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In this paper we introduce a new fast and accurate numerical method for pricing exotic derivatives when
discrete monitoring occurs, and the underlying evolves according to a Markov one-dimensional stochas-
tic processes. The approach exploits the structure of the matrix arising from the numerical quadrature of
the pricing backward formulas to devise a convenient factorization that helps greatly in the speed-up of
the recursion. The algorithm is general and is examined in detail with reference to the CEV (Constant
Elasticity of Variance) process for pricing different exotic derivatives, such as Asian, barrier, Bermudan,
lookback and step options for which up to date no efficient procedures are available. Extensive numerical
experiments confirm the theoretical results. The MATLAB code used to perform the computation is avail-
able online at http://www1.mate.polimi.it/�marazzina/BP.htm.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over the years exotic options, such as Asian, barrier, and look-
back contracts, have become more and more popular in equity
markets and raised the attention in the academic research. Most
of the articles in this literature price these contracts assuming a
continuous monitoring, i.e., the payoff is triggered by events occur-
ring continuously before expiry. Under this assumption, the option
can often be priced in closed form. However, many real exotic con-
tracts specify discrete monitoring instants, such as daily or weekly,
see for example (Becker & Wystup, 2009) for a detailed description
of the real market functioning of foreign exchange discrete barrier
options. On the other hand, analytical formulae are available only
when the underlying evolves according to a geometric Brownian
motion (GBM) process and barrier and lookback options are con-
sidered, see (Fusai, Abrahams, & Sgarra, 2006), whilst other path-
dependent options, such as Asian, do not admit closed form pricing
formula. In addition, as at first noticed in Broadie, Glasserman, and
Kou (1997), there can be substantial differences between discrete
and continuous monitoring prices, even under very frequent mon-
itoring. In fact, given the complexity of financial models and option
contracts used in practice, we need a numerical method able to cal-
ibrate plain vanilla options, and at the same time price and hedge
in a fast and accurate way exotic derivatives, such as the ones con-
sidered in this paper. As discussed in Bouzoubaa and Osseiran
(2010), errors in computing sensitivities replacing the discrete fea-
ture with the continuous one (or a different discrete one) can cause
large damages in the dynamic hedging strategy. As an example, in
Fig. 1 we show how the Deltas of exotic contracts (barrier, Bermu-
dan, Asian and lookback) vary according to different discrete mon-
itoring features: with the exception of the Asian call, where the
Deltas are very similar, for all the other contracts different moni-
toring features result in significant differences in Deltas, and thus
in very different replicating portfolios. This problem is illustrated
in detail in Castagna (2009): the author considers a market maker
who is short a reverse knock-out option with a short time to matu-
rity and the underlying spot price is around the barrier level and
between two fixings dates, it is not possible to take the unequivo-
cal decision whether to completely unwind the Delta-hedge. This
uncertainty generates the so-called slippage cost that can be quite
significant, and motivates the search for a fast and accurate algo-
rithm for pricing the above mentioned contracts.

The discrete monitoring feature here considered is also relevant
in real option application, for which the management decision
making to continue or to abandon the project is determined on
the basis of accounting reports published periodically. An interest-
ing application using additive processes is given by Alexander,
Mengija, and Stent (2012).

The discretely monitoring pricing procedure for exotic options
is based on the standard backward recursion: at each monitoring
date the option price is updated by taking the expectation of the
derivative price at the previous date and checking if the underlying
satisfies the monitoring condition. For example, in a down-and-out
barrier option we set to zero the option value if the corresponding
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Fig. 1. Deltas of different exotic contracts. The maturity of all the contracts is T ¼ 1 year, and the strike price is 105. For the down-and-out option, the barrier is equal to 90.
The underlying asset is described according to a square-root process of parameter r ¼ 2:5, and the risk-free interest rate is equal to 0.1.
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underlying price falls below the barrier. A possible numerical
implementation consists of computing the nested (iterated) expec-
tation via a recursive numerical quadrature (integration), as shown
for example in Andricopoulos, Widdicks, Duck, and Newton (2003),
Fusai and Recchioni (2007). This approach allows us to move di-
rectly from one date to the following one without any intermediate
time discretization. In contrast lattice and finite difference or ele-
ment methods are affected by errors due to the time discretization
between monitoring dates. A considerable speed-up in the recur-
sion can be obtained when the underlying asset evolves according
to an exponential Lévy model. In this case the iterated expectation
is a convolution between the transition density and the contract
price at the previous monitoring date. The convolution can be com-
puted efficiently via Fourier transform and exploiting the Fast Fou-
rier Transform (FFT) algorithm: at each monitoring date we apply a
Fourier transform-convolution-Fourier inversion, see for example
(Fusai & Recchioni, 2007; Fusai, Marazzina, Marena, & Ng, 2012;
Lord, Fang, Bervoets, & Oosterlee, 2008) and references therein.
In this case, the computational cost is linear in the number of mon-
itoring dates and of order m logðmÞ with respect to the number of
discretization points m of the quadrature scheme. However the
convolution structure of the transition density is due to the inde-
pendent and identically distributed (i.i.d.) assumption on log-price
increments. Unfortunately, if this assumption does not hold, the
numerical integration becomes computational intensive with a
cost proportional to m2.

Therefore the main contribution of the present paper is to de-
vise an efficient algorithm to price discretely monitored options
previously described exploiting the structure of the probability
transition density of the underlying asset and of its sampling ma-
trix when log-price increments are not i.i.d. and the FFT algorithm
cannot be used. More precisely, we introduce the concept of clus-
ter of eigenvalues of a sequence of matrices arising from the
numerical quadrature of the backward recursion as we increase
the number of nodes m. We formally prove (Theorem 3) that
the number of significant eigenvalues (i.e., larger than a fixed tol-
erance �) is approaching a constant r� independent of m; r� � m,
as we take larger values of m. This result can be exploited to
factorize the iteration matrix, giving a computational cost of
Oðk�mÞ operations, k� � r�, for the matrix–vector multiplication,
instead of the standard Oðm2Þ. Given that the cost of the factor-
ization is nearly independent on the number of monitoring dates,
the advantage of our approach will be the greatest, greater the
number of monitoring dates. The algorithm is general in the sense
that it can be applied to stochastic processes for which the tran-
sition density is known in closed form. However, to make con-
crete our analysis, we examine it in detail with reference to the
Constant Elasticity of Variance (CEV) model, introduced by Cox
(1996), Cox and Ross (1976). This dynamics is interesting allow-
ing for very different transition densities and implied volatility
shapes. Very few option pricing models yield fully analytical re-
sults, and most require numerical evaluations. The CEV model is
not an exception. Numerical methods for pricing derivatives un-
der the CEV process are presented, for example, in Boyle and Tian
(1999), Boyle, Tian, and Imai (1999), Costabile (2006), Peng
(2006). All the mentioned articles refer to the continuous moni-
toring case and do not admit a simple implementation for exotic
derivatives, whilst our approach can easily deal with a variety of
path-dependent options.

Our algorithm is suitable to fast and accurate computation of
prices and sensitivities of discretely monitored path-dependent
options and therefore makes a real novel contribution for pricing
real life contracts, see (Becker & Wystup, 2009), and risk-manage-
ment decision making, (Castagna, 2009). For this reason our re-
search is relevant to the methodology of operational research
and to the practice of decision making. From the methodological
point of view, we would like also to stress that the proposed factor-
ization has potential and immediate applications to the study of
properties of discrete time Markov Chains as well, a very important
topic in operational research for modeling queuing sequences and
many other practical systems, see (Norris, 1997).

To confirm the efficiency of the proposed methodology, theoret-
ical results are proved in appendix, and extensive numerical
experiments are conducted to compare the accuracy and the com-
putational cost of our algorithm with respect to a standard back-
ward recursive quadrature and to Monte Carlo simulation. In
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particular, numerical experiments confirm that the greatest bene-
fits are achieved for a large number of monitoring dates.

The structure of the paper is as follows. First of all, Section 2
introduces the general setup to price exotic derivatives with the
discrete monitoring feature. Section 3 deals with the quadrature
approach to solve the recursive pricing formulas, and we introduce
the factorization idea, based on the structure of the pricing matrix.
Finally, in Section 4 we validate the pricing procedure with numer-
ical results assuming a CEV dynamics for the underlying. Accuracy
and computational cost of our pricing algorithm are compared
with the above mentioned benchmarks, i.e., the classical quadra-
ture approach and Monte Carlo simulation. Theoretical results sup-
porting the proposed methodology are provided in appendix.
2. The option pricing problem

Let us consider a derivative contract with a payoff / �ð Þ at matu-
rity T ¼ ND, where N is the number of D-equally spaced monitoring
dates, and let S be the underlying asset price. The standard back-
ward procedure computes the derivative price VðS;nÞ at time nD
through the following recursion (eventually with a modification
to deal with the early exercise feature):

V S;nð Þ ¼ e�rD
Z

X
p S; n; Dð ÞV n; nþ 1ð Þdn; n ¼ N � 1; . . . ; 0; ð1Þ

where r is the risk-free rate, and p S; n; Dð Þ is the transition density
from S at time t to n at time t þ D. X refers to the integration domain
and can vary depending on the trigger event. The above recursion
starts with the payoff condition at maturity VðS;NÞ ¼ /ðSÞ. We are
interested in computing VðS0;0Þ; S0 being the current spot price.

In the following subsections, we show how the above frame-
work fits different exotic contracts.
2.1. Barrier options

If we deal with barrier options, the pricing recursion (1) starts
from the payoff function /ðSÞ :¼ ðuðS� EÞÞþ, where E is the strike
price and u is a binary variables taking value 1 for calls, and �1
for puts. If we denote with L ðUÞ the lower (upper) barrier, the do-
main X is ðL;þ1Þ for down-and-out, ðL;UÞ for knock-and-out, and
ð0;UÞ for up-and-out barrier options.

For numerical purposes, the integration interval in (1) is trun-
cated to ðL;UÞ – for down-and-out options – or ðL;UÞ – for up-
and-out options – with L < S0 (U > S0). The truncation is chosen
such that the probability of moving from S0 to L (U) is less than
a preassigned tolerance.
2.2. Bermudan options

A Bermudan option gives the holder the right to early exercise
at each monitoring date. This option is worth more than the corre-
sponding European version, but less than the American counter-
party, for which the exercise occurs continuously. To take into
account the early exercise possibility we modify (1) into:

V S;nð Þ ¼max e�rD
Z

X
p S; n; Dð ÞV n;nþ 1ð Þdn; /ðSÞ

� �
;

n ¼ N � 1; . . . ;0; ð2Þ

with X ¼ ð0;þ1Þ for standard Bermudan options. If we have
Bermudan contracts with a barrier trigger, then X ¼ ðL;þ1Þ;
X ¼ ð0;UÞ or X ¼ ðL;UÞ. Payoff function and domain truncation
are as in Section 2.1.
2.3. Lookback options

The maturity settlement of lookback options is based on the
minimum or the maximum value of the underlying asset as regis-
tered during the lifetime of the option. At maturity, the holder can
‘‘look-back’’ and select the most favorable figure of the underlying
as occurring at the monitoring dates. If we let SðnDÞ to be the asset
price at the nth monitoring date, we can define the discretely ob-
served minimum price as

Jn :¼minfSð0Þ; . . . ; SðnDÞg:

The payoff function of a fixed-strike lookback on the minimum is gi-
ven by E� JNð Þþ. The lookback option price at time nD depends on
the underlying asset price S, and on the up-to-date minimum
Jn ¼ J and we denote it by VðS; J;nÞ. Clearly it must be J 6 S. Similar
considerations hold for payoffs written on the maximum.

Respect to the GBM dynamics, where a change of numeraire
argument reduces the number of state variables, under a more
general process specification we must keep track of both state
variables, underlying price and running minimum. Given that
Jnþ1 ¼minfJn; Sððnþ 1ÞDÞg, the backward recursion becomes
VðS; J;NÞ ¼ u J � Eð Þð Þþ and for n ¼ N � 1; . . . ;0

VðS; J;nÞ ¼ e�rD
Z þ1

0
pðS; n; DÞVðn;minfJ; ng;nþ 1Þdn; ð3Þ

S being greater or equal to J. Here minfJ; ng is the minimum value of
the underlying asset at the ðnþ 1Þth monitoring date given that
Jn ¼ J and Sððnþ 1ÞDÞ ¼ n. The initial option price is then given by
VðS0; S0; 0Þ.

2.4. Asian options

Asian options are a very popular type of exotic derivative. Such
as for lookback options, their pricing requires the introduction of a
new state variable, i.e., the (arithmetic) average up to time nD

An ¼
1

nþ 1

Xn

i¼0

SðnDÞ:

The arithmetic average follows the updating rule

Anþ1 ¼
nþ 1
nþ 2

An þ
1

nþ 2
Sððnþ 1ÞDÞ;

so that the price of the arithmetic fixed-strike Asian option satisfies
the following backward recursion:

VðS;A;nÞ¼e�rD
Z þ1

0
pðS;n;DÞV n;

nþ1
nþ2

Aþ 1
nþ2

n;nþ1
� �

dn; ð4Þ

for n ¼ N � 1; . . . ;0, with VðS;A;NÞ ¼ ðuðA� EÞÞþ.

2.5. Step options

Step options are similar to barrier options, but the knock-and-
out feature operates only gradually. To this aim we define the
occupation time In of the subset I ; I � Rþ,

In ¼
Xn

i¼1

1fSðiDÞ2Ig;

where 1fSðiDÞ2Ig is the indicator function, i.e., it is equal to 1 if
SðiDÞ 2 I , 0 otherwise. Notice that In measures the time spent by
the underlying asset in the set I up to time nD. In takes values in
f0;1;2; . . . ; ng and satisfies the updating rule Inþ1 ¼ In þ 1fSððnþ1ÞDÞ2Ig.

Given SðNDÞ ¼ S and IN ¼ I, the payoff of a step option with
principal amortization below the barrier is



1 For the sake of completeness, we recall that the hermitian matrix of a matrix Q is
its transpose conjugate, and Q is unitary if and only if QQ H is the identity matrix.
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VðS; I;NÞ ¼ 1� q
N

I
� �þ

ðuðS� EÞÞþ;

where q is the knock-out killing rate. The introduction of the knock-
out range has the advantage of regularize the barrier option by
making the price and the delta continuous at the barrier, see for
example (Linetsky, 1999). The price recursion for step options reads
as: for n ¼ N � 1; . . . ;0

VðS; I;nÞ ¼ e�rD
Z þ1

0
pðS; n; DÞV n; I þ 1fn2Ig;nþ 1

� 	
dn:

We also refer to (Cai, Chen, & Wan, 2010) for further details.

3. The quadrature approach and the ‘‘Breaking into Pieces’’
algorithm

As shown in the previous section, the general pricing frame-
work requires the numerical computation of the following recur-
sive integral equation

Wðx;nÞ ¼
Z b

a
Hðx; y; DÞWðy;nþ 1Þdy; 8x 2 ða; bÞ; ð5Þ

for n ¼ N � 1; . . . ;0, with Wðx;NÞ assigned. This recursion holds for
European and barrier options. Bermudan options also require an
early exercise clause.

If we have more than one state variable (such as for lookback,
Asian and step derivatives), the function W depends on the time in-
dex n and on two state variables, so that we write Wðx; �;nÞ. The
additional state variable is the minimum value J if lookback options
are considered, the average value A for Asian contracts and the
occupation time I for step options.

If we apply a quadrature formula to (5), with nodes si and
weights wi; i ¼ 0; . . . ;m� 1, we obtain

Wðsi;nÞ ¼
Xm�1

j¼0

wjHðsi; sj; DÞWðsj;nþ 1Þ: ð6Þ

If we define the matrix Hm as Hm ¼ Hðsi; sj;DÞ

 �m�1

i;j¼0, then (6) can be
written as

Wn ¼ HmDmWnþ1; n ¼ N � 1; . . . ;0; ð7Þ

where Wn ¼ ½Wðsi;nÞ�m�1
i¼0 , and Dm ¼ diagðw0; . . . ;wm�1Þ. The matrix

Hm is called the sampling matrix of the function H, while HmDm is
the iteration matrix of the backward procedure (in the following
we omit the subscripts to lighten the notation). Due to additional
contractual features, such as early exercise, lookback or time
averages, the recursion in (7) needs additional changes. In partic-
ular, the iteration matrix is the same for European, Bermudan,
Asian, lookback and step options. The knock-out trigger event
in barrier options generates a different structure of the domain
X and thus of the iteration matrix. This is discussed in Appendix
A.

In the recursion (7) the size of the iteration matrix equals the
number of discretization points (nodes). It is well-known that
increasing the number of nodes improves the accuracy of the solu-
tion. More precisely, the speed of convergence of the quadrature
error to zero can be determined by using results on the speed of
convergence of the integration rule when it is applied to the inte-
gral

R
X Hð�; n; DÞdn, as discussed in Atkinson (2009, Chapter 4). In

this setting the backward recursion (7) has a cost proportional to
N m2 operations.

Our aim is to reduce this cost substantially by exploiting the
spectral properties of the iteration matrix HD, analyzed in details
in Appendix B, as the matrix size m grows. In fact, in the present
context, the iteration matrix has two interesting properties: (1)
its eigenvalues are clustered at zero, i.e., only a small number
of non-negligible eigenvalues can be retained, and (2) it is close,
within a prefixed tolerance, to a banded matrix. Given these
properties, the main idea is at first to replace the iteration ma-
trix by its factorization PJQ H , where P and Q are unitary matri-
ces, Q H is the hermitian of matrix Q , and J is a bidiagonal
matrix.1 The factorization gives a relevant computational advan-
tage in performing the matrix–vector multiplications required at
each step of the backward procedure. The factorization, performed
via the bidiagonalization algorithm of Golub and Kahan (1965), is
very fast given the clustering property of the eigenvalues of the
iteration matrix. In fact, as proved in Appendix B.2, the number
r� of eigenvalues greater than a fixed tolerance � is small with re-
spect to the size m of the given matrix (usually, in applications,
we use matrices of size at most 4000	 4000). To grasp the idea,
if we consider an Asian option with 252 monitoring dates, and
we let m to grow from 1000 to 4000, r� remains constant at
412 (this will be throughly discussed in the numerical section
part).

Secondly, due to the fact that the matrix HD is obtained by the
discretization of a transition probability density, it turns out to be
‘nearly’ banded: the significant entries having values larger than a
prefixed tolerance are confined to a diagonal band. The banded
behavior is illustrated by the coloured part of the iteration matrix
in Fig. 2. Therefore we can exploit the banded structure by ‘‘break-
ing into pieces’’ the matrix HD as shown in the same figure. In
practice, we factorize separately each piece via the bidiagonaliza-
tion algorithm. This is possible because each sub piece of the sam-
pling matrix HD inherits its cluster property, so that it is
convenient to perform the factorization on matrices of a smaller
size. This makes the procedure even faster (especially when the
size of the original matrix is very large). It is clear that a too large
band leads to consider ‘‘pieces of matrix’’ having a large size, so
that we do not achieve any benefit from the suggested breakdown
procedure. In this case, the standard quadrature will remain the
preferred approach. However, if a band structure is detected, once
each piece is factorized we can calculate the matrix–vector product
as shown in Fig. 2: the original matrix (top left corner of Fig. 2) is
‘‘broken’’ into smaller pieces (top right corner of Fig. 2). Then each
piece is factorized using the Golub-Reinsch algorithm (bottom left
corner of Fig. 2) and the matrix–vector product is computed
exploiting the Householder or bidiagonal structure of the matrices
involved. Finally the resulting vectors are ‘‘summed up’’ taking into
account the overlapping parts.

In conclusion, the combination of the clustering and bandwidth
properties allows us to reduce the computational cost of the pric-
ing procedure, thanks to the factorization, which can be performed
in a fast way due to the spectral properties above mentioned. More
precisely, since in the recursive quadrature Eq. (7) we have to com-
pute N matrix–vector products, the classical approach requires
OðNm2Þ operations against Oðk�m2 þ Nk�mÞ operations, being
Oðk�m2Þ (Oðk�mÞ) the cost of the factorization (matrix–vector mul-
tiplication). In practice k� � r�, and we have a cost reduction if
r� < mN=ðN þmÞ. In particular, as the number of monitoring dates
increases, the cost reduction is effective if r� < m, that, in general, it
is always the case for the examples here considered, such as the
previously mentioned Asian option contract. Using the proposed
‘‘Breaking into pieces’’ algorithm, it is thus possible even to achieve
a larger time reduction exploiting the structure of the matrix HD,
since the factorization and the matrix–vector products are com-
puted considering the smaller submatrices and not the whole
(large) iteration matrix, as shown in Fig. 2. The idea here described
find a theoretical support in Appendix B.



Fig. 2. ‘‘Breaking into pieces’’ a banded matrix. The black parts of the vectors overlap in the final sum. btop ¼maxfbctop; brtopg is the bandwidth size.
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4. Numerical results

In this section we validate with numerical experiments the
ideas put forward in the previous section (theoretical results are
in the appendix). The setup is absolutely general but for aim of
clarity we consider the CEV process. This dynamics is indeed quite
interesting allowing for very different transition densities and im-
plied volatility shapes. For this reason, we describe it in some detail
in Section 4.1. Then in Section 4.2 we show that the matrix HD ob-
tained by the discretization of the CEV transition density exhibits
eigenvalues strongly clustered at zero: if we increase the size
(number of quadrature points) of the matrix, the number of eigen-
values greater than a given tolerance remains constant. Thus the
CEV process admits the cluster property that allows us to improve
the performance of the recursive approach. Finally, in Section 4.3
we apply our algorithm (hereafter denominated BP algorithm) to
‘‘break into pieces’’ the matrix HD and we apply it to price exotic
derivatives. This algorithm is detailed with a pseudo-code in the
electronic supplementary material.

For the numerical discretization of (5) we opt for a Gauss–
Legendre quadrature (Quarteroni, Sacco, & Saleri, 2000). Numerical
experiments not reported here have shown that the cluster of
eigenvalues of the iteration matrix is independent of the adopted
quadrature formulas, but the bandwidth of the matrix is larger
for Gaussian quadrature respect to Newton–Cotes ones. However
the results are similar, in terms of computational efficiency, for
both classes of quadrature formulas.

All calculations were performed using Matlab R2008a on a PC
Intel Core2 Quad 2.40 GHz with 3.24 GB RAM and Windows XP
operating system.

4.1. The CEV process

Even if our algorithm is quite general, from now on, we assume
that the underlying asset evolves according to a CEV process (Cox,
1996), i.e.,

dSðtÞ ¼ rSðtÞdt þ rSbþ1ðtÞdWðtÞ; Sð0Þ ¼ S0; ð8Þ

and thus the transition probability density is given by
p S; n; Dð Þ :¼ e�rD p0 S; e�rDn;
1

2rb
e2rbD � 1
� 	� �

;

with

p0 S; n; Dð Þ ¼ n�2b�3
2S

1
2

r2jbjD e
�S�2bþn�2b

2r2b2D I 1
2jbj

S�bn�b

r2b2D

 !
;

where Im is the modified Bessel function of the first kind of order m.
In particular, when b ¼ 0 we have the classical geometric Brownian
process (GBM), when b ¼ �1 we have an arithmetic Brownian
motion (ABM), while when b ¼ �0:5 the Cox-Ingersoll-Ross
square-root process (SR) is obtained. For details see also (Cox,
1996; Davydov & Linetsky, 2001; Fusai & Recchioni, 2007). In
Fig. 3 we plot the density function for different values of the lever-
age parameter b (left panel) and the corresponding implied volatil-
ity curve (right panel). In particular, large negative values of b
generate a skewed to the left density function and a very steep im-
plied volatility curve, as often observed in the market. The CEV pro-
cess, consistently with empirical studies, allows for the volatility to
depend on the price level and in addition the two are negatively
correlated (leverage effect); moreover, the model is able to generate
the smirk effect often observed in the market implied volatility
curve. See for example (Boyle & Tian, 1999; Costabile, 2006). Unfor-
tunately, the transition density of the CEV process is not of convo-
lution type, thus a fast computation of the recursion via the FFT is
not feasible. For these reasons, the CEV dynamics turns out to be
an interesting case to test our pricing procedure.

Numerical methods for pricing derivatives under the CEV pro-
cess are presented, for example, in Boyle and Tian (1999), Boyle
et al. (1999), Costabile (2006), Peng (2006). These articles price
derivatives contracts, like barrier (Boyle & Tian, 1999), lookback
(Boyle & Tian, 1999; Boyle et al., 1999; Costabile, 2006) and geo-
metric Asian (Peng, 2006) options, assuming continuous monitor-
ing and using a lattice approach, i.e., binomial or trinomial trees.
In general, if we consider a non-Gaussian diffusion process, the dif-
fusion coefficient is not constant and it is not possible to construct
a recombining tree in the usual way. Therefore, the price process is
transformed into another process having a constant diffusion coef-
ficient, and the tree is built for the transformed process. In this



Fig. 3. Density function (left) and implied volatility (right) of the CEV model for different values of b.
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case, advanced technique, like the adaptive averaging binomial
method presented in Moon and Kim (2013) are available. Unfortu-
nately, this procedure is reliable only for barrier options. For exam-
ple, results in Boyle and Tian (1999) for lookback options are not
accurate. To cope with this problem, in Costabile (2006) the author
proposes a forward induction procedure that allows to compute
the risk-neutral probability of each different payoff of the lookback
option at maturity but with a computational cost that is cubic in
the number of time step against the linear cost of the recursive
quadrature. In addition, by using trees, we have slow and erratic
convergence to the true price largely caused by the position of
the barrier relative to the adjacent stock prices, see the theoretical
results in Lin and Palmer (2013) with reference to the GBM dynam-
ics. We can have large errors even with thousands of time steps
and millions of node calculations. American options are considered
in Nunes (2009), where the author proposes an alternative charac-
terization of the early exercise premium that is valid for any Mar-
kovian and diffusive underlying price process. However, the author
does not consider Bermudan options, for which early exercise can
occur only on discrete dates. Finally, an analytical Laplace trans-
form approach based on the scale function of a diffusion process
is pursued in Davydov and Linetsky (2001). These authors obtain
Laplace transform of barrier and lookback option prices involving
Whittaker and Bessel functions of complex argument. Option
prices are then obtained via a numerical inversion of the Laplace
transform. Unfortunately, the procedure is quite computational
intensive mainly for lookback options: this problem requires the
numerical computation of an integral involving the inverse Laplace
transform.

Unless otherwise specified, we consider the same parameter
setting as in Davydov and Linetsky (2001): the initial asset price
is S0 ¼ 100, the risk-free interest rate is 10% per annum (r ¼ 0:1),
the volatility is r ¼ 0:25=Sb

0. Moreover, we assume that the asset
pays no dividends (q ¼ 0), and all options have six months to expi-
ration (T ¼ 0:5). If necessary, we truncate the integration interval
as stated in Section 2.1 with a 10�8 tolerance.

4.2. Cluster of the HD matrix

Table 1 provides the number of eigenvalues greater, in absolute
value, than � ¼ 10�11 and the bandwidth size btop of the matrix HD,
see Fig. 2. The bandwidth size is fixed setting to zero the elements
smaller, in absolute value, than 10�9. The leverage parameter b in
the CEV model is set equal to �0:5 (results for different values of
b are reported in the electronic supplementary material). We stress
that this table refers to pricing problems characterized by a differ-
ent iteration matrix. We notice that:


 a strong cluster at zero always occurs. For example, let us con-
sider down-and-out options in Table 1, given a number of mon-
itoring dates N ¼ 52. The number of significative eigenvalues
(greater than �) is 107, independently of the matrix dimension
m;

 the cluster increases less than linearly with respect to the num-

ber of monitoring dates N. Thus our algorithm will achieve a
large time reduction when N is large. In fact, we see in Table 1
that, given m, as the number of monitoring dates increases, the
same happens to the number of eigenvalues greater than �, but
the ratio r�=N decreases;

 the presence of barriers strongly improves the cluster. This is

evident if we compare the double barrier case in Table 1 to
other contracts. In particular this suggests a relative better per-
formance of the algorithm in pricing this kind of exotics;

 changing the value of the leverage parameter b in the CEV den-

sity does not affect the cluster. This is shown in the electronic
supplementary material.

We can also make some additional considerations on the band-
width of the matrix:


 we always have banded matrices; for example in Table 1 for
European, lookback, Asian or step options with N ¼ 52 and
m ¼ 4000, the bandwidth size is btop ¼ 493. However, the pres-
ence of barriers increases btop. Indeed barriers cut the tails of the
density so that we have to sample a function that does not
approach zero on the frontier of the domain. In general, the
ratio btop=m remains constant as m varies.

 the bandwidth size decreases as we increase the number N of

monitoring dates; this is, for example, confirmed for all con-
tracts in Table 1 when m ¼ 4000 and we let N to vary from 52
to 1008;

Since the performance of the algorithm is optimized when the
cluster size r� and the bandwidth size btop are both small, the above
remarks suggest that this happens in all cases and the greatest
benefit occurs as we increase N.



Table 1
Number r� of eigenvalues of HD greater than � ¼ 10�11. Legend: m is the matrix dimension, N is the number of monitoring dates, b ¼ �0:5 is the leverage parameter in (8) and btop

is the bandwidth size of the matrix HD. Contracts are grouped according to the iteration matrix HD.

Contract N r� Bandwidth = btop

m m

1000 2000 3000 4000 1000 2000 3000 4000

European 52 190 190 190 190 126 249 372 493
Lookback 104 266 267 267 267 105 208 310 411
Asian 252 411 412 412 412 83 165 247 328
Step 504 576 580 581 581 70 139 207 275

1008 774 819 819 832 59 116 174 231

Down-and-out 52 107 107 107 107 209 414 617 818
104 149 149 149 149 174 345 514 683
252 230 230 230 229 139 275 410 544
504 322 322 323 322 116 231 344 456
1008 455 455 455 454 98 194 289 384

Up-and-out 52 115 115 115 115 183 362 540 716
104 161 161 161 161 152 301 449 596
252 247 247 247 247 121 239 357 474
504 348 348 348 348 101 201 299 397
1008 489 490 490 490 85 168 251 333

Double barrier 52 32 32 32 32 471 929 1382 1831
104 44 44 43 43 383 757 1126 1493
252 65 65 65 65 300 592 882 1170
504 90 90 90 90 249 493 734 974
1008 125 125 125 125 208 412 614 814

Table 2
Speed-up values for different contracts with b ¼ �0:5 and m ¼ 4000. The initial asset
price is S0 ¼ 100, the volatility is r ¼ 0:25=Sb

0, the risk-free interest rate is 10% per
annum (r ¼ 0:1), the asset pays no dividends (q ¼ 0), and all options have six months
to expiration (T ¼ 0:5). The strike price E is equal to 105. Additional payoff’s
parameters for step options are q ¼ 0:5 and A ¼ ½90;110�. x is the parameter in
Remark 1 in the appendix.

N = 252 N = 504 N = 1008

European 1.1604 1.3270 1.4151
Barrier Down-and-out 1.1045 1.4104 1.7289
Barrier Up-and-out 1.1784 1.4872 1.7964
Double barrier 0.7263 0.9809 1.9535

Bermudan 1.1634 1.3476 1.4189
Bermudan Down-and-out 1.1102 1.4176 1.7126
Bermudan Up-and-out 1.1891 1.5065 1.7883
Bermudan Double barrier 0.7315 0.9867 1.9412

Lookback 2.3617 2.1688 1.9565
Lookback (x ¼ 4) 3.0116 2.8686 2.5773

Asian 1.8654 1.7169 1.5609
Asian (x ¼ 4) 1.9707 1.9769 1.9624

Step 4.3515 3.6113 3.1951

Table 3
Prices in Davydov and Linetsky (2001, Table 1).

b ¼ 0 b ¼ �0:5 b ¼ �1

European 7.0995 7.0170 6.9403
Down-and-out 6.3722 6.2554 6.1438
Up-and-out 0.6711 0.7734 0.8904
Double barrier 0.4418 0.5126 0.5945

Table 4
European call: m is the matrix dimension and b is the leverage parameter in (8).
Parameters as in Table 2.

b m Prices CPU times (second)

Rec. Rec.+BP Rec. Rec.+BP

0 2000 7.099596 7.099596 1.01 4.60
4000 7.099571 7.099571 3.90 18.20

�0.5 2000 7.017063 7.017063 6.09 10.16
4000 7.016999 7.016999 23.63 39.66

�1 2000 6.940388 6.940388 8.09 12.96
4000 6.940318 6.940318 31.40 50.87
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In Table 2 we show the speed-up for different contracts. Here
the speed-up is defined as the ratio between the CPU time for
the classical recursive (Rec.) algorithm and the one for our pricing
procedure (Rec.+BP). As expected, the speed-up is always greater
than 1. Double barrier options are the exception when the number
of monitoring dates is small, due to a too large bandwidth.
2 We also considered an exact Monte Carlo simulation by sampling from the known
transition cumulative density function, but the procedure turns out to be too time
consuming and of no practical relevance.
4.3. Pricing options

In this section we validate our pricing procedure comparing it
to standard numerical quadrature and to Monte Carlo simulation.
This has been implemented with an Euler discretization scheme
with 300 steps between two consecutive monitoring dates, and
1,000,000 runs. In general Monte Carlo simulations applied to the
CEV process achieve a two digits accuracy, but with a CPU time
that turns to be higher than the recursive quadrature of a factor
that varies from 4 to 10.2 Extended numerical results are reported
in the electronic supplementary material.
4.3.1. Barrier and Bermudan options
In Tables 4,5 we price European and barrier call options. Analyt-

ical formulas for European options are available in terms of the
non-central chi-square distribution, see (Schroder, 1989). Prices
of continuously monitored barrier options, i.e., N ¼ 1, are given
in Davydov and Linetsky (2001) and reported here in Table 3.

Since European options are path-independent contracts, their
pricing requires a single recursion. For this reason, in Table 4 we



Table 5
Down-and-out and double barrier call: b ¼ �0:5 is the parameter in (8), m is the matrix dimension and N is the number of monitoring dates. Parameters as in Table 2.

N m Down-and-out call Double barrier call

Prices CPU (second) Prices CPU (second)

Rec. Rec.+BP Rec. Rec.+BP Rec. Rec.+BP Rec. Rec.+BP

52 2000 6.497277 6.497277 4.47 6.03 0.771025 0.771025 4.16 8.70
52 4000 6.497278 6.497278 17.13 23.74 0.771024 0.771024 16.12 34.37
104 2000 6.434699 6.434699 4.87 5.51 0.694140 0.694140 4.48 8.41
104 4000 6.434700 6.434700 18.73 22.22 0.694140 0.694140 17.21 32.49
252 2000 6.375374 6.375374 6.03 5.70 0.628248 0.628248 5.39 7.61
252 4000 6.375375 6.375375 23.24 21.04 0.628248 0.628248 20.68 28.47
504 2000 6.342071 6.342072 7.91 7.06 0.593922 0.593922 6.94 7.46
504 4000 6.342072 6.342073 30.65 21.73 0.593922 0.593922 26.77 27.29
1008 2000 6.317620 6.317621 11.63 11.24 0.569846 0.569846 13.99 8.47
1008 4000 6.317621 6.317623 45.04 26.05 0.569846 0.569846 54.64 27.97
10,000 2000 6.275649 6.275652 72.95 122.85 0.530602 0.530603 85.20 49.35
10,000 4000 6.275651 6.275652 282.11 154.93 0.530602 0.530604 331.26 91.33

Table 7
Monte Carlo values for fixed-strike lookback put options with 1,000,000 iterations,
parameters as in Table 6.

N Confidence interval CPU times (second)

52 14.5242–14.5576 2523
104 14.8738–14.9073 5014
252 15.1781–15.2116 12,104
504 15.3483–15.3818 24,180
1008 15.4511–15.4846 48,331
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set N ¼ 1 and the BP algorithm is not at all convenient because the
factorization is too costly with respect to a single matrix–vector
multiplication. However the algorithm has the same accuracy as
the analytical formula: our price estimates agree with those of
the first row of Table 3.

Numerical results for barrier options with b ¼ �0:5 are given in
Table 5. Prices for different values of b and for up-and-out options
are reported in the electronic supplementary material. We notice
that:


 prices computed with the BP algorithm agree with the ones
from the pure recursion up to five decimal digits;

 as expected, the BP algorithm performs better as we increase

the number of monitoring dates N, since the factorization has
to be performed only once, and, at the same time, the band-
width decreases (see Table 1 – we recall that our algorithm per-
forms well if the bandwidth size is not too large). In fact, from
Table 5 we notice the benefits of the BP factorization for
N ¼ 252 or greater;

 the algorithm works better as we increase the number of quad-

rature nodes m, since the cluster size r� does not increase vary-
ing m, while the computational cost of the matrix–vector
multiplication increases;

 for double barrier options we observe that, increasing N, we

have a trade-off between the cluster size (it improves) and
the bandwidth size (it becomes larger). On this point we can
make two remarks:

1. In general, our algorithm improves the standard recursion
for N larger than 252. Additional numerical tests have
shown that the algorithm applied to the double barrier
case can achieve a speed-up up to 3.6 when N ¼ 10;000.
Table 6
Fixed-strike lookback put: b ¼ �0:5 is the parameter in (8), m is the matrix dimension and
Remark 1 in the appendix.

N m Prices

Rec. Rec.+BP Rec.+BP
x ¼ 1 x ¼ 1 x ¼ 2

52 2000 14.545701 14.545701 14.544358
52 4000 14.542978 14.542978 14.542853
104 2000 14.887939 14.887940 14.886958
104 4000 14.886366 14.886366 14.886282
252 2000 15.191305 15.191306 15.190640
252 4000 15.190981 15.190982 15.190932
504 2000 15.353628 15.353629 15.353129
504 4000 15.354248 15.354250 15.354219
1008 2000 15.469194 15.469194 15.468811
1008 4000 15.470853 15.470857 15.470839
2. Numerical results in Table 2 show that the BP algorithm
performs better for single barrier respect to double barrier
options if N is lower than 1008.


 concerning the convergence of the discrete monitoring price to
the continuous monitoring case, we notice a slow convergence
from above of prices in Table 5 to the ones in Table 3. For exam-
ple, when b ¼ �0:5 and N ¼ 10;000, a single barrier option with
discrete monitoring is worth 6.2756, whilst the continuous ver-
sion is 6.2554. Moreover, comparing the two tables, it is clear
that pricing a discrete monitoring contracts with a continuous
monitoring algorithm could result in a substantial different,
and thus wrong, price. As an example, considering b ¼ �0:5
and assuming to price a twice-a-day monitoring double barrier
option, i.e., N ¼ 52, the real price, i.e., the one computed consid-
ering the real monitoring is 0.7710, while the one computed
assuming the continuous monitoring is 0.5126. Thus the impor-
tance of considering numerical algorithms with discrete moni-
toring, when contracts with this feature have to be priced.
N is the number of monitoring dates. Parameters as in Table 2. x is the parameter in

CPU times (second)

Rec.+BP Rec. Rec.+BP Rec.+BP Rec.+BP
x ¼ 4 x ¼ 1 x ¼ 1 x ¼ 2 x ¼ 4

14.553307 592 323 140 64
14.546845 4566 1422 703 332
14.893453 1069 629 270 124
14.889097 8084 2897 1381 618
15.194984 2193 1361 598 254
15.192716 16,567 7015 3212 1376
15.356335 3953 2684 1194 534
15.355452 29,570 13,634 5969 2573
15.471220 6886 5117 2043 986
15.471678 51,971 26,563 11,362 5025



Table 8
Fixed-strike Asian call: b ¼ �0:5 is the parameter in (8), m is the matrix dimension and N is the number of monitoring dates. Parameters as in Table 2. x is the parameter in
Remark 1 in the appendix.

N m Prices CPU times (second)

Rec. Rec.+BP Rec.+BP Rec.+BP Rec. Rec.+BP Rec.+BP Rec.+BP
x ¼ 1 x ¼ 1 x ¼ 2 x ¼ 4 x ¼ 1 x ¼ 1 x ¼ 2 x ¼ 4

52 2000 2.919996 2.919996 2.920009 2.919707 843 573 284 157
52 4000 2.920010 2.920010 2.920007 2.920017 5615 2377 1186 673
104 2000 2.928446 2.928446 2.928341 2.926760 1642 1128 543 307
104 4000 2.928465 2.928465 2.928459 2.928347 10,072 4814 2379 1304
252 2000 2.933353 2.933353 2.932724 2.929454 3592 2591 1370 725
252 4000 2.933498 2.933499 2.933402 2.932702 21,221 11,376 5755 3140
504 2000 2.934878 2.934878 2.933790 2.929121 6448 5137 2796 1400
504 4000 2.935238 2.935238 2.934972 2.933777 38,909 22,662 11,140 5495
1008 2000 2.935444 2.935444 2.933788 2.927539 12,413 9834 5488 2992
1008 4000 2.936030 2.936031 2.935583 2.933823 71,120 45,563 22,044 10,207

Table 9
Monte Carlo values for fixed-strike Asian call options with 1,000,000 iterations,
parameters as in Table 8.

N Confidence interval CPU times (second)

52 2.9151–2.9356 2523
104 2.9196–2.9401 5014
252 2.9272–2.9477 12,104
504 2.9283–2.9487 24,180
1008 2.9264–2.9468 48,331
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Experiments not reported here show similar performances for
Bermudan options. The results are not affected by the presence
or absence of dividends.

4.3.2. Lookback options
Pricing lookback options is in general more expensive than pric-

ing barrier options, because we have to keep trace of an additional
state variable, the running minimum J. Thus, we expect an increase
in the CPU time with respect to barrier and Bermudan option.
However, since the matrix factorization is independent on the
J-grid nodes, we still expect an improvement with respect to the
standard recursion. Results reported in Table 6 confirm this. In
addition the two recursive algorithms show comparable accuracy.
Table 7 provides, as benchmark, confidence intervals computed by
the Monte Carlo algorithm. An additional speed-up can be obtained
considering less nodes on the J-grid, up to ten times if we reduce by
a factor of four the nodes on the J-grid (x ¼ 4 in the mentioned
table), maintaining a two decimal digits accuracy.
Table 10
Fixed-strike Asian call: A comparison between the Rec.+BP algorithm and (Černý & Kyria
11.58113 (r ¼ 0:1), 13.66981 (r ¼ 0:3) and 17.19239 (r ¼ 0:5).

x m r

Tol 10�8

0.1 0.3 0

1 1000 11.58113 13.66975 1
1 2000 11.58113 13.66977 1
1 4000 11.58113 13.66977 1

2 1000 11.58118 13.67068 1
2 2000 11.58113 13.66974 1
2 4000 11.58113 13.66977 1

4 1000 11.58175 13.67434 1
4 2000 11.58118 13.67081 1
4 4000 11.58113 13.66973 1

Table 11
Step call: m is the matrix dimension, N is the number of monitoring dates. Parameters as

N m Prices CPU times

Rec. Rec.+BP Rec.

52 2000 5.580878 5.580878 13.08
52 4000 5.581670 5.581670 50.64
104 2000 5.564554 5.564554 35.21
104 4000 5.565345 5.565345 134.63
252 2000 5.554981 5.554981 154.47
252 4000 5.555772 5.555773 589.53
504 2000 5.551620 5.551620 533.47
504 4000 5.552411 5.552412 2003.21
1008 2000 5.549940 5.549940 1823.83
1008 4000 5.550731 5.550732 6931.57
4.3.3. Asian options
Asian options (see Section 2.4) share with lookback options the

presence of an additional state variable. Given that the iteration
matrix is the same for the two contracts, we expect a similar per-
formance of the algorithm in the Asian as in the lookback case. Re-
sults are given in Table 8, and comments given in Section 4.3.2 still
kou, 2011, Table 7): Gaussian case (b ¼ 0) and strike price E ¼ 90. Benchmark price:

Tol 10�10

.5 0.1 0.3 0.5

7.19193 11.58113 13.66991 17.19255
7.19196 11.58113 13.66980 17.19236
7.19192 11.58113 13.66982 17.19240

7.19441 11.58120 13.67232 17.19750
7.19191 11.58113 13.66982 17.19272
7.19191 11.58113 13.66982 17.19239

7.20552 11.58184 13.68018 17.20388
7.19409 11.58121 13.67196 17.19835
7.19192 11.58113 13.66981 17.19270

in Table 2.

(second) Monte Carlo values

Rec.+BP Confidence interval CPU times (second)

7.46 5.5772–5.6133 2446.38
23.71
13.98 5.5473–5.5832 4881.28
35.45
60.41 5.5414–5.5772 11,811.86

135.57
241.04 5.5367–5.5725 23,616.72
554.70

1044.87 5.5276–5.5634 47,231.25
2169.42
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apply. For example, if we set x ¼ 4, we reduce the CPU time by a
factor of seven, still maintaining a two decimal digits accuracy.
Reported option prices always fall into the Monte Carlo confidence
intervals (see Table 9).

Finally, in Table 10 we consider the log-normal process (b ¼ 0).
In this case, indeed, it is more efficient to use a FFT approach, as in
Černý and Kyriakou (2011), or a randomization technique, as in
Fusai, Marazzina, and Marena (2011). We use the results in Černý
and Kyriakou (2011, Table 7) as benchmark. In Table 10 we also
analyze the effect on the price accuracy of the truncation of the
integration interval (see Section 2.1). The Rec.+BP algorithm always
achieves a three to five decimal digits accuracy depending on the
tolerance level when we truncate the domain. Significant reduction
in the CPU time, without loss of accuracy, can be achieved with a
sparser grid (x ¼ 2 and x ¼ 4) on the running average.
4.3.4. Step options
Numerical results given in Table 11 show that our algorithm ap-

plied to step options achieves the same accuracy as the direct
recursive procedure: they agree up to the sixth digit, but with a
strong reduction in the computational time. Thus, also for this kind
of contracts the Rec.+BP algorithm is more efficient than the plain
recursion and Monte Carlo simulation.
5. Conclusion

In this paper we have shown how to price exotic options when
discrete monitoring is considered exploiting the structure of the
matrix arising from the numerical quadrature of the pricing back-
ward formulas. This has been accomplished through a convenient
factorization of the iteration matrix that helps greatly in the
speed-up of the recursion. The proposed BP algorithm is general
and is examined in detail with reference to the CEV process, for
which, according to our knowledge, no efficient and general en-
ough procedure is available in literature, and to discretely moni-
tored option.

Our numerical experiments show that the BP algorithm per-
forms well respect to the standard recursive quadrature for all con-
sidered exotic options (barrier, lookback, Asian, Bermudan and step
options), mainly when the number of monitoring dates is large:
they have a similar accuracy, but our scheme is considerably faster.
In addition, we show how to accelerate the scheme for both look-
back and Asian options, losing a little bit of accuracy.

We would like to stress that, according to our knowledge, this
article is the first one investigating a fast and accurate algorithm
for pricing exotic options when the discrete monitoring is assumed
and a CEV process (or, more generally, processes for which the log-
price is not i.i.d.) is considered. Finally the proposed factorization
has potential and immediate applications to the study of properties
of discrete time Markov Chains as well, a very important topic in
operational research for modeling queuing sequences and many
other practical systems, see (Norris, 1997). Extension to other pro-
cesses, as normal mixture distribution, see (Bhat & Kumar, 2012),
and options with multiple risk factors, such as stochastic volatility
models or multi-assets contracts, as in Breton and de Frutos (2010),
Jin, Li, Tan, and Wu (2013), Rambeerich, Tangman, Lollchund, and
Bhuruth (2013), are also amenable to the presented technique,
and will be treated in a follow-up paper.
Appendix A. Quadrature for exotic derivatives

In the following we detail how the quadrature applies to differ-
ent contractual settings.
A.1. Barrier and Bermudan options

For barrier options, i.e., recursions (1) and (2), we have
Wðx;NÞ ¼ /ðxÞ;Hðx; y; DÞ ¼ e�rDpðx; y; DÞ, and a; b depend on the
domain X. For example, for down-and-out barrier options, we set
a ¼ L and b ¼ U. From the discretization of (1), we obtain a recur-
sion of the form (7) with WN ¼ ½/ðsiÞ�m�1

i¼0 .
If Bermudan options are considered, we have Wðx;NÞ;Hðx; y; DÞ,

and a; b as above. From the discretization of (2) we obtain

WCV
n ¼ HmDmWnþ1

Wn ¼maxfWCV
n ;Ug

(
where WCV is the continuation value, and U ¼ ½/ðsiÞ�m�1

i¼0 ¼WN .

A.2. Lookback options

If fixed-strike lookback put options are considered, we set
Hðx; y; DÞ ¼ e�rDpðx; y; DÞ; a ¼ 0 and b ¼ þ1 (truncated to L and
U for numerical valuation). Thus the semi-discrete formulation
of (3) is

Wðsi; J;nÞ ¼
Xm�1

l¼0

wlHðsi; sl; DÞWðsl;minfJ; slg;nþ 1Þ;

i ¼ 0; . . . ;m� 1, with Wðsi; J;NÞ ¼ ðE�minfsi; JgÞþ. Since J is the
minimum value of the underlying asset, we discretize J on the same
grid fsigm�1

i¼0 used for the underlying asset. More precisely, we can
implement recursion (3) as follows: considering m quadrature
nodes sj and weights wj; j ¼ 0; . . . ;m� 1, we define for
n ¼ N � 1; . . . ;0 the vectors

Wj
n :¼ ½Wðsi; sj;nÞ�m�1

i¼0 and cWj
n :¼ ½Wðsi;minfsi; sjg;nÞ�m�1

i¼0 ;

with cWj
N ¼ ½ðE�minfsi; sjgÞþ�

m�1
i¼0 .

The fully-discretized lookback recursion (3) is: for
n ¼ N � 1; . . . ;0

Wj
n ¼ HmDm

cWj
nþ1;

with Dm and Hm defined as above. Notice that ðcWj
nÞi corresponds to

Wðsi; sj;nÞ (and thus to ðWj
nÞi) only if si P sj, and thus i P j. Thus,

moving from Wj
n to cWj

n, an update of the minimum value is neces-
sary for the indices i such that sj > si. This implies that the pricing
recursion can be written as: for n ¼ N � 1; . . . ;0 and j ¼ 0; . . . ;m� 1,

Wj
n ¼ HmDm

cWj
nþ1 Recursion Step;

ðcWj
nÞi ¼

ðWj
nÞi if i P j;

ðWi
nÞi if i < j;

(
Updating Step:

8>><>>: ðA:1Þ

Remark 1. The iteration (A.1) can be accelerated using a subset es
of m=x quadrature nodes, i.e., for n ¼ N � 1; . . . ;0, for
jx ¼ 0; . . . ;m=x� 1, being ðWjx

n Þi ¼Wðsi;esjx ;nÞ, it holds

Wjx
n ¼ HmDm

cWjx
nþ1;

ðcWjx
n Þi ¼

ðWjx
n Þi if i P jx;

ðWi
nÞi if i < jx;

(8>><>>:
where the element ðWi

nÞi is computed by cubic interpolation if the
node si do not belong to the subgrid es.
A.3. Asian options

For Asian options, at each step the possible new values of the
state variable A do not fall on the A-grid at the previous step.
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Therefore an interpolation is also required at each iteration. More
precisely, the semi-discrete formulation of (4) is: for
i ¼ 0; . . . ;m� 1

Wðsi;A;nÞ ¼
Xm�1

l¼0

wlHðsi; sl; DÞW sl;
nþ 1
nþ 2

Aþ 1
nþ 2

sl; nþ 1
� �

:

To obtain the fully-discrete formulation, we define for
j ¼ 0; . . . ;m� 1

Wj
n¼ W si;sj;n

� 	� 	m�1
i¼0 and Ŵj

n¼ W si;
n

nþ1
sjþ

1
nþ1

si; n
� �� �m�1

i¼0
:

Thus the discretization of (4) can be written as: for n ¼ N � 1; . . . ;0,
given Wj

nþ1, compute Ŵj
n exploiting cubic interpolation, and then

set

Wj
n ¼ HmDmŴj

nþ1:

Again, as stated in Remark 1, we can assume that the average falls
on a subset es of m=x quadrature nodes, i.e.,
Wjx

n ¼ W si; sjx ;n
� 	� 	m�1

i¼0 ; jx ¼ 0; . . . ; m
x� 1.

A.4. Step options

Finally, for step derivatives, In can only assume the nþ 1 values
0;1; . . . ;n. The payoff is discretized according to

cWj
N ¼ 1� q

N
jþ 1fsi2Ig
� 	� �

uðsi � EÞð Þþ
� �m�1

i¼0
; j ¼ 0; . . . ;N � 1:

Then, for n ¼ N � 1; . . . ;0, we compute

Wj
n ¼ HmDm

cWj
nþ1; j ¼ 0; . . . ;n;

and then, if n > 0, we construct cWj
n as follows: for i ¼ 0; . . . ;m� 1,

for j ¼ 0; . . . ;n� 1, if si R I , then cWj
n

� �
i
¼ Wj

n

� �
i
, otherwisecWj

n

� �
i
¼ Wjþ1

n

� �
i
.

Appendix B. Matrix factorization

In this section, we analyze the spectral properties of the matrix
HD. These properties allow us to factorize HD by using the bidiag-
onalization algorithm of Golub and Kahan (1965). For this purpose,
at first we define the cluster point of eigenvalues of a sequence of
matrices of increasing dimension (that can be obtained, for exam-
ple, by increasing the number of nodes in the quadrature formula
(7)). This means to analyze the asymptotic behavior of eigenvalues
of a sequence of matrices, and to show that, in our case, they clus-
ter around zero. In particular, the number r� of eigenvalues greater
than a fixed tolerance � remains constant as we increase the num-
ber of quadrature nodes. Therefore the factorization of the matrix
HD into the product PJQ H returns a bidiagonal matrix J having as
non-zero elements only the first k� elements, k� � r�, on the main
and on the upper diagonals. This means that it is not necessary
to perform the full factorization PJQ H , but we can stop at the
k�th step. If k� is much smaller than m, where m is the dimension
of the matrix, this implies a significant reduction in the computa-
tional cost. Furthermore, the particular ‘‘composition’’ of matrices
P and Q allows us to compute the matrix–vector multiplication
in Oðk�mÞ operations instead of the Oðm2Þ characterizing the
standard recursive approach.

B.1. Spectral properties of a sequence of matrices

In this section we give the main definitions and theorems
related to the spectral properties of sequences of matrices that
satisfy certain conditions.
In the following, we denote with fAmg ¼ fAmg1m¼1 a sequence of
matrices in Cm	m joined by a structural content that remains un-
changed when the size varies. For brevity, we will denote the se-
quence simply by fAmg and we use the symbols kðmÞj and
rðmÞj ; j ¼ 1; . . . ;m, to denote, respectively, the eigenvalues and the
singular values of Am.

A property of the spectrum of a sequence of matrices is its clus-
ter point.

Definition 1 Tyrtyshnikov (1996). A matrix sequence fAmg is
strongly clustered at s 2 C (in the eigenvalue sense), if for any e > 0
the number of the eigenvalues of Am off the disc
Dðs; eÞ :¼ fz : jz� sj < eg can be bounded by a pure constant qe
possibly depending on e, but not on m. In other words

qeðm; sÞ :¼ #fj : kðmÞj R Dðs; eÞg ¼ Oð1Þ; m!1:

If every Am has only real eigenvalues (at least for large m) then
we may assume that s is real and that the disc Dðs; eÞ is the interval
ðs� e; sþ eÞ. We replace the term ‘‘strongly’’ by ‘‘weakly’’, if
qeðm; sÞ ¼ oðmÞ, when m!1. Similar definitions hold if we
replace the term eigenvalues with singular values.

A sufficient condition under which a sequence of matrices is
strongly clustered is given in the following theorem.

Theorem 1 Serra Capizzano, Bertaccini, and Golub (2005, Theo-
rem 1.2). Let fAmg be a sequence of matrices of strictly increasing
dimension (Am 2 Cm	m) with eigenvalues jkðmÞ1 jP jk

ðmÞ
2 jP � � �P jk

ðmÞ
m j

and singular values rðmÞ1 PrðmÞ2 P � � �PrðmÞm . If

- there exist a number N > 0, independent of m, such that

rðmÞ1 ¼ kAmk2 6 N, that is fAmg is a sequence uniformly bounded;
- the sequence fAmg is strongly clustered at 0 in the singular value
sense, that is, following Definition 1, 8� > 09C ¼ C� independent
of m such that #fj : rðmÞj > �g 6 C�, uniformly 8m;

then fAmg is strongly clustered at 0 in the eigenvalue sense, that is

8� > 0 9bC ¼ bC � independent of m such that #fj : jkðmÞj j > �g 6 bC �,
uniformly 8m.

The following lemma gives us a sufficient condition under
which a sequence of matrices is strongly clustered at zero.

Lemma 2. Let fAmg be a sequence of matrices (Am 2 Cm	m), if
9N > 0, independent of m, such that kAmkF 6 N, where k � kF is the
Frobenius norm, then the sequence fAmg is strongly clustered at zero
in the singular value and eigenvalue sense.
Proof 1. For the singular value cluster see (Serra Capizzano, 2001,
Section 4, Corollary 4.1, point 2, with Bn=0). For the cluster of the

eigenvalues, if rðmÞ1 P rðmÞ2 P � � �P rðmÞm are the singular values of

Am and rm ¼ ½rðmÞ1 ;rðmÞ2 ; . . . ;rðmÞm �, we observe that N P kAmkF ¼
krðmÞk2 P krðmÞk1 ¼ rðmÞ1 ¼ kAmk2, then we are under the hypothe-
ses of Theorem 1 and we can conclude that the sequence fAmg is
strongly clustered at zero in the sense of the eigenvalues. h

We conclude this section with our main result on the clustering
of sequences of matrices that arise from discretization of integrals
of functions in two variables.

Theorem 3. Let us define Am ¼ KmDm, where Km is the sampling

matrix of a continuous function k;kð�; �Þ :X	X!R; X�Rd; dP1; X
closed and bounded, and Dm¼diagðw0; . . . ;wm�1Þ is the diagonal
matrix with the weights of the quadrature formula wi. Then the
sequence fAmg is strongly clustered at zero in the singular value and
eigenvalue sense.



Fig. B.4. Trend of the absolute values of aj on the main diagonal and bj on the upper
diagonal of the matrix J obtained from the discretization of the iteration matrix HD
for a double barrier option in the lognormal model with N ¼ 252;m ¼ 1000.
Parameters setting as in Section 4. In this case � ¼ 10�8; r� ¼ 64 and j 6 k� ¼ 65.
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Proof 2. We consider the Frobenius norm of the matrix Am:

kAmk2
F ¼

Xm

i;j¼0

ðAmÞ2i;j ¼
Xm

i;j¼0

k2ðih; jhÞw2
j ¼

Z
X2

k2ðx; yÞdxdyþ �m 6 C;

where C is a constant which depends on X and the smoothness
of the function k, and �m is the error of the quadrature formula
which approaches to 0 as m increases. The application of Lemma
2 concludes the proof. h

In conclusion, we observe that the above theorem can be ap-
plied to the sampling matrix Hm in (7). Thus we have proved that
our iteration matrix is strongly clustered at zero.

B.2. Bidiagonalization

Formula (7) implies that the option price W0 can be obtained by
performing N times the matrix–vector multiplication HDv, starting
from the payoff vector WN . In order to speed-up the matrix–vector
product, we use the spectral properties of the matrix HD as dis-
cussed above. These properties allow us to factorize the iteration
matrix into the product of ‘‘simpler’’ matrices. To this end, we con-
sider the following theorem.

Theorem 4 Golub and Kahan (1965, Theorem 1). Let A be any
m	m matrix with complex elements. Then A can be decomposed as
A ¼ PJQ H where P and Q are unitary matrices and J is an m	m
bidiagonal matrix of the form

J ¼

a1 b1 0 � � � 0

0 a2 b2
. .

. ..
.

..

. . .
. . .

. . .
.

0
..
. . .

. . .
. . .

.
bm�1

0 � � � � � � 0 am

0BBBBBBBB@

1CCCCCCCCA
:

Matrices P and Q are obtained as products of Householder’s ele-
mentary (rank 1) matrices, i.e., matrices of the form
I� 2xxH; x 2 Cm; xHx ¼ 1. Moreover, the matrix–vector product
with Householder matrix requires only 2m multiplicative and
2m� 1 additive operations. This means that it is not necessary to
calculate explicitly the matrices P and Q , but we can simply store
the vectors of the Householder’s matrices that generate them. If,
for example, P ¼ ðI� 2x1xH

1 ÞðI� 2x2xH
2 Þ � � � ðI� 2xmxH

mÞ; xi 2 Cm it
is sufficient to store the vectors x1;x2; . . . ;xm to get all the informa-
tions necessary to calculate the matrix–vector product Pv.

Using Theorem 4 we can factorize the matrix HD as PJQ H . In
general, this algorithm is very expensive requiring Oðm3Þ opera-
tions (see Golub & VanLoan, 1996). However, using the cluster
property of the matrix HD, it is possible to see experimentally that
the elements (a1; . . . ;am) on the main diagonal and those
(b1; . . . ; bm�1) on the upper diagonal of the matrix J, exhibit, in mod-
ulus, the behavior shown in Fig. B.4. Therefore, if we consider to be
non-zero only the k� elements above a certain threshold �, the
computation of the matrices P; J and Q can stop at the k�th itera-
tion with Oðk�m2Þ operations. The value of k� is closely related to
the fixed tolerance � and to the cluster of the matrix. As a rule of
thumb, if the number of eigenvalues greater than a tolerance � is
r�, then the number of steps k� of the algorithm is only slightly lar-
ger than r�.

Given the matrix HD and using the algorithm of Golub and Ka-
han (1965), we compute the vectors x1;x2; . . . ;xk� ; y1; y2; . . . ; yk�

and the elements a1; . . . ;ak� , and b1; . . . ; bk��1, so that

Pk� ¼ ðI� 2x1xH
1 ÞðI� 2x2xH

2 Þ � � � ðI� 2xk�x
H
k�Þ;

Q k� ¼ ðI� 2y1yH
1 ÞðI� 2y2yH

2 Þ � � � ðI� 2yk�y
H
k� Þ;
and

Pk�

a1 b1 0 � � � 0

0 . .
. . .

. ..
.

..

. . .
.

bk��1
..
.

..

.
ak� 0

0 � � � � � � � � � 0

0BBBBBBBBB@

1CCCCCCCCCA
Q H

k� ¼ Pk� Jk�Q
H
k� ffi HD:

Using this factorization, we compute Pk� Jk�Q
H
k�v, instead of

HDv; v 2 Cm. In addition, exploiting the Householder structure of
matrices Pk� and Q k� we can reduce the number of operations in
the matrix–vector product from Oðm2Þ to Oðk�mÞ.
Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejor.2013.12.009.
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