granularity level in that data’s representation. Finer
discretization results in smaller bins and higher granularity, while coarser discretization
leads to larger bins and lower granularity [Pedrycz, 2000].

5.1 Bladder cancer survival prediction

Bladder cancer is a type of cancer that begins in the cells of the bladder, the organ in the
pelvis responsible for storing urine before it is excreted from the body. The most common
type of bladder cancer is urothelial carcinoma, which begins in the cells that line the inside
of the bladder. Bladder cancer can also develop in other types of cells in the bladder,
but these cases are less common. The treatment options for bladder cancer depend
on the cancer stage, the patient’s overall health, and other factors. Treatment may
include surgery to remove the cancerous cells or, in more severe cases, the entire bladder
(cystectomy), chemotherapy, radiation therapy, immunotherapy, or a combination of
these treatments. Sometimes, a combination of treatments may achieve the best results.
Regular check-ups and screening are essential for individuals at risk of bladder cancer,
especially those with a smoking history or exposure to certain industrial chemicals. Early
detection and timely treatment can significantly improve the prognosis and outcome for
individuals diagnosed with bladder cancer.

Several biomarkers have been identified as potential indicators of prognosis and sur-
vival in patients with bladder cancer. These biomarkers can help predict the likelihood of
disease progression, recurrence, or response to specific treatments. For example, analysis
of Cell-Free DNA for specific genetic alterations and mutations, such as alterations in
the TERT promoter or FGFR3 mutations, has shown potential in predicting the risk
of recurrence and survival outcomes in bladder cancer patients. Also, several molecular
markers have been identified as potential prognostic indicators in bladder cancer. Mu-
tations or alterations in genes such as TP53, RB1, FGFR3, and ERBB2 are frequently
cited. These markers can provide insights into the aggressiveness of the cancer and the
likelihood of response to specific therapies. Other biomarkers related to immune check-
point pathways, such as PD-L1 expression and tumor-infiltrating lymphocytes, are being
increasingly studied as prognostic indicators and predictors of response to immunother-
apy in bladder cancer.

The work in [Nascimben et al., 2021] established a novel pipeline to address survival
rate prediction employing a dataset of gene expression curated by [Zhang et al., 2020],
pre-processed as shown in Figure 5.1. The dataset was composed by hub and seed genes,
commonly used in gene expression networks and network biology. Hub genes are genes
that play a crucial role in maintaining the connectivity and function of a biological
network, such as a gene regulatory network or a protein-protein interaction network.
Hub genes are highly connected to other genes in the network and are often involved in
crucial regulatory or signaling pathways. Identifying hub genes can provide insights into
the central players that control various biological processes and pathways. Seed genes
are known to be involved in a particular biological process, disease, or phenotype of
interest. Seed genes serve as starting points for constructing gene networks and are used
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Figure 5.1: Visualization of the gene expression variables including annotations for all
patients (from [Nascimben et al., 2021]).

as a reference to identify other genes that may interact with or be functionally related
to the seed genes. Analyzing the relationships between seed genes and other genes in
the network can help uncover novel pathways or molecular mechanisms associated with
the biological process or disease under investigation. Both hub genes and seed genes are
critical for understanding the organization and dynamics of gene networks, as well as for
identifying potential therapeutic targets or biomarkers for various diseases and biological
processes. They play a significant role in systems biology and network-based approaches
to studying complex biological systems.

The field of bioinformatics utilizes specialized techniques and analysis pipelines to
study gene expression data, aiming to uncover properties, adaptations, and disease out-
comes within a given sample population. In this recent investigation focusing on bladder
cancer genetic profiles, a comparison of four numerical experiments was conducted, each
modeling survival rates. The research findings highlighted the effectiveness of a particular
sequence of two discretization phases, showcasing superior performance when contrasted
with a conventional approach employing only one discretization of gene expression data
(numerical experiments compared together exemplified into Figure 5.2).

The analysis involving two discretization phases comprised an initial discretizer, fol-
lowed by the refinement or pre–binning of input values before implementing the main
discretization scheme. Notably, the research results demonstrated that this two-phase
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5.1 Bladder cancer survival prediction

Figure 5.2: Overview of the four numerical experiments for GED analysis in bladder
cancer (from [Nascimben et al., 2021]).

approach led to remarkable outcomes, indicating its potential to enhance the accuracy
and robustness of survival rate modeling based on bladder cancer genetic profiles. The
best-performing model identified in the study involved a sequence of data transformations
designed to compensate for skewness in the data. Additionally, the model incorporated a
data discretization phase featuring a class-attribute interdependence maximization algo-
rithm [Kurgan and Cios, 2004], which optimized the association between gene expression
patterns and survival rates. Furthermore, the final classification process was conducted
using a voting feature intervals classifier [Demiröz and Güvenir, 1997], which not only
facilitated discrete interval optimization but also contributed to the overall robustness
and predictive accuracy of the model (Table 5.1) after 10–Fold cross–validation. Us-
ing VFI helped refine the levels created by the primary discretization algorithm. This
refinement, in combination with ChiMerge and potentially CACC, led to improved clas-
sification scores and high overall accuracy in predicting the disease outcome; this high-
lights the effectiveness of the combined approach in data preprocessing and classification,
thereby emphasizing the importance of the refined feature representation in achieving ac-
curate predictions. These findings underscore the significance of employing advanced and
multi-phase data analysis techniques in bioinformatics research, particularly in studying
genetic profiles and their associations with disease outcomes. The identification of an
optimized data processing pipeline, as demonstrated in this investigation, holds great
promise for improving the precision and reliability of survival rate modeling in bladder
cancer, thereby facilitating more effective disease prognosis and personalized treatment
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Discretizer AUC Bal. Accuracy Original levels VFI levels
CACC 0.99±0.003 97.63±2.65% 199 189

ChiMerge 0.98±0.01 94.39±3.34% 51 43
CART 0.89±0.08 82.55±10.17% 18 15

AMEVA 0.78±0.09 70.00±7.03% 8 6

Table 5.1: Outcomes of the pipelines identified in the 2nd numerical experiment (from
[Nascimben et al., 2021]).

strategies.

5.2 Bladder cancer tumor stage with survival prediction

Predicting the bladder cancer tumor stage involves various diagnostic procedures, in-
cluding imaging tests, biopsies, and surgical staging. The process aims to accurately
determine the extent of the cancer’s spread within the bladder and beyond. For these
purposes, cystoscopy helps in the direct visualization of the tumor and allows for the
collection of tissue samples for biopsy. This procedure involves using a cystoscope, a
thin tube with a camera, to visualize the inside of the bladder. Tissue samples obtained
through cystoscopy are examined under a microscope to determine the histological type
of bladder cancer and assess cellular abnormality and invasiveness. This information is
crucial in determining the tumor stage. Accurate tumor staging is crucial for developing
an appropriate treatment plan and predicting the prognosis for patients with bladder
cancer.

In [Nascimben et al., 2022b], the conducted numerical experiments focused on eval-
uating the effectiveness of a comprehensive approach combining Gene Expression Data
(GED) preprocessing through discretization with tree ensemble embeddings and nonlin-
ear dimensionality reductions (initial data shown in Figure 5.3).

The primary objective of the modeling was twofold: to categorize oncological patients
by identifying tumor stages and to differentiate survival outcomes. The experiments
were conducted under two specific scenarios: one involving complete data embedding
and the other simulating partial data embedding, which mimics the addition of new
patients to an existing model for rapid disease progression monitoring. To achieve the
outlined goals, machine learning procedures were utilized, with a specific emphasis on
identifying the most relevant genes that play a crucial role in patient prognosis. The
performance of the preprocessed GED was rigorously assessed and compared to that of
the untransformed data, particularly in predicting patient conditions and providing in-
sights into disease progression and survival outcomes. Integrating GED preprocessing,
tree ensemble embeddings, and nonlinear dimensionality reductions represents a robust
approach for enhancing the comprehensive categorization of oncological patients, offering
valuable insights into tumor staging and patient prognosis. The incorporation of machine
learning techniques facilitated the identification of key genetic markers associated with
patient outcomes, thereby enabling a deeper understanding of the underlying biologi-
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Figure 5.3: The boxplots depict log2 expression levels for the hub and seed genes before
preprocessing (from [Nascimben et al., 2022b], employing the GED identified
by [Zhang et al., 2020]).
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Figure 5.4: On the left: GED full embedding generating prognostic maps using tSNE Log-
z values; on the right: prognostic map after Uniform UMAP transformation
(from [Nascimben et al., 2022b]).

cal mechanisms and pathways involved in oncological conditions. By evaluating both
complete and partial data embedding scenarios, the study underscores the potential util-
ity of the proposed approach in facilitating real-time disease monitoring and prognosis,
thereby contributing to developing more effective and personalized treatment strategies
for oncological patients. The findings of this research have significant implications for the
advancement of precision oncology and the improvement of patient outcomes in oncology
and cancer research.

The application of data embedding in conjunction with dimensionality reduction tech-
niques resulted in the generation of robust prognostic maps, revealing well-defined clus-
ters of patients that can facilitate medical decision support (Figure 5.4). The image
displays the point clouds representing tumor stages (II, III, IV) and the outcome (alive
or dead). A subsequent experiment focused on simulating the addition of new patients to
an existing model, employing the Partial Data Embedding approach. This investigation
highlighted that the utilization of the Uniform Manifold Approximation and Projection
(UMAP, [Dorrity et al., 2020; McInnes et al., 2018]) methodology, coupled with uni-
form data discretization, yielded more favorable outcomes compared to other analyzed
pipelines.

Furthermore, the exploration of the parameter space for both UMAP and t-distributed
stochastic neighbor embedding (t-SNE, [Van der Maaten and Hinton, 2008]) techniques
emphasized the critical role of tuning a higher number of parameters for UMAP as op-
posed to t-SNE. This finding underscores the importance of optimizing the configuration
of UMAP to effectively capture and represent the underlying patterns and structures
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within complex patient data. In addition, two distinct machine-learning experiments
were conducted, with the first focusing on identifying a group of genes deemed valuable
for partitioning patients through gene relevance analysis. The results of this analysis
shed light on the key genetic markers that contribute significantly to patient stratifica-
tion and prognosis, providing valuable insights for personalized treatment approaches.
The second machine learning experiment demonstrated the superior precision achieved
by preprocessed data in predicting tumor outcomes for cancer stage and survival rate,
particularly in the context of a six-class prediction model; this highlights the crucial role
of data preprocessing techniques, such as the application of UMAP and uniform data
discretization, in enhancing the accuracy and reliability of prognostic predictions in on-
cology. Overall, these findings underscore the importance of leveraging advanced data
embedding and dimensionality reduction techniques in conjunction with meticulous data
preprocessing and machine learning methodologies to improve patient stratification and
prognostic modeling in the context of cancer research and clinical decision-making.

The current study developed novel analysis pipelines for modeling disease outcomes
based on bladder cancer–related biomarkers. Through comprehensive investigations in-
volving both complete and partial data embedding experiments, it was revealed that
pipelines integrating the Uniform Manifold Approximation and Projection (UMAP) tech-
nique exhibited superior predictive capabilities. These findings align with recent trends
in the literature, highlighting the growing recognition of the efficacy of UMAP in disease
modeling and prognostic assessment. However, the study also identified that various
UMAP parameters significantly impact the experimental outcomes. As a result, a key
recommendation was emphasized for researchers to meticulously consider and optimize
the relevant parameters when implementing the UMAP technique. By emphasizing the
importance of parameter selection and fine-tuning within the UMAP methodology, the
study aims to guide researchers in maximizing the accuracy and reliability of disease
outcome predictions based on bladder cancer-related biomarkers. Furthermore, the ap-
plication of machine learning procedures in the study corroborated the effectiveness of
the proposed preprocessing techniques in accurately predicting patients’ conditions and
disease outcomes. Notably, identifying a specific sub-group of biomarkers deemed signifi-
cant for forecasting bladder cancer prognosis serves as a crucial step toward improving the
understanding of the underlying molecular mechanisms and pathways involved in bladder
cancer progression and patient outcomes. The integration of these findings and recom-
mendations underscores the potential of advanced analysis pipelines and machine learning
methodologies in enhancing the precision and reliability of disease outcome modeling in
the context of bladder cancer research. By leveraging the insights the study provides,
researchers can refine their approaches to data analysis and interpretation, ultimately
contributing to the development of more effective diagnostic and prognostic tools for
improved patient care and treatment outcomes in bladder cancer management.
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Figure 5.5: On the left: ML model behavior and patient “queue” rate, on the right:
forecasted type II errors and operating costs (as presented in [Nascimben,
2021a]).

5.3 Machine learning based decision support system in
oncology

In [Nascimben, 2021a], the communication highlights the potential of machine learning
in automatic feature learning, particularly in the context of genetics. ML can assist in
bridging the gap between the rapid accumulation of genetic data and the slower, more
time-consuming process of interpretation. Despite its benefits, one significant challenge
lies in effectively communicating how prediction models derived from ML can impact
decision-making processes. To enhance interpretability in binary classification problems,
the communication suggested identifying a decision threshold that correlates with the
outcomes of the confusion matrix. This approach can provide a clearer understand-
ing of how the ML model makes predictions and can aid in decision-making processes,
especially in healthcare and insurance industries. The study also involved the devel-
opment of a theoretical cost-benefit simulation, which healthcare managers and private
insurance companies could utilize. This simulation, based on a previous investigation
related to bladder cancer survival (from [Nascimben et al., 2021]), was likely designed to
demonstrate how ML outcomes can be integrated into real–world decision–making sce-
narios. By presenting the simulation graphically, the oral communication aimed to offer
a practical tool that could facilitate collaboration between ML developers and healthcare
managers, fostering a better understanding of how ML insights can be applied in a real-
world context. Ultimately, the goal is to improve the communication of ML findings to
non-experts, such as healthcare managers and insurance professionals, by providing them
with a perspective that aligns more closely with their backgrounds and decision–making
processes; this approach can lead to more effective implementation of ML solutions in
healthcare and related industries, ultimately benefiting patients and clients.

Gene expression levels (GED) of a patient’s tumor can provide prognostic or risk
information (including recurrence), assisting healthcare specialists in making decisions.
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Furthermore, cancer has extensive costs for its treatment shared between health care
systems, insurance companies, and privates. Cancer is the second leading cause of death
in the US, but the third is medical errors while seeking treatment. Nowadays, gene
expression profiling tests are commercially available, and machine learning models derived
from GED can have practical applications in real–world scenarios with the ultimate
goal of building a model able to create value for all operators involved in healthcare.
However, communicating how prediction models can impact decisions can be challenging.
In binary classification problems, a way to address interpretability is to identify a decision
threshold linked to the outcomes of the confusion matrix (true positives, false positives,
true negatives, and false negatives). Through a threshold, continuous outputs can be
translated to a “yes/no” decision. Three scores can be calculated for creating a decision
threshold: “queue rate”, which represents the number of cases that can be treated by
the healthcare system, “recall” also called sensitivity, and “precision” which identifies the
fraction of true positive instances among the ones classified as positive. In addition, the
“F1” score is a measure derived from the latter two that balances both precision and
recall in one single value. In this theoretical cost–benefit simulation shown in Figure 5.5,
we applied the VFI model because it showed a good approximation of bladder cancer
survival rate to establish a theoretical model for healthcare managers or private insurance
companies. To build this model, a few hypothetical assumptions were made: an average
observation period of 2.2 years for 405 patients as those included in the original data set
and a cost of 4000 dollars for each GED profiling exam (costs derived from breast cancer
genetic profiling expenses as in and, usually shared in different percentages between
patient and health system or insurance company). Precision and recall values obtained
in 15 are the empirical quantiles after running 50 simulations (train/test split proportion
90/10), and the costs simulated in 16 are those an organization could bear at total
chance. If managers set a decisional threshold exemplified in “B”, the number of type
I and type II errors are minimized, and the expenses for screening costs are maximal.
These costs include all resources for testing the patients, exemplified by the “queue rate”.
Suppose the decision threshold is increased until level “A”, saving on the resources spent
for GED profiling. In that case, the recall score drops to 0.411, causing an increase
in type II errors (predicting survival instead of death). According to this theoretical
model, saving of resources is followed by the expansion of the false negative rate due
to an increase of type II errors. False-negative results concern a health system because
patients may feel confident and reassured, with individuals not seeking medical care
even if physical conditions deteriorate; these circumstances cause delays in diagnosis and
treatment. False negative cancer rates can give a fast metric to understand mortality
without running a randomized clinical study. Future works will improve this model
with a more accurate forecast of the costs, including information coming from the meta-
data (age and tumor stage). Interpretation of this theoretical simulation could provide
a tool for deriving solutions to bridge between developers and healthcare managers by
combining the outcomes of the machine learning model with a real–world decision-making
scenario.
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5.4 Final remarks

Analyzing gene expression data using machine learning in the context of bladder cancer
can provide several advantages that contribute to a better understanding of the dis-
ease, improved diagnostic capabilities, and the development of more effective treatments.
Machine learning can aid in identifying specific gene expression patterns that serve as
potential biomarkers for early detection, prognosis, and treatment response prediction in
bladder cancer. The chapter demonstrated how, by analyzing large-scale gene expression
datasets, machine learning algorithms can identify genes or molecular signatures asso-
ciated with different stages of bladder cancer, facilitating the development of sensitive
and specific biomarkers. Moreover, Machine learning models can help in predicting pa-
tient response to various treatment modalities, including chemotherapy, immunotherapy,
and targeted therapy, based on individual gene expression profiles. This personalized
approach can optimize treatment selection, minimize adverse effects, and improve overall
patient outcomes in bladder cancer management. For subtype classification and prog-
nosis prediction, we showed how machine learning algorithms can categorize bladder
cancer into distinct cancer stages based on gene expression patterns. This enables more
accurate prognosis prediction and tailored treatment strategies for patient subgroups.
One future goal employing merged data from other sources, machine learning analysis
of gene expression data, can provide valuable insights into the molecular mechanisms
and signaling pathways involved in bladder cancer development and progression. By
uncovering key genes and regulatory networks associated with tumor growth, invasion,
and metastasis, machine learning can contribute to a more comprehensive understanding
of the complex biology underlying bladder cancer, paving the way for developing novel
therapeutic targets and interventions. Indeed, integrating multi-omics data, including
genomic, transcriptomic, epigenomic, and proteomic data, creates a holistic view of the
molecular landscape of bladder cancer. Integrative analysis can reveal intricate inter-
actions between different molecular layers, providing a comprehensive understanding of
the complex interplay between genetic alterations and phenotypic changes in bladder
cancer. Finally, we demonstrated how to leverage machine learning models for public
health management.
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6 Biostatistics: equivalence analysis

This chapter is based upon the article
Mauro Nascimben and Lia Rimondini. Visually enhanced Python functions for
clinical equality of measurement assessment. Annals of Computer Science and
Information Systems, 32:241–249, 2022

Original contribution to knowledge

In biostatistics, comparative statistical and equivalence tests serve different purposes
and address distinct research questions. Comparative statistical tests are used to assess
whether there are significant differences between two or more groups or treatments. These
tests help researchers determine whether the observed differences in means, proportions,
or other relevant parameters are statistically significant. Some common examples of
comparative statistical tests include t-tests, ANOVA, chi-square tests, and nonparamet-
ric tests like the Mann-Whitney U test or the Kruskal-Wallis test. Comparative tests are
essential for identifying and quantifying differences between groups or treatments under
investigation. On the other hand, equivalence tests in biostatistics are used to deter-
mine whether the difference between two groups or treatments is within a predetermined
range that is considered practically insignificant. Equivalence tests are particularly rel-
evant when researchers aim to demonstrate that the effects of different treatments or
interventions are similar or when they want to establish the non-inferiority or similar-
ity of a new treatment compared to an existing standard. Equivalence tests typically
involve setting up bounds of equivalence and testing whether the observed effect falls
within these bounds. Common methods for conducting equivalence tests include TOST
(Two One-Sided Tests, [Walker and Nowacki, 2011]), confidence interval approaches, and
Bayesian methods. In summary, while comparative statistical tests focus on identifying
significant differences between groups, equivalence tests aim to establish whether the
differences between groups are within a predefined range of equivalence. Both tests play
crucial roles in biostatistics, helping researchers draw meaningful conclusions about the
effects of different treatments or interventions in clinical and biomedical research.

Equivalence analysis is crucial in medical practice for assessing the comparability or
similarity of two or more medical interventions, treatments, or formulations. This type
of analysis is essential in various clinical and research settings for the following reasons:

• Comparative Effectiveness Research: Equivalence analysis helps determine whether
two treatments or interventions have similar efficacy and safety profiles.Evaluating
the relative benefits and risks of different treatment options and informing clinical
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decision-making is essential to ensure that patients receive the most appropriate
and effective interventions.

• Generic Drug Evaluation: Equivalence analysis is commonly used to evaluate the
bioequivalence of generic drugs compared to their brand-name counterparts. It
helps to determine whether generic versions of a drug produce similar blood con-
centrations and therapeutic effects as the original product, ensuring the safety and
efficacy of generic drug substitution.

• Clinical Trials and Research Studies: Equivalence analysis is essential in clinical
trials and research studies to establish the comparability of different interventions
or treatments. It enables researchers to assess whether a new treatment is as
effective and safe as an existing standard of care, allowing for the evaluation of
novel therapies and interventions in a rigorous and standardized manner.

• Regulatory Approval and Drug Development: Equivalence analysis is critical in the
regulatory approval process for new drugs and medical devices. It helps regulatory
agencies determine whether a new product is therapeutically equivalent to existing
treatments and meets the required standards for safety and efficacy before it can
be approved for use in clinical practice.

• Pharmacovigilance and Post-Market Surveillance: Equivalence analysis is valuable
for monitoring medical products’ post-market safety and effectiveness. It allows for
the ongoing assessment of the equivalence of different formulations or variations of a
drug to ensure that any changes in manufacturing processes or product formulations
do not compromise its safety or efficacy.

By conducting rigorous and comprehensive equivalence analyses, healthcare professionals,
regulators, and researchers can ensure that medical interventions and treatments meet
established standards for efficacy, safety, and quality, promoting evidence-based decision-
making and enhancing patient care and safety.

6.1 equiv_med: a library for equivalence assessment

While Python has gained significant traction in the scientific community, some special-
ized areas of biostatistics may have more comprehensive support in other programming
languages, particularly those that have been historically popular in the field, such as R
and MATLAB.

In the conference paper [Nascimben and Rimondini, 2022], a novel Python library
targeting equivalence testing has been proposed to the Python users community. This
library is freely downloadable at the following address github.com/m89p067/equiv_med.
An overview of all the funcionality provided by the library is shown in the following
scheme in Figure 6.1. TOST, which stands for Two One-Sided Tests, is a method used
in statistical hypothesis testing, particularly in equivalence testing. The first column
of Figure 6.1 is dedicated to the methods developed to run the TOST procedure which

72

github.com/m89p067/equiv_med


6.1 equiv_med: a library for equivalence assessment

Figure 6.1: Overview of the four numerical experiments for GED analysis in bladder
cancer (from [Nascimben et al., 2021]).

determines whether the difference between two groups or treatments is within a specified
range that is considered practically insignificant or clinically unimportant. This method
is commonly used in clinical trials and other biomedical research to assess whether a
new treatment is not substantially different from a standard treatment, i.e., whether the
new treatment is equivalent to the standard. The TOST procedure involves conducting
two separate one-sided hypothesis tests. First, a lower equivalence bound is set, and a
one-sided test is performed to determine whether the observed effect is greater than this
lower bound. Next, an upper equivalence bound is set, and another one-sided test is
conducted to ascertain whether the observed effect is less than this upper bound. If the
results of both tests suggest that the observed effect is greater than the lower bound and
less than the upper bound, the null hypothesis of equivalence is accepted. This method
helps researchers establish the equivalence of treatments by testing whether the difference
between them is within a predefined range that is deemed practically irrelevant. TOST
provides a rigorous approach to assessing equivalence and is widely used in evaluating
new treatments, drugs, or interventions in biostatistics and clinical research.

Receiver Operating Characteristic (ROC) curves are typically used to assess the per-
formance of a binary classification model, such as a diagnostic test or a predictive model,
by plotting the true positive rate (sensitivity) against the false positive rate (1-specificity)
at various threshold settings. While ROC curves are primarily used to evaluate the dis-
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criminatory power of a test, they are not commonly used to establish equivalence directly.
However, ROC curves can still be indirectly helpful in assessing the equivalence of diag-
nostic tests or classifiers, especially in cases where the focus is on determining whether
two tests have similar discriminatory abilities. In medical analysis, several indexes can be
calculated from a 2x2 frequency table, which is commonly used to summarize the results
of binary classification tests. A 2×2 table typically includes information on the presence
or absence of a condition or disease and the results of a diagnostic test or screening tool.
From this table, various performance metrics and indices can be derived to assess the
accuracy, reliability, and effectiveness of the diagnostic test. Some important indexes
calculated from a 2x2 frequency table in medical analysis include:

1. Sensitivity: Sensitivity (also known as the true positive rate) is the proportion
of actual positive cases correctly identified by the test. It is calculated as true
positives divided by the sum of true positives and false negatives.

2. Specificity: Specificity (also known as the true negative rate) is the proportion
of actual negative cases correctly identified by the test. It is calculated as true
negatives divided by the sum of true negatives and false positives.

3. Positive predictive value (PPV): PPV is the probability that a positive test result
indicates the presence of the condition. It is calculated as true positives divided by
the sum of true and false positives.

4. Negative predictive value (NPV): NPV is the probability that a negative test result
indicates the absence of the condition. It is calculated as true negatives divided by
the sum of true and false negatives.

5. Accuracy: Accuracy is the overall proportion of correct classifications the test
makes. It is calculated as the sum of true positives and true negatives divided
by the total number of cases.

6. Likelihood ratios: Likelihood ratios, including the positive likelihood ratio and the
negative likelihood ratio, provide information on how much a test result will change
the odds of having the condition compared to not having the condition.

7. Youden’s J statistic: Youden’s J statistic is the sum of sensitivity and specificity
minus one. It is used to determine the optimal cut-off point for a diagnostic test.

These indexes help assess the performance of a diagnostic test or screening tool in cor-
rectly identifying the presence or absence of a particular condition or disease. They play
a crucial role in evaluating the effectiveness and reliability of medical tests in clinical
practice and research.

Cohen’s d is a measure of effect size that quantifies the standardized difference between
two means. It is commonly used when comparing the means of two groups or treatments.
While Cohen’s d is not typically used directly for assessing equivalence, it can provide
information about the magnitude of the difference between two measurements or groups,
which can be relevant in determining whether the difference is practically significant.
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When considering equivalence between measurements using Cohen’s d, one would typi-
cally assess whether the magnitude of the difference falls within a predefined range that
is considered practically negligible. Using confidence intervals to assess equivalence be-
tween measurements involves comparing the intervals to a predefined equivalence margin.
The general approach is explained below:

1. Calculate the confidence intervals: Calculate the confidence intervals for the mea-
surements or groups under consideration. Typically, this involves computing the
confidence intervals for the means or differences between the means.

2. Define the equivalence margin: Determine the range or margin of equivalence con-
sidered practically significant or acceptable in the study context. This margin
should reflect the level of difference that is deemed negligible or insignificant.

3. Compare the intervals with the equivalence margin: Assess whether the confidence
intervals fall entirely within the predefined equivalence margin. If the intervals are
entirely contained within the equivalence margin, this suggests that the measure-
ments or groups are practically equivalent.

4. Interpret the results: Based on the comparison between the confidence intervals
and the equivalence margin, make conclusions regarding the equivalence of the
measurements or groups. If the confidence intervals fall within the equivalence
margin, one can infer that the measurements are equivalent within the predefined
range.

It is important to note that the choice of the equivalence margin is critical and should
be determined based on the context of the study and the specific criteria for establishing
practical equivalence. Additionally, using confidence intervals for assessing equivalence
is more indirect than dedicated equivalence testing procedures like the TOST (Two One-
Sided Tests) approach. However, confidence intervals can provide valuable information
about the precision of the estimates and can offer insights into whether the measurements
or groups are practically equivalent.

Another pillar of medical equivalence analysis is the Bland–Altman visualization [Sedg-
wick, 2013], which is primarily used to assess the agreement or the level of agreement
between two quantitative measurement methods. While it is not typically used for for-
mal equivalence testing, it can provide insights into the degree of agreement between
two measurement techniques, which could be relevant for evaluating the equivalence of
the methods in specific contexts. The code required to perform Bland–Altman is shown
below and the visual output in Figure 6.2; additionally, it could perform exact limits of
agreements and sample size evaluation as in [Jan and Shieh, 2018].

from equiv_med.EQU import eq_BA
my_BA=eq_BA.BA_analysis(var1,var2) # var1,var2 are two measurements from two distinct devices
#Bland-Altman plot
my_BA.run_analysis() # default 95% of the difference will lie in this interval [revised plot]
# Evaluate sample size and assurance probability of exact agreement limist
#Exact limits of agreement sample size
out1=my_BA.exact_Bound_sample_size(mu1,sigma1,len(var1),95,0.05)
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Figure 6.2: Alternative design of the Bland-Altman plot as found in the BA_analysis
class, using function run_analysis.

out2=my_BA.exact_Bound_sample_size(mu2,sigma2,len(var2),95,0.05)
#Exact limits of agreement assurance
out3=my_BA.exact_Bound_assurance(mu1,sigma1,len(var1),95,0.05,0.9)
out4=my_BA.exact_Bound_assurance(mu2,sigma2,len(var2),95,0.05,0.9)
#In case of repeated measures
my_BA.minimal_detectable_change() #output also Minimal Detectable Change

Indeed, visual interpretation enhances the overall statistical analysis process by facili-
tating data exploration, pattern recognition, effective communication, quality control,
model assessment, and hypothesis generation. It allows analysts to uncover meaningful
insights from data and communicate those insights clearly and compellingly. For this
reason, all Python functions were coded to produce novel graphs to enhance the display
of the statistical outcomes.

The Table details 6.1 the composition of each folder in the GitHub repository, and the
operations the Python functions could perform. Among the developed functions, two of
them allow the user to perform statistics directly on the ROC curves. DeLong’s method
is a statistical approach used to compare the areas under two correlated ROC curves
[Sun and Xu, 2014]. It is commonly applied when there is a need to assess whether
two diagnostic tests or biomarkers have significantly different discriminatory abilities.
DeLong’s method considers the correlation between the ROC curves and provides a
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statistical test for comparing the areas under the curves. Moreover, Venkatraman’s
method is a variation of the DeLong, and it is particularly relevant in survival analysis
or studies where time-to-event data is involved and the ROC curves are based on time-
dependent outcomes [Venkatraman and Begg, 1996].
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6.1 equiv_med: a library for equivalence assessment

Another unusual aspect the Python library contains is the implementation of a Bayesian
approach to statistical equivalence. Bayesian statistics and traditional (frequentist)
statistics are two distinct approaches to statistical inference and data analysis, each
with its own set of principles, methodologies, and interpretations. The key differences
between the two are highlighted below:

• Probability Interpretation:

– Bayesian Statistics: In Bayesian statistics, probability is interpreted as a de-
gree of belief or subjective uncertainty. Prior knowledge or beliefs about the
parameters of interest are combined with the observed data to form a posterior
probability distribution, representing updated beliefs after data analysis.

– Traditional Statistics: In traditional statistics, probability is interpreted as
the long-run frequency of events based on repeated sampling. It does not
involve the notion of prior beliefs, and the focus is primarily on the observed
data and the likelihood of the data given the parameters.

• Parameter Estimation:

– Bayesian Statistics: Bayesian inference involves the use of prior distributions,
likelihood functions, and Bayes’ theorem to update prior beliefs into posterior
distributions, which represent the updated knowledge about the parameters
of interest.

– Traditional Statistics: Traditional statistics primarily rely on point estimates
(e.g., maximum likelihood estimates) and confidence intervals derived from
the observed data without considering prior information.

• Uncertainty Representation:

– Bayesian Statistics: Bayesian analysis explicitly quantifies uncertainty through
probability distributions, allowing for a more comprehensive representation of
uncertainty in parameter estimation and model predictions.

– Traditional Statistics: Traditional statistics generally focuses on point esti-
mates and standard errors, which provide limited information about the esti-
mates’ uncertainty.

• Hypothesis Testing:

– Bayesian Statistics: Bayesian hypothesis testing involves comparing the rela-
tive probabilities of different hypotheses based on the observed data and prior
beliefs, often using measures such as Bayes factors or posterior probabilities.

– Traditional Statistics: Traditional hypothesis testing relies on p-values and
significance levels, which indicate the strength of evidence against a null hy-
pothesis under the assumption that the null hypothesis is true.
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6 Biostatistics: equivalence analysis

The Python library offers the calculations of the “region of pratical equivalence” (ROPE)
using the formulation proposed by [Kruschke and Liddell, 2018]; the following code snip-
pet could be used to run such Bayesian statistical approach for equivalance between
measurements assessment.

from equiv_med.EIS import ROPE_test
out2=ROPE_test.ROPE(var1, rope_range=[-0.3,0.3]) #user-defined ROPE region [-0.3,0.3]
out2.rope_calc()

6.2 Final remarks

The introduction of a Python library for visual understanding of medical-related sta-
tistical tests targeting various aspects of bioequivalence is a valuable contribution to
medical research and analysis. By providing a free alternative to commercial software,
this library enables researchers, practitioners, and analysts to access advanced visualiza-
tion tools and automated functions for interpreting output parameters in bioequivalence
studies. The inclusion of minimal working examples further enhances the usability of
the library and supports the reproducibility of results, contributing to the transparency
and rigor of scientific research. The emphasis on producing enhanced graphs to facil-
itate the interpretation of output parameters is particularly commendable, as effective
visualization can significantly aid in understanding complex statistical analyses and com-
municating findings to diverse audiences, including clinicians, researchers, and stakehold-
ers. The commitment to continuous improvement and expansion of the methodologies
implemented in the library promises ongoing advancements in bioequivalence research
and analysis. By focusing on generating visual insights, the library is poised to play
a crucial role in advancing medical understanding and decision-making processes. The
availability of open-source tools that support the visual exploration of statistical results
is essential for promoting transparency, collaboration, and innovation within the scien-
tific community. This Python library can potentially empower researchers and analysts
to gain deeper insights into bioequivalence, contributing to the advancement of medical
knowledge and the development of evidence-based practices.
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7 Regenerative medicine: biomaterials
production tracking

This chapter is based upon the article
Mauro Nascimben, Ilijana Kovrlija, Janis Locs, Dagnija Loca, and Lia Rimon-
dini. Fusion and classification algorithm of octacalcium phosphate production
based on xrd and ftir data. Scientific Reports, 14(1):1489, 2024

Original contribution to knowledge

Regenerative medicine is a multidisciplinary field that focuses on developing techniques
to replace, repair, or regenerate human cells, tissues, or organs to restore or establish
normal function. The goal of regenerative medicine is to harness the body’s natural
healing processes or to create new solutions, such as tissue engineering and stem cell
therapy, to treat diseases and injuries that currently have limited or no effective treatment
options. Key components and approaches within regenerative medicine include:

• Stem Cell Therapy: Involves using stem cells, which can differentiate into various
cell types, to repair or replace damaged or diseased tissues. Stem cell therapy
holds promise for treating conditions such as spinal cord injuries, heart disease,
and neurodegenerative disorders.

• Tissue Engineering: Focuses on creating functional biological substitutes to replace
or repair damaged tissues or organs. Tissue engineering combines cells, biomateri-
als, and biochemical factors to construct artificial organs, tissues, or scaffolds that
can integrate with the patient’s body and promote natural regeneration.

• Biomaterials and Scaffold Design: Involves the development and use of biocompat-
ible materials, such as synthetic polymers, hydrogels, and biodegradable scaffolds,
to support cell growth, tissue regeneration, and organ transplantation. These ma-
terials provide structural support and promote cell attachment and growth during
regeneration.

• Organ Transplantation and Replacement: Focuses on developing techniques for
transplanting or replacing damaged or diseased organs with healthy donor or-
gans, bioengineered organs, or artificially created organ constructs. Regenerative
medicine aims to address the shortage of donor organs and improve the outcomes
of organ transplantation procedures.
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7 Regenerative medicine: biomaterials production tracking

• Gene Therapy and Cellular Reprogramming: Involves using genetic engineering
techniques to modify or reprogram cells to restore their normal function or promote
tissue regeneration. Gene therapy can be applied to correct genetic defects, promote
therapeutic protein production, or stimulate damaged tissue regeneration.

In regenerative medicine, tracking the production of biomaterials is essential for ensur-
ing the quality, safety, and efficacy of the materials used in tissue engineering, organ
transplantation, and other regenerative therapies. Several vital reasons highlight the
importance of biomaterial production tracking in regenerative medicine:

1. Quality Control and Assurance: Tracking the production process of biomaterials
allows rigorous quality control measures to be implemented at each manufacturing
stage. High quality helps ensure that the biomaterials meet established standards
for purity, biocompatibility, mechanical properties, and sterility, reducing the risk
of adverse reactions or complications in patients.

2. Traceability and Accountability: The ability to trace the production history of bio-
materials enables manufacturers to identify and address any issues or discrepancies
that may arise during the manufacturing process. It also facilitates accountability
in cases where product defects or failures need to be investigated to prevent future
occurrences.

3. Compliance with Regulatory Standards: Biomaterials used in regenerative medicine
are subject to strict regulatory requirements to ensure patient safety and product
efficacy. Production tracking allows manufacturers to demonstrate compliance with
regulatory standards and facilitates the timely submission of documentation and
data required for product approval and market authorization.

4. Batch Consistency and Reproducibility: Tracking the production parameters and
variables for biomaterial batches enables manufacturers to achieve consistent prod-
uct quality and reproducibility across multiple production runs. It ensures uni-
formity in product performance and therapeutic outcomes, enhancing regenerative
medicine interventions’ reliability and predictability.

5. Product Development and Optimization: Detailed production tracking data can
provide insights into the impact of various manufacturing parameters on the char-
acteristics and performance of biomaterials. This information can be leveraged
to optimize production processes, improve product design, and enhance the func-
tionality and biocompatibility of biomaterials for specific regenerative medicine
applications.

6. Post–Market Surveillance and Safety Monitoring: Continuous tracking of bioma-
terials production data supports post-market surveillance efforts, allowing man-
ufacturers to monitor product performance, detect potential adverse events, and
implement corrective actions or product recalls if necessary. This proactive ap-
proach to safety monitoring helps ensure patient well-being and fosters confidence
in using regenerative medicine products.
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7.1 Octacalcium phosphate production

By implementing robust tracking systems for biomaterials production, manufacturers
can uphold the highest quality, safety, and efficacy standards in regenerative medicine,
thereby promoting the advancement and widespread adoption of these innovative thera-
pies for patient care.

7.1 Octacalcium phosphate production

Octacalcium phosphate (OCP, [Kovrlija et al., 2021]) is a calcium phosphate compound
that is an intermediate phase in hydroxyapatite formation, the main mineral component
of human bone. OCP has a chemical formula of Ca8H2(PO4)6 · 5H2O and is a precursor
to hydroxyapatite formation during bone mineralization and tooth development. It is
considered a bioresorbable material, meaning it can be broken down and resorbed by
the body over time. In biomaterials and biomedical engineering, Octacalcium phosphate
has gained attention due to its biocompatibility and potential applications in bone re-
generation, dental materials, and as a biomimetic material for the repair and restoration
of bone defects. The properties that make it a valuable material in these applications
include its ability to promote osteoconductivity, its biodegradability, and its similarity
to the mineral composition of natural bone. Octacalcium phosphate (OCP) can be syn-
thesized through various methods, including precipitation, hydrothermal synthesis, and
other chemical processes. The specific manufacturing process for Octacalcium phosphate
may vary depending on the desired characteristics of the final product and the intended
applications. Quality control measures are essential throughout the manufacturing pro-
cess to ensure the production of high-quality and consistent Octacalcium phosphate. To
produce OCP, two precursor solutions are needed (calcium and phosphate-containing
solutions), and they are processed separately. The calcium solution is typically prepared
by dissolving a calcium salt in water, such as calcium nitrate or calcium hydroxide. The
phosphate solution is prepared in water by dissolving a phosphate salt, such as ammo-
nium phosphate or sodium phosphate. The prepared calcium and phosphate solutions
are then mixed under controlled conditions, typically at specific temperatures and pH
levels. The mixing process allows the ions to react and form the desired Octacalcium
phosphate compound. Coupling the calcium and phosphate solutions leads to the precip-
itation of Octacalcium phosphate crystals. The control of reaction conditions, including
temperature, pH, and stirring rate, is essential to ensure the formation of pure and uni-
form OCP crystals. The resulting OCP crystals are separated from the solution through
filtration. The collected solid product is then washed thoroughly to remove any impuri-
ties or unreacted chemicals from the surface of the crystals. The washed OCP crystals
are dried under controlled conditions to remove any remaining moisture. Depending on
the intended application, the dried OCP powder may undergo further processing, such
as milling or sieving, to achieve the desired particle size and morphology.
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7 Regenerative medicine: biomaterials production tracking

Figure 7.1: On the left: Class membership of XRD θ angles, on the right: Class mem-
bership of FTIR wavenumber values.

7.2 ML for OCP production tracking

The paper [Nascimben et al., 2024] describes the implementation of an automated anal-
ysis sequence aimed at developing a decision support system for tracking the synthesis
of octacalcium phosphate (OCP) from alpha-tricalcium phosphate (α–TCP) over time.
The process involves the fusion of X-ray diffraction (XRD) and Fourier-transform in-
frared (FTIR) signals from a scaled-up hydrolysis of OCP from [Kovrlija et al., 2023],
followed by curve fitting based on established maxima from the literature and the ex-
traction of nine features from the fitted shapes. X–ray diffraction is a powerful analytical
technique used in material science to study the structure of crystalline materials. When
X–rays interact with a crystalline material, they undergo constructive and destructive
interference, resulting in a diffraction pattern that provides valuable information about
the material’s atomic arrangement and crystallographic properties. Fourier–transform
infrared spectroscopy (FTIR) is an analytical technique widely used in materials science
for the identification and characterization of various materials based on their molecular
composition. FTIR spectroscopy measures the absorption of infrared light by a sample,
providing information about the functional groups and chemical bonds present within
the material. In the manuscript, we provided a way to merge features extracted from
the XRD and FTIR signals to build a more robust model to track OCP production
phases. The relation between OCP production phases and XRD or FTIR values of each
detected peak is shown in Figure 7.1. In the image “phase” stands for initial or final OCP
synthesis, whereas “parameter” means XRD angle or FTIR wavenumber.

The sequence of operations enclosed machine learning techniques for feature ranking,
spatial filtering, and dimensionality reduction, aiding in automatically recognizing differ-
ent synthesis stages (Figure 7.2). Another innovative aspect to aid class separability was
the application of an ad–hoc spatial filtering technique. Spatial filters are a preprocess-
ing technique used in machine learning and signal processing to enhance the separation
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7.3 Final remarks

Figure 7.2: Overview of the proposed pipeline in [Nascimben et al., 2024].

between different classes or patterns in data. Spatial filters aim to extract features or pat-
terns relevant to discrimination or classification; by enhancing the separability of different
classes or patterns in the data, spatial filters can significantly improve the performance
of various machine learning models. The reduced variability due to the application of
spatial filtering transforming one class helps produce two clusters representing the dis-
tinct production phases of OCP. Indeed, the two distributions overlap without spatial
filtering, and it could be very difficult (or impossible) for an algorithm to discriminate
the two OCP production phases. On the contrary, after applying spatial filtering in
a one–versus–rest configuration, one class shows reduced variability over the Cartesian
plane compared to the not-filtered other; this expedient facilitates the discrimination of
the two OCP production stages, and one algorithm could be trained to learn the two
stages and score the XRD or FTIR samples automatically applying a theoretical decision
boundary.

7.3 Final remarks

The proposed analysis pipeline for OCP identification represents a promising foundation
for a decision support system explicitly tailored for OCP synthesis monitoring. This
methodology in the future could be leveraged for tracking OCP production over time,
including the intermediary phases involved in OCP formation. Additionally, another
prospective aim is to explore the integration of biological variables with biomaterial prop-
erties to construct a comprehensive model of tissue response to the implant. Overall, the
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7 Regenerative medicine: biomaterials production tracking

manuscript highlights the potential of the developed analysis pipeline in facilitating the
monitoring and understanding of OCP synthesis, paving the way for enhanced decision-
making in the context of biomaterial development and tissue engineering applications.
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8 Proteomics: anomaly expression
identification

This chapter is based upon the article (submitted)
Mauro Nascimben, Hugo Abreu, Marcello Manfredi, Annalisa Chiocchetti, and
Lia Rimondini. Latent expression of extracellular vesicles proteins in doped
bioactive glasses through machine learning–based mass–spectometry data analy-
sis. International Journal of Molecular Sciences, Submitted
and the conference presentation
Mauro Nascimben. Anomaly detection of EV-related protein expression in
doped bioactive glasses. Novara, Italy, Oct 2023b. Italian Chemical Society,
3rd International Proteomics And Metabolomics Conference

Original contribution to knowledge

Protein anomaly detection in proteomics is crucial for identifying abnormal or atypical
protein behaviors, expressions, or modifications that may indicate underlying patholog-
ical conditions, disease states, or cellular dysfunctions [Tiwari et al., 2022; Tadepalli
et al., 2020]. Several reasons highlight the importance of protein anomaly detection in
proteomics:

• Biomarker Discovery: Anomaly detection helps identify proteins that exhibit sig-
nificant deviations from their normal expression patterns, providing insights into
potential disease biomarkers. By detecting abnormal protein expressions or modi-
fications, researchers can identify candidate biomarkers indicating specific diseases
or physiological changes, facilitating early disease detection and personalized treat-
ment approaches.

• Disease Pathogenesis Understanding: Anomaly detection in proteomics contributes
to a better understanding of the molecular mechanisms underlying various diseases
and disorders. By identifying aberrant protein activities or expressions associated
with specific pathological conditions, researchers can unravel the complex signaling
pathways and molecular interactions involved in disease pathogenesis, aiding in
developing targeted therapeutic interventions.

• Drug Target Identification: Protein expression or function anomalies can highlight
potential drug targets for developing novel therapeutics. By pinpointing proteins
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8 Proteomics: anomaly expression identification

that play critical roles in disease progression or pathophysiological processes, pro-
teomics anomaly detection can guide the selection of specific molecular targets for
drug discovery and the design of precision medicine approaches tailored to individ-
ual patient profiles.

• Personalized Medicine: Proteomics anomaly detection enables the identification
of patient-specific protein profiles and aberrant molecular signatures, facilitating
the customization of treatment strategies and therapeutic interventions based on
an individual’s unique proteomic profile. This personalized medicine approach
allows selecting targeted therapies more likely to be effective and well-tolerated by
patients, leading to improved treatment outcomes and patient care.

• Diagnostic and Prognostic Applications: Anomaly detection in proteomics can be
instrumental in producing diagnostic tests and prognostic indicators for various
diseases. By detecting specific protein anomalies associated with disease onset,
progression, or response to treatment, proteomics can aid in the development of
reliable diagnostic tools and prognostic markers that enable early disease detection,
accurate disease staging, and the prediction of treatment outcomes.

By leveraging advanced proteomics techniques and anomaly detection algorithms, re-
searchers can gain a deeper understanding of the complex protein dynamics underlying
health and disease, paving the way for obtaining innovative diagnostic tools, targeted
therapies, and personalized treatment approaches in clinical practice.

8.1 Biomaterials’ proteomics in extracellular vesicles

Extracellular vesicles (EV, [Abreu et al., 2021]) play essential roles in mediating intercel-
lular communication and the transfer of bioactive molecules between cells. When exposed
to biomaterials, such as those used in medical devices, implants, or tissue engineering
scaffolds, EVs can interact with the material surfaces, leading to various biological re-
sponses. Several factors can influence these responses, including the type of biomaterial,
its surface properties, and the specific cell types involved. Some of the key ways in which
extracellular vesicles may react to biomaterials include:

• Adhesion and Uptake: EVs can adhere to the surfaces of biomaterials and may
be taken up by cells in the local microenvironment. The surface properties of
the biomaterial can influence the adhesion and internalization of EVs, potentially
affecting the cellular response to the biomaterial.

• Biocompatibility and Inflammation: Interaction with biomaterials can trigger the
release of EVs from immune cells and other cell types, leading to the modulation
of the local inflammatory response. The biocompatibility of the biomaterial can
influence the nature and extent of the inflammatory response, which in turn may
affect the behavior of EVs in the surrounding tissue.
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8.2 Application of anomaly detection to EV-related protein expression

• Regulation of Cellular Processes: EVs released from cells in response to biomaterials
can carry various bioactive molecules, including proteins, nucleic acids, and lipids,
which can regulate cellular processes such as proliferation, differentiation, and tissue
regeneration. The cargo carried by EVs can influence the cellular response to the
biomaterial and contribute to tissue repair and regeneration.

• Immune Modulation: EVs released from immune cells in response to biomateri-
als can mediate immune modulation by transferring immunomodulatory molecules
and antigens to other cells. This process can affect the local immune response
to the biomaterial and may influence the overall biocompatibility and long-term
integration within the host tissue.

Understanding how extracellular vesicles react to biomaterials is crucial for developing
biocompatible materials, designing improved medical devices, and advancing tissue engi-
neering approaches. By elucidating the intricate interplay between EVs and biomaterials,
researchers can develop strategies to optimize the biocompatibility of biomaterials, pro-
mote tissue regeneration, and minimize adverse immune reactions, ultimately leading to
improved clinical outcomes for patients receiving biomaterial-based interventions. Pro-
teomics in extracellular vesicles involves the study of the proteins carried within these
small, membrane-bound vesicles released by cells into the extracellular environment. Ex-
tracellular vesicles play crucial roles in cell-to-cell communication, signal transduction,
and the transfer of biological molecules between cells. Proteomics studies focused on
extracellular vesicles aim to characterize the protein content within these vesicles, al-
lowing for a better understanding of their roles in various physiological and pathological
processes.

8.2 Application of anomaly detection to EV-related protein
expression

The investigation in [Nascimben, 2023b] involved the analysis of extracellular vesicle
protein content derived from mesenchymal stem cells cultured on various bioactive glasses
using mass spectrometry. Mass spectrometry in proteomics has revolutionized the study
of complex protein mixtures, allowing researchers to identify and quantify proteins with
high sensitivity and specificity. During the proteomics analysis, the researchers primarily
relied on statistical analysis based on p–values to evaluate the significance of differences in
protein expression levels between the experimental groups. The p–value, in this context,
represents the probability of observing a test statistic as extreme as, or more extreme
than, the one calculated from the actual data, assuming there is no real difference between
the compared groups. In simpler terms, the p-value helps determine the likelihood that
observed differences in protein expression are due to random chance alone. Lower p-values
indicate that the observed differences are less likely to result from chance and are more
likely to result from a genuine effect. However, it is essential to note that a small p-value
does not confirm the presence of a significant difference between groups; it merely suggests
that the observed data is improbable if the null hypothesis (no difference in protein
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Figure 8.1: The proposed procedure workflow

expression between the control and treatment groups) were true. Moreover, statistical
significance is a concept not related to biological or clinical significance [Ranganathan
et al., 2015]. Statistical significance is indeed influenced by the study’s sample size,
among other factors. When conducting hypothesis tests or analyzing data, researchers
typically use statistical significance to determine whether an observed effect is genuine or
simply due to random chance. Sample size plays a crucial role in determining statistical
significance because it affects the power of a statistical test [Ioannidis, 2008]. Power
refers to the probability that a test will correctly reject the null hypothesis when it is
false. A larger sample size generally increases the power of a test, making it more likely
to detect a true effect if one exists. In contrast, smaller sample sizes can lead to broader
confidence intervals and less precise estimates, making detecting small or subtle effects
harder; this can fail to see statistically significant differences, even if they truly exist in
the population. The problem could be connected with inadequate statistical power to
detect meaningful differences or excessive statistical power to detect differences that are
not biologically meaningful [Bhardwaj et al., 2004].

To offer an alternative approach to the traditional statistical analysis, due to the lim-
ited effect size demonstrable with a small sample [De Winter, 2019; Ioannidis, 2005],
we considered anomaly detection techniques. These techniques are aimed at identify-
ing a restricted set of EV-related proteins that exhibit substantial changes in behavior
compared to the majority of the data. Proteins displaying anomalous behavior that
contradicts most of the data might serve as potential indicators of underlying biological
phenomena occurring between the experimental conditions. Using anomaly detection
techniques in this context allowed us to pinpoint specific proteins that deviate signifi-
cantly from the norm, providing insights into potentially crucial biological processes or
responses under experimental conditions. By focusing on these anomalies, the ultimate
goal was to gain a deeper understanding of the complex mechanisms and interactions
underlying the effects of different bioactive glasses on the protein content of extracellular
vesicles derived from mesenchymal stem cells.
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8.2 Application of anomaly detection to EV-related protein expression

8.2.1 Wet-lab experimental conditions

The experimental setup consisted of the culture of 5000 cells of each of the three donors
independently, on top of several different bioactive glasses (and the respective control
conditions), at 37◦C, 5%CO2, for seven days. At the endpoint, the supernatants were
collected for EVs isolation through ultracentrifugation at 100000 x g for 2 hours at 4◦C.
The pellet enriched in EVs was then resuspended in 500uL of Phosphate Buffer Saline
(PBS 1X), and the EVs protein content was evaluated through mass spectrometry. The
initial data was from three donors and contained the mass spectrum peak area for the
samples of each participant. The following experimental conditions were tested:

• cell cultures on “SBA2”, “SBA3”, and “STe0” are not modified bioactive glasses (i.e.,
controls or ctrl).

• cell cultures on “AgSBA2”, “CuSBA3”, and “STe5” modified bioactive glasses doped
with silver, copper, and tellurium, respectively (i.e., doped).

• cell culture on “Plastic”, a baseline condition without the presence of biomaterials
(i.e., plast)

The laboratory experiments aimed at establishing protein content modifications: those
accurring between the doped glasses and the “plastic” condition could be a consequence
of the presence of the bioactive glass. Furthermore, protein expression altered between
the doped glasses and the respective control glass should be due to the metal ion doping
[Taye, 2022].

It should be remarked that there were no experimental differences between donors
(culture conditions, number of wells, time-point, cell density, etc.).

8.2.2 Mass spectrum summary

Sample processing for MS analysis and data collection was conducted at the Mass Spec-
trometry unit of the University of Piemonte Orientale (Novara, Italy). Proteins extracted
from uEVs were quantified using BCA assay (Pierce BCA protein assay kit; ThermoFisher
Scientific). Samples were denaturated with TFE, reduced in DTT 200 mM, and alky-
lated with IAM 200 mM before complete tryptic digestion with 2 mg of Trypsin/Lys-C
(Promega, Madison, WI, USA). Digested peptides were desalted on the Discovery®
DSC-18 solid phase extraction (SPE) 96-well Plate (25 mg/well) (Sigma-Aldrich Inc., St.
Louis, MO, USA) and vacuum evaporated to be reconstituted with 20 mL of 0.05% formic
acid in water. Trypsin-digested sample proteins were analyzed with a microLC Eksigent
Technologies (Eksigent Technologies, Dublin, CA, USA) system that included a micro
LC200 Eksigent pump with flow module 5-50 µL, interfaced with a 5600+ TripleTOF
system (Sciex, Concord, ON, Canada) equipped with DuoSpray Ion Source and CDS
(Calibrant Delivery System). The stationary phase was a Halo C18 column (0.5 x 100
mm, 2.7 µm; Eksigent Technologies, Dublin, CA, USA). The mobile phase was a mix-
ture of 0.1% (v/v) formic acid in water (A) and 0.1% (v/v) formic acid in acetonitrile
(B), eluting at a flowrate of 15.0 µL min−1 at an increasing concentration of solvent B
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from 2% to 40% in 30 min. For identification purposes, the samples were subjected to a
data-dependent acquisition (DDA): the mass spectrometer analysis was performed using
a mass range of 100-1500 Da (TOF scan with an accumulation time of 0.25 s), followed
by an MS/MS product ion scan from 200 to 1250 Da (accumulation time of 5.0 ms)
with the abundance threshold set at 30 cps (35 candidate ions can be monitored during
every cycle). For the label-free quantification, the samples were subjected to cyclic data
independent analysis (DIA) of the mass spectra using a 25-Da window: the mass spec-
trometer was operated such that a 50-ms survey scan (TOF-MS) was performed, and
subsequent MS/MS experiments were performed on all precursors. These MS/MS exper-
iments were performed cyclically using an accumulation time of 40 ms per 25-Da swath
(36 swaths) for a total cycle time of 1.5408 s. By using the rolling collision energy, the
ions were fragmented for each MS/MS experiment in the collision cell. The MS data were
acquired with Analyst TF 1.7 (Sciex, Concord, ON, Canada). Two DDA and three DIA
acquisitions were performed. The DDA files were searched using Protein Pilot software v.
4.2 (Sciex, Concord, ON, Canada) and Mascot v. 2.4 (Matrix Science Inc., Boston, MA,
USA). The UniProt Swiss-Prot reviewed database containing human proteins (version
01/02/2018, containing 42271 sequence entries) was used, and a target-decoy database
search was performed. The probability of peptide assignments was corrected with False
Discovery Rate set at 1%.

Mass spectrum peak area

In mass spectrometry, the peak area measures the intensity of a mass spectral peak,
summarizing the number of ions contributing to that peak. It is proportional to the
abundance of the ions with a specific mass-to-charge ratio in the sample, allowing for
quantitative analysis. A larger peak area indicates a higher abundance of ions with that
particular mass-to-charge ratio in the sample, while a smaller peak area indicates a lower
abundance.

8.2.3 Dry-lab experimental sequence

The proposed workflow starting from the raw mass spectrum peak area involved the
following steps:

1. The raw values are log-transformed

2. The log-transformed values were clustered (using OPTICS) and the values of
the same cluster taken to ensure analysis on similar data representing the same
biological phenomena

3. Each cluster value from the 3 donors was labelled as outlier (potential “anoma-
lity” or extreme variation) or not applying Isolation Forest (machine learning
technique)
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4. Selected the common proteins marked as outliers inside each condition and com-
puted the metric distance to identify abnormal variations in the EV-related pro-
tein expression

as exemplified on Figure 8.1.

Proposed sequence: log-transformation

The log transformation of the raw peaks was performed because mass spectrometry data
can have a wide range of intensities, and some peaks might be much larger than others
due to various factors such as instrument variability, sample concentration, and ioniza-
tion efficiency. Indeed, log transformation helps normalize the data by compressing the
dynamic range and making smaller peaks more visible. Additionally, log transformation
can reduce the impact of random noise in the data. Noise often contributes more to the
lower intensity peaks, and by taking the logarithm, the noise is dampened, making it
easier to distinguish valid signals from noise.

Proposed sequence: clustering

OPTICS (Ordering Points To Identify the Clustering Structure) is a data clustering
algorithm used in machine learning to identify natural clusters and their hierarchies in a
dataset [Ankerst et al., 1999]. It is handy for datasets with varying densities, irregular
shapes, and noise. OPTICS is an extension of the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm, which aims to discover clusters based
on the density of data points. In OPTICS, two main parameters are to be evaluated:
core (minPts) and reachability distances (epsilon). The concept of "reachability distance"
means that for a data point P, the reachability distance to another data point Q is defined
as the maximum distance between P and Q, such that P can be directly reached from
Q while staying within a predefined neighborhood size. Instead, a data point’s core
distance is the smallest such that there are at least a certain number of points within
that distance, forming a dense region around the point. In the current investigation, a
reachability parameter of 0.05 and a minPts parametere of 50 were applied.

The effect of clustering all log-transformed peak values is shown in Figure 8.2. By
employing only values found in the blue cluster, the analysis focused on finding aberrant
proteins inside a group with similar expression profiles, excluding proteins markedly
belonging to other clusters that probably portray different biological phenomena (or
artifacts). Indeed, among the different biological activities depicted in Figure 8.2, the
values inside the blue cluster might represent the more relevant biological phenomena.
However, the proposed pipeline could be employed over other clusters in the same way.

Proposed sequence: outlier detection by Isolation Forest

Isolation Forest is a machine-learning algorithm for anomaly detection and outlier identi-
fication [Liu et al., 2008]. Isolation Forest conceptualizes that anomalies are usually rare
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Figure 8.2: All data from the three donors and each experimental conditions underwent
automatic labeling to retain only uniformly distributed values for further
analysis. Only the values in the blue cluster were used in the next steps of
the experimental sequence.
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instances that can be "isolated" more quickly than regular instances. The algorithm con-
structs a binary tree-like structure in which each internal node represents a feature and
a split point. In contrast, each leaf node represents an isolated instance or an anomaly.
To detect anomalies, the algorithm calculates the path length from the root of the tree
to the leaf where a data point resides. Anomalies are expected to have shorter paths
because they are isolated more quickly. The average path length of a data point across
all trees in the forest is used as a score of atypical expression. Smaller average path
lengths indicate higher anomaly scores.

Figure 8.3: Values from the three donors marked as black dots were considered inliers,
thus close to each other, in the three experimental conditions (plast, control,
and doped) by the Isolation Forest algorithm, whereas colored points were
those showing more relevant changes (aka “outliers”).

As depicted in the Figure 8.3, the Isolation Forest identified a set of core values in the
distribution that are close to each other: these values were marked as black dots, and
could be considered those with similar peak area. To find proteins showing extremely
changing behavior between experimental conditions, only the colored values were retained
for being considered outliers by the algorithm. Among the outliers, the possibility to find
proteins with unusual expression in the three experimental conditions might be high.
Note that the “plast” condition was the same in all the three graphs.

Figure 8.4: Retaining only the values considered outliers by Isolation Forest. The three
axes represent the three donors.
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The Figure 8.4 reports only the values of protein expression kept for further analysis.

Proposed sequence: Distance function

In [Nascimben, 2023b], the metric function was the Mahalanobis distance as general
framework. It can be thought of as a measure of how many standard deviations away a
particular point is from the mean of a distribution after adjusting for correlation among
variables. Mathematically, the Mahalanobis distance D between a point x and a distri-
bution with mean µ and covariance matrix Σ is given by:

D2 = (x− µ)TΣ(−1)(x− µ)

It measures the similarity or dissimilarity between the point and the distribution: if the
distance is small, the point is close to the distribution whereas if it is large, it is far away.
One of the main advantages of using Mahalanobis distance is that it considers the rela-
tionships among variables, which can be particularly useful in cases where variables are
correlated. Among all proteins marked as outliers, the Mahalanobis distances were com-
puted to identify abnormal variations in the EV-related protein expression, and values
thresholded considering proteins whose variations were above the average±one standard
deviation the Mahalanobis distance of the whole set of proteins; these results gathered
proteins based on this threshold.

However in [Nascimben et al., Submitted] (a forthcoming manuscript) the procedure
has been changed to employ an Euclidean metric, more suitable for a three-dimensional
space made by three subjects or donors. This is the sample size typically encountered in
biological experiments involving data from a few cell lines [Lazic et al., 2018]. Euclidean
distance might be a good option when operating on a three-dimensional donor space to
evaluate the single subject’s actual values.

8.3 Results

In [Nascimben, 2023b], Venn diagrams were created to summarize the common proteins
in the three experimental conditions. A Venn diagram is a graphical representation of
the relationships between different groups or sets of items. It consists of overlapping
circles, each representing a set, and the overlapping regions show the common elements
of those sets. Figure 8.5 contains the proteins arranged as a word cloud, thus with font
size proportional to the magnitude of the protein expression changes. The character size
on the right panel of Figure 8.5 was fixed for visualization purposes and does not reflect
protein expression modifications. The Control versus doped condition could not find
shared proteins, meaning each experimental condition activated a peculiar set of aberrant
proteins with specific characteristics. Instead, the Plastic versus doped condition shared
a few proteins, with one highly over- or under-expressed in all laboratory preparations
(right art of Figure 8.5), the protein P22413 linked to bone mineralization was identified
in all experimental conditions as highly active.
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Figure 8.5: On the left: Doped vs. Ctrl, on the right: Doped vs. Plast

8.4 Final remarks

Machine learning techniques can be applied to proteomic data for anomaly detection,
including supervised and unsupervised learning. Supervised algorithms can be trained
on labeled data to classify proteins as normal or abnormal, while unsupervised algo-
rithms can detect patterns or outliers without predefined labels. Moreover, unsupervised
clustering methods can help identify groups of proteins with similar expression profiles.
Anomalies may manifest as proteins that do not fit into the expected clusters. The
reported work introduces a possible analysis sequence targeting abnormal protein ex-
pression between experimental conditions.

While in [Nascimben, 2023b], a general procedure has been proposed, a forthcoming
analysis ([Nascimben et al., Submitted]) will be tested specifically to work on cell lines
coming from three donors, which is a common sample size in biological experiments.
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Machine learning plays a significant role in precision medicine, offering data-driven in-
sights and predictive models that can tailor medical treatments to individual patients.
By incorporating machine learning into precision medicine, healthcare professionals can
leverage data-driven insights to tailor therapies and interventions to individual patients,
leading to more effective, targeted, and personalized healthcare solutions. Machine learn-
ing is used to analyze and interpret genomic data, including DNA sequencing, gene
expression profiles, and epigenetic information; it allows researchers and clinicians to
identify genetic mutations, variations, and molecular signatures associated with diseases
and drug responses. Another critical task ML models can execute is helping in categoriz-
ing patients into subgroups based on their genetic, clinical, and molecular profiles. This
patient stratification enables the identification of patient-specific treatment options and
the optimization of therapeutic strategies. Through ML algorithms, biomarkers discovery
could be achieved to identify potential biomarkers and molecular signatures associated
with disease risk, progression, or response to treatment. These biomarkers can guide
early diagnosis, prognosis, and targeted therapy selection. Machine learning is also used
to predict drug–target interactions, drug-drug interactions, and the potential of existing
drugs for new therapeutic purposes; it accelerates drug discovery and the identification of
personalized treatment options. As evaluated also in the current thesis, machine learning
assists healthcare providers in making data-driven clinical decisions. It can help predict
patient outcomes, assess treatment responses, and recommend personalized treatment
plans, all while considering individual patient characteristics. As part of the radiomics
field, ML is applied to medical imaging, such as radiological images and histopathology
slides. It aids in the automated detection, classification, and quantification of anomalies,
enhancing diagnostic accuracy and treatment planning. Modern bio–banks offer large
amounts of electronic health records that ML models can analyze to extract valuable
clinical insights, identify risk factors, predict disease trajectories, and support decision-
making in real-time clinical settings. In so-called smart-hospital environments, ML can
be used for remote patient monitoring, wearable device data analysis, and early warn-
ing systems to improve disease management, adherence to treatment plans, and patient
engagement. Another powerful aspect is the possibility of Data Integration through Ma-
chine learning to merge and harmonize diverse healthcare data sources, including genomic
data, electronic health records, imaging data, and patient-reported data: it facilitates a
comprehensive view of patients’ health profiles. Machine learning has the potential to op-
timize clinical trials by assisting in the design and execution of clinical trials to identify
eligible patient populations, predicting patient recruitment rates, and optimizing trial
protocols for more efficient and cost-effective research. A last remark is about ethical
and privacy considerations. Machine learning in precision medicine must address ethi-
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cal concerns related to patient consent, data privacy, transparency, and the responsible
use of AI models. Ethical considerations are critical to building trust and safeguarding
patient rights.

The works illustrated throughout this thesis demonstrate how machine learning of-
fers numerous benefits in precision medicine, revolutionizing the approach to healthcare
and patient treatment. It could be possible to develop personalized treatment plans be-
cause machine learning models can analyze large–scale patient data, including genomic
information and clinical records, to tailor treatment plans to each patient’s unique charac-
teristics, optimizing therapeutic efficacy and minimizing adverse effects. Examples have
been provided in Section 5: one study established a novel pipeline to predict survival
rate employing a dataset of gene expression (hub and seed) related to bladder cancer
[Nascimben et al., 2021]. The numerical experiments tested pipelines including a pre-
binning followed by a primary discretizer or a primary discretizer followed by refinement
or optimization of the levels. Also, machine learning algorithms can detect subtle patterns
in patient data that indicate the early onset of diseases, allowing for timely interventions
and proactive disease management, potentially leading to better treatment outcomes.
In [Nascimben et al., 2022b], a novel pipeline enclosed tree embedding and manifold
dimensionality reduction to produce graph-like forecasts exposing peculiar patterns suit-
able for extending patient categorization into six classes (three grades of tumor severity
and two classes for overall survival) in an unsupervised fashion. The inclusion of can-
cer staging supports medical decisions regarding prognosis and treatment. As explained
in Section 4 and 3, ML could be exploited for targeted therapy selection by analyzing
patient-specific data; ML can help identify the most effective treatment options, includ-
ing targeted therapies and precision drugs that are tailored to the molecular profiles of
individual patients, thereby improving treatment response rates. Furthermore, the same
techniques could enhance drug development, accelerating the drug discovery process by
predicting the efficacy and safety of potential drug candidates, identifying new drug tar-
gets, and facilitating the repurposing of existing drugs for novel therapeutic purposes,
ultimately developing more effective and targeted medications. The works published as
[Nascimben and Rimondini, 2023] explored public-domain toxicological datasets, each
one evaluated in separate numerical experiments through specific SNNs. All SNNs had
in common the neuronal model, the leaky integrate-and-fire, and received the molecules’
structures encoded as binary fingerprints. Toxicity of the compounds was determined by
the number of spikes fired by the last two neurons, assigning it to the neuron that fired
more spikes. Improved versions of the original SNN were applied to bioacculumation
prediction in [Nascimben et al., 2023c] for a three class prediction, and in [Nascimben,
2023a] investigating other neuron models. As shown in Section 4, machine learning
in precision medicine can contribute to improved patient outcomes by enabling more
accurate disease prognosis, better treatment planning, and the early identification of
potential complications, thereby reducing the overall burden of the disease on patients
and healthcare systems. The study in [Nascimben et al., 2023a] merged clinical factors
from 294 women who underwent axillary dissection for breast cancer, gathering 23 clin-
ical variables and metadata from anonymized subjects to predict the risk of developing
upper-arm lymphedema. The variables included patient characteristics, macroscopical
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cancer features, anatomopathological cancer attributes, surgical outcomes, and medical
therapies. In the proposed approach, the ordinal and the binary variables were modeled
separately in two distinct UMAP models. After obtaining the two UMAP models, the
final representation was a single low-dimensional embedding that merged the two UMAP
graphs by intersection. UMAP tries to preserve the local and global information con-
tained in the input variables and supports merging distinct models by intersection, union,
or subtraction. The procedure associated each patient to a low or high risk of BCRL oc-
currence. Also, in Section 4, software was tested for faster clinical decision-making with
tools providing rapid and data-driven insights that assist healthcare providers in mak-
ing timely and informed clinical decisions, facilitating proactive and personalized patient
care, especially in critical care and emergency medicine scenarios. The papers [Nascim-
ben et al., 2022a, 2023b] offered free-to-use computational methods to aid healthcare
professionals for lymphedema management. The upper arm volumetry methods were
deployed as a software the calculates limb volumes and surfaces based on 3D laser scans;
it is made up of three apps, each one with peculiar features and computational capa-
bilities downloadable from Zenodo. Section 5 also discussed how ML models can be
employed for cost efficiency and resource optimization [Nascimben, 2021a]. By optimiz-
ing treatment plans, minimizing unnecessary interventions, and reducing trial-and-error
approaches, machine learning in precision medicine can lead to cost savings for health-
care providers and improved allocation of healthcare resources, ensuring that resources
are used where they are most needed. The general benefits of ML approaches extend to
the analysis of complex biological and clinical data, leading to a better understanding
of disease mechanisms, identifying novel biomarkers, and developing innovative research
approaches, thereby advancing our knowledge of various diseases and their treatments.
The Section 6, a copyright-free Python library was released to allow scientists perform
analysis targeting bioequivalence [Nascimben and Rimondini, 2022]. The source code of
the functions has been uploaded to GitHub and archived on Zenodo. Installation of the
package was made possible directly from GitHub through pip. Comparative statistical
tests could not address the interchangeability of measurements obtained from different
laboratory devices or the similarity between two treatments. Analyzing the equivalence
means reversing the null hypothesis of standard biostatistical testing by validating the
alternative hypothesis of no difference between measurements. The importance of this
topic is particularly relevant for the medical sector, especially for the biopharmaceuti-
cal industry, with guidelines for therapeutic equivalence between drugs established by
regulatory agencies like USA Food and Drug Administration. In Chapters 7 and 8, ML
has been employed on wet laboratory data. Analyzing wet laboratory data with ML
involves extracting meaningful insights and predictions from experimental data gener-
ated in a laboratory setting. The Chapter 7, the analysis pipeline has been studied for
categorizing samples into “initial” or “final” stages of OCP production. This substance is
well-equipped to act as a bone replacement in regenerative medicine, and the approach
proposed enclosed several innovative aspects. It merged two heterogeneous sources of
data: XRD and FTIR. XRD is beneficial for investigating the crystalline structure of
materials, providing information about the arrangement of atoms in the crystal lattice.
On the other hand, FTIR is valuable for analyzing the chemical composition of mate-
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rials, focusing on identifying functional groups and molecular bonds. Both techniques
are complementary and often used in material science to comprehensively understand
the properties and characteristics of a wide range of materials. A spatial filter has been
created to categorize OCP production stages from the merged dataset to reduce the vari-
ance of one class versus the other; this solution improved the discriminative power of the
algorithm, easing the selection of a decision boundary. In Section 8, an analysis sequence
has been conceived to identify unusual or unexpected observations in the protein expres-
sion data [Nascimben et al., 2024]. If the sample size of a proteomic dataset is limited,
it is crucial to manage statistics accurately. A novel analysis sequence was proposed
in [Nascimben, 2023b; Nascimben et al., Submitted] to assess protein expression from
the subjects’ actual values by utilizing machine learning anomaly detection techniques.
This proposed procedure may support and aid researchers in evaluating findings when
using fewer cell lines in their experiments by detecting abnormal protein behavior in the
dataset. The researcher’s focus on individual proteins in various ways beyond standard
statistical testing can offer additional evidence or uncover concealed aspects of the ex-
perimental design. The methodology has been validated in an experimental environment
where the EV protein content of MSC cultured on three bioactive glasses, doped or not
with metallic ions, has been examined. The process identified a subset of proteins that
displayed highly varying behavior between experimental conditions: the peculiar set of
abnormal proteins each metal activates describes the effect of ion doping. Conversely,
comparing doped biomaterials and the baseline plastic scaffold led to a common set of
proteins. Some proteins were statistically significant at the t-test, while others had a
high variance pattern between experimental conditions. This technique’s additional in-
formation on the data being examined may provide a more in-depth understanding of
the experiment and the results it produces.

9.1 Future perspectives

The future perspectives of machine learning in precision medicine are promising and
point towards transformative advancements in healthcare delivery, patient outcomes,
and disease management. Some innovative future perspectives include:

• Integration of Multi-Modal Data: Machine learning will enable the seamless in-
tegration and analysis of diverse healthcare data, including genomics, proteomics,
metabolomics, imaging data, and real-time patient-generated data, facilitating a
comprehensive and holistic understanding of individual health profiles.

• Real–Time Predictive Analytics: Machine learning models will evolve to provide
real-time predictive analytics and decision support, enabling healthcare providers
to anticipate patient health risks, intervene proactively, and prevent disease pro-
gression, leading to more effective and timely interventions.

• Enhanced Patient Engagement and Empowerment: Future machine learning appli-
cations will focus on enhancing patient engagement and empowerment by provid-
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ing personalized health insights, predictive risk assessments, and self-management
tools, fostering a proactive approach to disease prevention and health maintenance.

• AI-Driven Drug Discovery and Development: Machine learning will revolutionize
the drug discovery process by enabling the rapid screening of vast chemical li-
braries, predicting drug-target interactions, and accelerating the development of
novel therapeutics and precision medicines tailored to specific patient populations.

• Augmented Clinical Decision–Making: Machine learning will assist healthcare pro-
fessionals by providing augmented intelligence tools for complex clinical decision-
making, treatment planning, and risk prediction, facilitating more informed and
personalized patient care delivery.

• Population Health Management: Machine learning will play a crucial role in pop-
ulation health management by enabling the analysis of large-scale health data to
identify disease trends, public health risks, and healthcare disparities, thereby in-
forming public health policies and interventions to improve community health out-
comes.

• AI–Enabled Telemedicine and Remote Monitoring: Machine learning will drive the
development of AI-enabled telemedicine platforms and remote patient monitoring
systems, enabling the delivery of virtual healthcare services, remote diagnostics,
and continuous patient monitoring, especially in underserved or remote areas.

• Ethical and Regulatory Framework Development: Future perspectives of machine
learning in precision medicine will also involve the development of robust ethical
guidelines, privacy protection measures, and regulatory frameworks to ensure re-
sponsible and ethical use of AI-driven technologies, safeguarding patient rights and
data privacy.

• Advancements in Computational Biology and Systems Medicine: Machine learning
will advance computational biology and systems medicine by modeling complex
biological systems, network analysis, and simulating disease processes, fostering a
deeper understanding of the molecular mechanisms underlying health and disease.

By embracing these future perspectives, the integration of machine learning in precision
medicine will pave the way for a patient-centric, data-driven healthcare paradigm that
prioritizes personalized, proactive, and evidence-based approaches to disease prevention,
diagnosis, and treatment.

The works presented throughout the current thesis demonstrated the broad applica-
bility of ML principles and techniques to the various fields of precision medicine, con-
tributing to developing this research topic.
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risk modeling of tumor stage and survival in bladder cancer. BioData Mining, 15
(1):23, 2022b

Mauro Nascimben. A machine learning based decision support system in oncology.
Parma, Italy, Sept 2021a. University of Parma, 2020+2021 Italian Society of Ap-
plied and Industrial Mathematics (SIMAI) Conference

9.2.4 Biostatistics

Mauro Nascimben and Lia Rimondini. Visually enhanced Python functions for
clinical equality of measurement assessment. Annals of Computer Science and In-

105

https://doi.org/10.1158/1538-7445.SABCS22-P5-08-18
https://doi.org/10.1158/1538-7445.SABCS22-P5-08-18


9 Conclusions and future perspectives

formation Systems, 32:241–249, 2022

9.2.5 Regenerative medicine

Mauro Nascimben, Ilijana Kovrlija, Janis Locs, Dagnija Loca, and Lia Rimondini.
Fusion and classification algorithm of octacalcium phosphate production based on
xrd and ftir data. Scientific Reports, 14(1):1489, 2024

9.2.6 Proteomics

Mauro Nascimben, Hugo Abreu, Marcello Manfredi, Annalisa Chiocchetti, and Lia
Rimondini. Latent expression of extracellular vesicles proteins in doped bioactive
glasses through machine learning–based mass–spectometry data analysis. Interna-
tional Journal of Molecular Sciences, Submitted

Mauro Nascimben. Anomaly detection of EV-related protein expression in doped
bioactive glasses. Novara, Italy, Oct 2023b. Italian Chemical Society, 3rd Interna-
tional Proteomics And Metabolomics Conference

Mauro Nascimben
February 2024

106



Acknowledgements

I am grateful to Professor Lia Rimondini for her invaluable supervision, support, and
tutelage during the course of my Ph.D. degree. My gratitude extends to the European
Commission for the funding opportunity to undertake my studies under grant No. 860462,
Horizon 2020 Research and Innovation program. Additionally, I greatly appreciate Dr.
Manolo Venturin’s treasured support, which influenced my experimental methods and
helped me discuss my results. I also thank Prof. Andrea Cochis, Prof. Davide Corà,
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cisco Cedrón, Francisco J Novoa, Adrian Carballal, Victor Maojo, Alejandro Pazos,
and Carlos Fernandez-Lozano. A review on machine learning approaches and trends
in drug discovery. Computational and structural biotechnology journal, 19:4538–4558,
2021.

Hongming Chen, Thierry Kogej, and Ola Engkvist. Cheminformatics in drug discovery,
an industrial perspective. Molecular Informatics, 37(9-10):1800041, 2018.

Wei-Hao Chen, Win-San Khwa, Jun-Yi Li, Wei-Yu Lin, Huan-Ting Lin, Yongpan Liu,
Yu Wang, Huaqiang Wu, Huazhong Yang, and Meng-Fan Chang. Circuit design for
beyond von neumann applications using emerging memory: From nonvolatile logics to
neuromorphic computing. In 2017 18th International Symposium on Quality Electronic
Design (ISQED), pages 23–28. IEEE, 2017.

Elizabeth A Chrischilles, Danielle Riley, Elena Letuchy, Linda Koehler, Joan Neuner,
Cheryl Jernigan, Brian Gryzlak, Neil Segal, Bradley McDowell, Brian Smith, et al.
Upper extremity disability and quality of life after breast cancer treatment in the
greater plains collaborative clinical research network. Breast cancer research and treat-
ment, 175:675–689, 2019.

Carl F Craver. When mechanistic models explain. Synthese, 153(3):355–376, 2006.

Joost CF De Winter. Using the student’s t-test with extremely small sample sizes.
Practical Assessment, Research, and Evaluation, 18(1):10, 2019.
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