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Summary: 

Long-term remission induced by immune checkpoint inhibitors (ICIs) in various types of 

cancers has opened the possibility of broader use of immunotherapy. Although the advantage 

of ICIs is in their inherent capacity to achieve long-term or even complete responses, the 

reality is that the majority of patients do not benefit from these treatments. Our hope for the 

next decade is that biomarkers for predicting ICI efficacy and toxicity will be identified, 

together with clinical parameters, to optimize ICI regimens and new combinations. By now 

we enrolled in this study 121 patients with advanced Lung Cancer (LC; n=84), Head and 

Neck Cancer (HNC, n=14), Melanoma (M; n=13), and Renal Cell Carcinoma (RCC; n=10) 

who were candidates for ICI therapy. The aim of this study is to identify predict and 

prognostic biomarkers in response to ICIs.  Several clinical biomarkers, including baseline 

clinical characteristics of patients, nine blood-based clinical biomarkers were identified, and 

their prognostic potential was analyzed.  We demonstrated that in LC patients higher levels of 

Absolute Neutrophil count (ANC), Neutrophil to Lymphocyte ratio (NLR), systemic 

inflammation index (SII) and derived Neutrophil to Lymphocyte ratio (dNLR) were 

associated with poor outcome, instead Lymphocyte to monocyte ratio (LMR) was found to be 

associated with better outcomes. In M higher Neutrophil to White blood cells ratio (NWR), 

NLR, dNLR, and Platelet to Lymphocyte ratio (PLR) showed an association with poor 

outcome. In HNC, Absolute Lymphocyte count (ALC) and NWR were associated with poor 

outcomes. It has been reported that higher percentage of Myeloid-derived suppressor cells 

(MDSCs) are positively correlated with poor prognosis in patients with cancer, owing to their 

immunosuppressive functions. For these reasons, we also phenotyped and identified the 

MDSCs subpopulations in peripheral blood of our patients, demonstrating that in LC and 

HNC, the frequency of Mo- was higher than PNM-MDSCs and was associated with poor PFS 

and OS, respectively. Moreover, tumor-associated macrophages (TAMs), with high levels of 

heme oxygenase-1 (HO-1+), seem to play a crucial role in defense mechanisms through 

antioxidant, anti-inflammatory, and anti-apoptotic properties. Based on these premises, we 

evaluated the prognostic role of HEME catabolism by assessing HO-1 expression levels in 

monocyte subpopulations in peripheral blood samples of patients with advanced cancer, 

candidates for ICIs. We showed that HO-1 expression seems to be related to patients 

outcome, particularly in LC patients higher expression of HO-1 in intermediate monocytes 

subset was associated with poor outcomes in terms of both OS and PFS. Finally, existing and 
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accumulating new evidence suggest that the complement system plays a major role in the 

regulation of TME. Cancer cells along with the optimization of complement-mediated 

functions remodel the TME and facilitate the tumor progression, metastasis, and evasion of 

the immune system. Thus, we evaluated C5aR1 (CD88) on monocyte subset as a potential 

biomarker for therapeutic outcomes, demonstrated that in a patient with LC, higher 

expression of CD88 on classical monocyte subset was associated with relatively lower risk of 

in terms of overall survival.  

Aim and objectives: 

It is now clear that the tumor-host interplay and tumor microenvironment represents a key 

component in the response to immune checkpoint inhibitors (ICIs) treatment. Thus, patient’s 

immune status, as well as the dynamic changes in the tumor microenvironment, needs to be 

deeply investigated. In this context there is a need to identify different clinical and 

immunological biomarkers to establish the understanding of therapeutic outcomes in 

advanced cancer patients under ICI treatment. The aims of this work are: 

• To investigate the basic clinical characteristics, blood based clinical biomarkers and 

their association with progression and overall survival of advanced cancer patients 

treated with ICI’s. 

• To identify and phenotype MDSCs in peripheral blood samples and understand their 

association with therapeutic outcomes in advanced cancer patients treated with ICI’s.  

• To identify different monocyte subsets in peripheral blood samples and study the 

Heme catabolism in context of Heme-oxygenase-1 and establish their association with 

therapeutic outcomes advanced cancer patients treated with ICI’s.  

• To study the expression of C5aR1 (CD88) on the identified monocyte subsets and 

understanding their association with therapeutic outcomes advanced cancer patients 

treated with ICI’s. 
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1. INTRODUCTION 

 

1.1. Cancer  

Cancer is one of the major public concerns in the continent of Europe accounting for almost 

one-quarter of all cancer globally where only one-tenth of the population lives. According to 

estimates, there will be 4 million new instances of cancer (excluding non-melanoma skin 

cancer) and 1.9 million cancer-related deaths. The most prevalent malignancies are prostate 

(580,000 cases), colorectal (520,000), lung (480,000), and breast (530,000 cases) in women 

(470,000). In Europe, these four tumors account for half of all cancer cases. Lung (380,000), 

colorectal (250,000), breast (140,000), and pancreatic cancers are the most prevalent tumors 

to cause mortality. In the EU-27, there are an estimated 1.4 million new cancer cases in males 

and 1.2 million in females, with around 710,000 estimated cancer deaths in males and 

560,000 in females. (Dyba et al., 2021). The year 2018, EU’s budget for the year 2018 was 

€97 million in terms of economics (Hofmarcher et al., 2020). (FIGURE 1A). 

Cancer as a disease is highly complex, and systemic which depends highly on the crosstalk 

between the tumor and its microenvironment where prolonged inflammation is one of the 

hallmarks of cancer. The past two decades can be hailed as the renaissance of tumor 

immunology (FIGURE 2) , especially with the emergence of key concepts that put forth the 

role of pre-existing adaptive immunity within tumors: immunosurveillance and 

immunoediting (Schreiber et al., 2011, Shankaran et al., 2001) and the importance of immune 

contexture (Galon et al., 2006, Mascaux et al., 2019) (Galon and Bruni, 2020). Paul Ehrlich, 

in 1909 predicted that the growth of carcinomas was repressed by the immune system and 

that he envisioned otherwise would occur with great frequency (Ehrlich 1909), becoming the 

seed of vehement debate for the century over immunologic control of neoplasia. Decades 

later, two ideologies converged from different perspectives, one from immune tolerance 

proposing that neo-antigens that are tumor cell-specific provoke effective immunologic 

response (Burnet 1957) and the other from an evolutionary point of view (Thomas 1959) 

theorizing long-lived complex organisms must possess protective mechanisms against 

neoplastic diseases. With the advent of technological advances, the hypothesis gained 

traction, and mouse models revealed sentinel cells surveyed host for nascent transformed 

cells (Old and Boyse 1964). George Köhler and Cesar Milstein's discovery of monoclonal 
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antibodies (mAbs) produced via "hybridoma technology" in 1975 had a significant impact on 

clinical medicine and validated the concept of cancer immunosurveillance. On the other side 

of the coin is the immunoediting hypothesis. According to recent research, the immune 

system may also encourage the development of primary tumors with decreased 

immunogenicity that can avoid immune detection and elimination (Shankaran et al 2001). 

Elimination, equilibrium, and escape are the three dynamic stages of the cancer 

immunoediting process. Elimination stands for the traditional idea of cancer 

immunosurveillance, equilibrium is the time following incomplete tumor death in the 

elimination phase, and escape is the final outgrowth of cancers that have outgrown 

immunological restrictions of the equilibrium phase (Dunn et al. 2002, Dunn et al. 2004). The 

immunotherapy has improved the overall survival and progression free survival for cancer 

patients. (FIGURE 1B)   

1.1.1. Lung Cancer.  

At the start of 20th century lung cancer was a rare disease and by the end of century it had 

become the world’s leading cause of death. In Europe lung cancer is the leading cause of 

cancer death. It is estimated that in 27 countries under EU, 11.9% of all new cancer diagnosis 

was lung cancer (excluding non-melanoma) and lung cancer accounted for 20.4% of all 

deaths related to cancer on the year 2020 (eurostat) yet on the contrary it is the most curable 

form of cancer but is often diagnosed at advanced or incurable stage.(Siddiqui et al., 2022). 

1.1.2.  Melanoma 

According to estimates, skin melanoma represented 1.3% of cancer-related deaths and 4% of 

all new cancer diagnoses in the EU-27 nations in 2020 (all cancers, excluding non-melanoma 

skin cancers)(Forsea, 2020). This made it one of the 20 most frequent causes of cancer death 

and the sixth most common cancer (after breast, colorectal, prostate, lung, and bladder 

cancers). (Curti and Faries, 2021) 

 In addition to Targeted therapy and conventional chemotherapies, novel immunotherapies 

such the CTLA-4 antibody ipilimumab are available. A Phase 2b Study of Immune 

Checkpoint Inhibition (Nivolumab, Pembrolizumab and Ipilimumab) With or Without 

Dorgenmeltucel-L (HyperAcute Melanoma) Immunotherapy for Stage IV Melanoma Patients 

is currently running (2018-2033) a randomized trial with 47 participants. (Atkins et al., 2021) 

1.1.3. Head And Neck Cancer  
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Despite the fact that head and neck cancer is linked with pain, disfigurement, dysfunction, 

emotional suffering, and death, recent discoveries have resulted in significant improvement in 

outcomes. More than 150 000 new patients are diagnosed with head and neck cancer each 

year (Boscolo-Rizzo et al., 2018), making it one of the most prevalent cancer forms in 

Europe. Despite being the seventh most prevalent cancer in the world, and each individual 

tumor being categorized as a rare cancer, there is little knowledge of this, and patient 

outcomes remain poor for those diagnosed later in the disease's progression (Johnson et al., 

2020). However, for those diagnosed early, the survival probability is 80-90%. Some patients 

had a notable improvement as a result of the introduction of immune-checkpoint inhibitors 

for the treatment of recurrent or metastatic head and neck cancer. Unfortunately, the 

requirement for weekly cetuximab treatment, which led to infusion responses and skin 

reactions, made the quality of life less desirable. Pembrolizumab and Nivolumab, two anti-

PD-1 antibodies, were approved by the Food and Drug Administration (FDA) in 2016 after 

platinum-treated patients with recurrent or metastatic head and neck cancer demonstrated 

persistent responses and improved survival. Unquestionably, PD-1-directed immune-

checkpoint inhibitor medication has enhanced survival, disease remission, or both in a tiny 

subset of patients. Regrettably, between 85 and 95 percent of patients with advanced or 

metastatic head and neck cancer do not respond. (Cramer et al., 2019). 

1.1.4. Renal Carcinoma  

Over 90% of all renal malignancies are renal cell carcinomas (RCC), the most prevalent 

malignant tumor of the kidney. RCC is a complex set of illnesses that can be sporadic (96%) 

or familial (4%) and is subclassified into several unique subtypes linked to certain genetic 

abnormalities. RCC is an insidious malignancy which accounts for approximately 2.4% of 

diagnosis, approximately more than 400,000 are newly diagnosed and 180,000 mortalities 

worldwide on the tear 2020 according to GLOBOCON data (WHO – 2020). With early RCC 

diagnosis, the 5-year survival rate is as high as 93%. For RCC patients with metastases, the 5-

year survival rate is only 12%, and at least half of them need systemic medication therapy 

(Bukavina et al., 2022). RCC is typically regarded as an immunogenic tumor because to its 

overall resistance to cytotoxic chemotherapy and radiation therapy, and earlier 

immunotherapies have had some effectiveness, albeit insufficiently (Bukavina et al., 2022) .   
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Figure 1 (A) Geographical Distribution of Cancer Related mortality rate estimate for 2020 in 

EU-27 

Figure 1 (B) Improved Overall Survival as a Result of Combination Therapy Depiction of 

Kaplan-Meier survival curve with genomically targeted agents (blue line) as compared to 

standard therapies (purple line), indicating an improvement in median overall survival but lack 

of durable responses; improved median overall survival and durable responses in a fraction of 

patients treated with immune checkpoint therapy (green line); possibility for improved median 

overall survival with durable responses for the majority of patients in the setting of 

combination treatment with genomically targeted agents and immune checkpoint therapy (red 

line). 
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Figure 2 (A)Timeline of Anti-PD-1/PD-L1 and Anti CTLA-4 Immunotherapy (B) 

List of Approved PD-1/PD-L antibodies 
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1.2. Tumor Immunology  

Tumor immunology, as a field focuses heavily on local immune responses in the tumor 

microenvironment (TME), but immunity is coordinated across tissues where the localized 

antitumor response cannot be achieved without communicating continuously with the 

periphery(Hiam-Galvez et al., 2021). Increase in immature and immunosuppressive myeloid 

populations are highlights of peripheral immune perturbations in the context of cancer 

however this discrepancy also often co-occurs with a many other peripheral immune lineages. 

In brief, many human and mouse models of cancer drive extensive disruption of 

haematopoiesis manifesting in expansion of immature neutrophils and monocytes in the 

periphery later traffics to the TME and contribute to the local immunosuppression 

(Gabrilovich et al., 2012). As a result of the mobilization of hematopoietic stem and 

progenitor cells for proliferation and differentiation into the monocytic and granulocytic 

lineages, immature immunosuppressive neutrophils (also known as polymorphonuclear 

myeloid-derived suppressor cells, or PMN-MDSCs), monocytes (also referred to as M-

MDSCs), and macrophages are accumulated in the periphery and within tumours (Wu et al., 

2014).  An extensive meta-analysis of more than 40,000 patients indicated that elevated 

neutrophil frequencies in the blood, as determined by the neutrophil to lymphocyte ratio, 

were linked to a worse prognosis in patients with mesothelioma, pancreatic cancer, renal cell 

carcinoma, colorectal carcinoma, gastroesophageal cancer, non-small-cell lung cancer 

(NSCLC), cholangiocarcinoma, and hepatocellular carcinoma19. G-CSF12,20, GM-

CSF17,21,22, IL-17, oxysterol23, IL-8, CCL2 , TNF25, tumour-derived exosomes26, and IL-

1 have all been linked to the acceleration of this process (Coffelt et al., 2015; Dominguez et 

al., n.d.; Wellenstein et al., 2019).                                                                                                       

1.3. Immune Checkpoint Blockade  

 The predominant modalities employed across nearly all cancer types are chemotherapy, 

radiation, surgery, and molecularly targeted agents, which were often effective in early-stage 

of cancers but not curative in advanced stage disease.(Van der Mude, 2022) (Sharma and 

Allison, 2015) In a clinical research point of view the shift in this approach happened with 

success of immune checkpoint blockade (ICB) in multiple tumor types, nearly half of all 

patients with metastatic cancer in economically developed countries are eligible to receive 

ICB therapy(Debela et al., 2021). As of December 2021, there were eight approved agents 

available for 17 different malignancies, the increasing use and protocols are developed in 
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several (neo) adjuvant and maintenance settings(Esfahani et al., 2020). The combination 

regimens are adapted and developed along, including those involving other classes of ICB, 

cytotoxic chemotherapy, and biological and/or targeted therapies.(Yap et al., 2021) These 

therapies and combination regimens have become durable in terms of response, even in 

advanced stages and metastatic setting. Given this growing importance, characterizing the 

long-term physiological implications of treatment with ICB has gained momentum. (Yu et 

al., 2022) 

 The chemotherapy, radiation and especially molecularly targeted cancer therapies has a 

mode of action which is limited and focused on cell-intrinsic factors such as mutations and/or 

other genetic influences which often gets altered and tumors develops resistance to these 

therapies asking for finding a new target. This approach often leads to failure to treatment or 

relapse, metastasis etc., it ignores tumor-extrinsic factors like the immune system and its 

components which are indeed contextually exploited by tumors(Yap et al., 2021).   

  Among the approaches which targets tumor-extrinsic factors like immune system, 

antibodies that block “immune checkpoints”, negative regulators of T cell -function (Topalian 

et al., 2015), and chimeric antigen receptors have been studied in recent times. The 

therapeutic antibody ipilimumab, targeting cytotoxic T lymphocyte antigen 4 (CTLA-4), was 

the first checkpoint inhibitor to be approved for clinical use in cancer. CTLA-4 competes 

with the co-stimulatory receptor CD28 for binding to B7 ligands. A second immune 

checkpoint receptor, programmed cell death protein 1 (PD-1), is expressed by activated T 

cells, while its ligands PD-L1 and PD-L2 are expressed by tumor and immune cells.(Iranzo et 

al., 2022) The PD-1 pathway is important for driving T cells into a dysfunctional state known 

as T cell exhaustion (Pauken and Wherry, 2015) (FIGURE 3). Blocking either CTLA-4 or 

PD-1 has led to unprecedented durable responses with a generally favorable toxicity profile. 

However, it is clear from clinical trials that only a fraction of patients responds to these 

therapies, and many will relapse. There are several known tumor-cell extrinsic factors that 

influence the outcome of ICB, undoubtedly somatic mutation burden, cancer genetics, and 

epigenetics ( Wellenstein and de Visser (2018) ) , is important in response to these therapies , 

however the expression of PD-L1 on tumor and immune cells  (Herbst et al., 2014; Tumeh et 

al., 2014) , and developmental fate of T-cells (Pauken and Wherry, 2015) , are other tumor 

cell-extrinsic factors that influence response . On the other hand, evidence have emerged that 

conventional genotoxic therapies (e.g., chemotherapy, radiation), and molecularly targeted 

therapies can have immunomodulatory effects.  A rational combination of strategies requires 
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the understanding of relevant determinants of response and resistance beyond cell-intrinsic 

and genetic mechanisms. (Yu et al., 2022). 

 

 

1.4. Myelopoiesis in cancer and implications on immunotherapy - A twist 

in the PD-1 tale 

 One of the distinguishing characteristics of most immune cells is their ongoing 

replenishment from precursors that are eventually descended from bone-marrow-derived-

hematopoietic stem cells (HSCs) in adults. Myelopoiesis is the process by which the major 

myeloid cell types of the immune system, such as granulocytes, monocytes, and dendritic 

cells, grow and differentiate within the hematopoietic system. Cancers encourage 

immunological stressors that result in emergency myelopoiesis, which alters the myelopoietic 

output and produces a variety of myeloid populations with tumor-promoting properties.(Sica 

et al.,) (Mallick and Duttaroy, 2021).  

B A 

Figure 3 (A) PD-1/PD-L1 axis and its inhibitors’ role in regulation of T-cell functions. During prolonged 

antigenic stimulation, e.g., carcinogenesis, PD-1 overexpression results in the inhibition of T-cell proliferative 

and cytotoxic activity, PD-1/PD-L1 inhibitors promotes proliferation and activation of T-cells. (B). T-cell 

activation requires 2 signals: the first, binding MCH with TCR; the second, interaction of CD28 on the T-cell 

with B7 (CD 80, CD 86) on APC. After T-cell activation, CTLA-4 is displaced to the plasma membrane and 

functions as a T-cell activation inhibitor. Anti-CTLA-4 antibody binds with CTLA-4 which results in T-cell 

reactivation. PD-1 programmed cell death protein 1; PD-L1, programmed death-ligand 1; MHC, major 

histocompatibility complex, TCR, T-Cell receptor, CTLA-4, Cytotoxic T-Lymphocyte Associated antigen 4, 

APC, antigen-presenting cell. 
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Terminally differentiated myeloid cells are essential innate immune cells and are required for 

the activation of adaptive immunity. Strong activation signals mediated by pathogen-

associated molecular pattern or danger associated molecular pattern molecules lead to a 

transient expansion and subsequent differentiation of myeloid progenitors to mature 

monocytes and granulocytes to protect the host in cancer and infections, In contrast, during 

emergency myelopoiesis mediated by continuous low-level stimulation mediated by cancer-

derived factors and cytokines, bone marrow common myeloid progenitors (CMPs) but, 

predominantly, granulocyte/macrophage progenitors (GMPs) undergo modest expansion with 

hindered differentiation, and a fraction of myeloid cells with immunosuppressive and tumor-

promoting properties, named myeloid-derived suppressor cells (MDSCs), accumulates. 

MDSCs suppress CD8+ T cell responses by various mechanisms. (Alvarez et al., 2018) 

(Wildes et al., 2021) 

 The consensus is that ICB therapies intrinsically targets the T-cell, triggering the immune 

response of the adaptive immune system against the tumor. (Sharma and Allison, 2015) 

However mounting evidence indicate that much of efficacy of checkpoint therapies may 

attribute to innate immune system. This checkpoint blockade has both a direct and an indirect 

impact on innate immune lineages.(Morad et al., 2021) (Liu et al., 2021) 

In the indirect pathway, anti-PD-1/PD-L1 or anti-CTLA-4 boosts T cell immunity, which 

phenotypically polarizes innate immune cell reactions in the tumor microenvironment 

(TME). Due to the subsets of myeloid cells and innate lymphocytes expressing PD-1 and/or 

PD-L1, immune checkpoint inhibition directly targets innate immune cells in the direct 

pathway (Waldman et al., 2020) .This extremely complex interplay of cell types following 

checkpoint therapy emphasizes the significance of understanding how checkpoint biology 

influences innate immune populations. (Liu et al., 2021) 

Direct pathway- Detectable quantities of PD-1 are present on myeloid cells, it has been 

demonstrated that PD-1-expressing TAMs accelerate tumor growth in several malignancies, 

including lung cancer, colorectal cancer, and gastric cancer (Li et al., 2022). As the receptor 

may be activated by inflammatory conditions, the development of PD-1 in myeloid 

progenitors is an early event in tumor growth. Myeloid cell infiltration, differentiation, 

effector function, and cellular metabolism are all impacted by PD-1 engagement. Human 

monocyte metabolism is shifted toward oxidative phosphorylation by PD-1 activation. 
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Glycolysis can be restored by PD-1/PD-L1 inhibition, which is associated with improved 

antibody-dependent phagocytosis (Liu et al., 2021) (FIGURE 4). 

 

 

 

 

 

1.5. Monocytes, its subsets, and immature suppressive cells in myeloid 

lineage – in context of cancer and emergency myelopoiesis. 

1.5.1. Monocyte heterogeneity 

 The term monocytes are used for mono-nuclear phagocytic cells originating from myeloid 

lineage, monocytes are mostly precursors of some macrophages and dendritic cell population 

(Merah-Mourah et al., 2020). Monocytes originate in the bone marrow from pluripotent stem 

cells, monoblast and promonocytes are the precursor cells for the formation of monocytes, 

after formation of monocytes from the division of promonocytes, they are short survived (less 

than a day) in bone marrow compartment, rather they enter the circulation and divide, in the 

division they maintain a circulating pool and a marginating pool, in circulation they stay for a 

Figure 4 Emergency Myelopoiesis, generation of immature myeloid cells in solid Tumors and role of 

Immunotherapy. The regulation of innate immune cells by PD-1 blockade is divided into direct and indirect 

pathways. In the direct pathway, PD-1 blockade reshapes the phenotypes and functions of innate immune 

subsets, such as TAMs, DCs, MDSCs, NK cells. In the indirect pathway, T cells activated by anti-PD-1 secrete 

IFN-y, which in turn phenotypically polarizes myeloid cells within the TME. MDSCs, myeloid-derived 

suppressor cells: NK, natural killer cells; PD-1, programmed cell death protein 1; TAMs, tumor-associated 

macrophages; TEM, tumor microenvironment, HSC, Hematopoietic stem cells, CMP, common myeloid 

progenitor, CSF, Colony-stimulating factor, TDF, Tumor-Derived factor.  
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long period of time (Ożańska et al., 2020). These monocytes in a random fashion leave the 

circulation and migrate to tissues and body cavities where they differentiate into macrophages 

(Cormican and Griffin, 2020).  

  Human blood monocytes and its subset over the years are proposed and redefined to be 

classified based on the expression of cell surface receptors CD14 and CD16 (Kapellos et al., 

2019). Initially it was considered as two populations described as “classical” monocytes 

which express CD14 but not CD16 and “non-classical” monocytes with low CD14 and high 

CD16 expression. Apart from these two subsets a third subset of cells were identified and 

confirmed, with the expression of receptors divergently expressed in other two subsets (CD14 

and CD16) (Sakakura et al., 2021). Despite the phenotypic characterization of monocytes 

subsets their immune functions in the steady state and also in pathology remains ill defined 

(Robinson et al., 2021). (FIGURE 5) 

 There are some marked functions and the differences between these subsets were found, 

nonetheless there are also contradicting results in literature, which adds to the puzzle and 

increase the difficulties in assigning specific function for the specific populations.  

1.5.2. Classical-Monocytes: - CD14+ CD16- 

Also defined as inflammatory monocytes classical monocytes can infiltrate tissues, produce 

inflammatory cytokines, and differentiate into inflammatory macrophages, these are 

synthesized in the bone marrow and, from there, enter the bloodstream (Kwiecień et al., 

2020a). classical- monocytes can enter non-inflamed tissues, where they express major 

histocompatibility complex MHC II. During infection, Mon1 monocytes are deployed at sites 

of inflammation, where they recognize and phagocytize pathogens and secrete high levels of 

pro-inflammatory cytokines (IL-1β, IL-6) and low levels of anti-inflammatory cytokines (IL-

10) by secreting monocyte chemotactic protein-1 (MCP1) and CCL2 (Kwiecień et al., 

2020b). Classical monocytes attract other immune cells to regulate the inflammatory 

response. It is known that classical monocytes have higher peroxidase activity, higher ROS 

production, and are also linked to a more pronounced expression of macrophage antigen-1 

(Mac-1) and scavenger receptors SR-A1 (CD204) and SR-A2 (macrophage receptor with 

collagenous structure, MARCO), as well as stronger binding to plasma low-density 

lipoprotein (LDL) compared to the non-classical monocyte subset. Consequently, classical 

monocytes are phagocytically more active than non-classical monocytes and actively occur at 
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the initiation, development, and resolution stages of inflammation in tissues (Boyette et al., 

2017). 

1.5.3.  Non-Classical-Monocytes: - CD16+CD14- 

Non-classical or relatively smaller anti-inflammatory monocytes accounts for nearly 10% of 

all monocytes circulate in vasculature and patrol for the Damage Associated Molecular 

Patterns (DAMPs) via a mechanism that requires the fractalkine receptor CX3CR1, engulfing 

apoptotic endothelial cells and sensing danger signals coming from the tissue and 

differentiate into tissue-resident macrophage in steady stage (Robinson et al., 2021). During 

inflammation non-classical monocytes differentiate into anti-inflammatory macrophages to 

repair damaged tissues. These monocytes also occur in complement and Fc γ receptor-

mediated phagocytosis and neutrophil adhesion at the endothelial interface (Wolf et al., 

2019). 

1.5.4.  Intermediate Monocytes: - CD16+ CD14+ 

Intermediate monocytes are involved in inflammatory processes through antigen presentation, 

cytokine secretion, the regulation of apoptosis, and angiogenic activity (Schauer et al., 2012). 

These monocytes express a stronger pro-inflammatory capacity than the non-classical 

monocyte subset since the cells produce higher levels of ROS, TNF-α, IL-1β and IL-6, and 

CCL3 and express the highest levels of antigen-presentation-related molecules to restore the 

damaged tissue (Wildgruber et al., 2016). Thus, it seems that the prolonged activity of 

Intermediate monocytes becomes harmful. For instance, the intermediate subset was 

associated with chronic vascular and endothelial damage and atherosclerosis. Suggesting that 

intermediate monocytes may be involved in the maintenance of chronic inflammation, 

leading to harmful remodeling of cardiac tissue. However, the reasons for the persistent 

activity of intermediate monocytes and, consequently, for their involvement in chronic 

inflammation, remain unclear (Kapellos et al., 2019). 
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1.5.5. Role of different monocyte subsets in cancer.  

Both in humans and mice, elevated peripheral blood monocyte numbers have been linked to 

cancer. In certain cancer forms, patients with higher blood monocyte numbers apparently 

have a worse prognosis. Blood monocyte counts and the number of macrophages invading 

tumors are correlated, supporting the idea that classical monocytes can generate tumor-

associated macrophages (Olingy et al., 2019). These elevated monocyte levels can be caused 

either by enhanced mobilization from the bone marrow or increased monopoiesis, both of 

which have been observed in cancer (Kwiecień et al., 2020a). CCL2, the central regulator of 

monocyte mobilization from the bone marrow, often shows higher serum levels in both 

mouse and human cancer (Sakakura et al., 2021). 

Monocytes can display diverse functions at different stages of tumor growth and progression 

(Olingy et al., 2019). Phenotypically similar monocytes can even appear to perform opposing. 

roles due to differences in cancer type/tissue of origin, subtle differences in tumor 

microenvironment, stage of tumor growth, and even during therapy (Li et al., 2022). In 

 

Figure 5 Human monocytes mature in the bone marrow and are subsequently released into the circulation as 

CD14+ classical monocytes. Progressively, classical monocytes (CD14+CD16−) give rise to non-classical 

monocytes (CD14dimCD16+) through an intermediate step of CD14+CD16+ monocytes.   
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multiple models, CCL2 has emerged as the primary mediator of monocyte recruitment. CCL2 

expression increases with neoplastic progression in both human and mouse models of colitis-

associated colorectal cancer.53 In PyMT mice bearing mammary tumors, classical Ly6Chi 

monocytes are recruited in a CCL2-dependent manner to both primary tumors and pulmonary 

metastases (Jin et al., 2021). A similar pattern of recruitment occurred for CD14+CD16– 

monocytes adoptively transferred into nude mice, suggesting that classical monocyte 

recruitment is a feature of both mouse and human tumors (Olingy et al., 2019).  

Monocytes appear to have the cellular machinery to directly kill malignant cells by cytokine-

mediated induction of cell death and phagocytosis (Mantovani et al., 2022). Most tumoricidal 

activity has been demonstrated in vitro, thus whether monocyte-mediated killing is part of the 

in vivo antitumoral response during cancer progression needs further exploration (Reis-

Sobreiro et al., 2021). 

Classical “inflammatory” monocytes are recruited to tumor sites where they contribute to 

tumor macrophage content and promote tumor growth and metastasis (Hanna et al., 2015). 

Non-classical monocytes can act as “intravascular housekeepers” that scavenge 

microparticles and remove cellular debris from the microvasculature, this characteristic 

function can be relevant since extracellular vesicles from tumors are important mediators of 

tumor metastasis, progression, and immune suppression, and targeting their removal is an 

emerging strategy for cancer therapy (Cassetta and Pollard, 2016).  

R.Wang et.al , demonstrated that Intermediate monocytes expand when induced with IFN- γ, 

this induced expansion inhibited lung cancer metastasis by inducing NK(Natural Killer) cell 

expansion through IL-27 . Another evidence from Koichi Sakakura et.al show a significant 

decrease in the proportion of the intermediate subset in patients with oropharyngeal 

squamous cell cancer, and this immature status may associate with poor prognosis. However, 

because most studies on peripheral monocyte differentiation and their functions have been 

performed under normal physiological conditions, the mechanism controlling monocyte 

subsets differentiation and its function in disease states especially in cancer remains largely 

unknown. 

1.5.6. Direct tumoricidal functions of monocytes  

Monocytes display a cellular mechanism to directly kill malignant cells by cytokine-mediated 

induction of cell death and phagocytosis (Hagerling et al., 2019). In a study, it is reported that 
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circulating monocytes exhibit tumoricidal functions when exposed to IFN-γ or IFN-α by 

producing protein TRAIL (TNF-related apoptosis-inducing ligand), which can induce cell 

death TRAIL sensitive cancer cells. Further, the antibody mediated/dependent cellular 

cytotoxic effect of both CD14+ and CD16+ monocytes subsets have the capacity of cellular 

cytotoxicity, wherein CD16+ monocytes subsets require direct contact with tumor cells and 

TNF- α signaling for induction of tumor cell cytolysis. Consequently, malignant cells in 

tumor maybe able to corrupt monocytes to adopt a phenotype that support tumorigenesis, the 

phenotypical switch overpower any programmed tumoricidal activities (Tecchio et al., 2004).  

1.6. Emergency Myelopoiesis (originally termed Demand-Adapted 

Myelopoiesis) 

In cancers, infections, or during other forms of immunological stress, there is an increased 

demand for leukocytes or in general the hematopoietic output to assist in combating the 

infection, to replace cells killed by invading microbes or consumed during the immune 

response, and to increase immune surveillance (Sica et al..). The adaptive immune system 

meets this demand by clonal expansion of T and B cells. In contrast, although there are some 

reports of proliferation of mature macrophages, the increased supply of most innate immune 

cells, which have a limited lifespan and must be regularly replenished, is achieved by 

“emergency myelopoiesis”(Sica et al.). However, the molecular mechanisms for this cancer-

driven emergency myelopoiesis remain largely unknown there are few reported pathways 

which include Colony-stimulating factors (CSFs) as major orchestrators of hematopoietic 

development. Among these, granulocyte CSF (G-CSF) and granulocyte-macrophage CSF 

(GM-CSF) drive ‘‘emergency myelopoiesis’’ by securing supply of neutrophils and 

macrophages from bone marrow (BM) and hematopoietic stem cell niches (HSCs) (Metcalf, 

2008; Ueha et al., 2011). Further, the macrophage CSF (M-CSF) promotes macrophage 

differentiation from medullar precursors and differentiation of tissue macrophages involved 

in tissue homeostasis (Hume and MacDonald, 2012) and tumor progression (Qian and 

Pollard, 2010). LauraStrauss et.,al reported that the continuous expansion of myeloid cells 

during cancer driven emergency myelopoiesis in tumor-bearing mice express PD-1 and PD-

L1 .It is increasingly recognized that tumors can induce an immunosuppressive state 

characterized by the accumulation of immature myeloid cells (produced during emergency 

myelopoiesis) systemically and in the TME (Boscolo-Rizzo et al., 2018).  
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1.7.  Tumor micro-environment (TME) 

  Malignant cells are just a small part of the complex ecosystem that makes up a tumor and 

facilitates its growth. The vasculature, lymphatics, stromal compartment, and extracellular 

matrix (ECM) composition are nonimmune cells components of the tumor microenvironment 

that pose unique challenges for delivering therapies and overcoming developed resistance. 

Monocytes and monocyte-derived cells can shape many of these microenvironmental 

features, often in a manner that promotes tumor growth and failure of therapy (Murciano-

Goroff et al., 2020).  

 Malignancies alter the immune system's discriminating abilities, which are heavily 

influenced by host-pathogen interactions, and they benefit greatly from low antigenicity, PRR 

signaling with poor adjuvanticity, and a tumor microenvironment (TME) that resembles 

persistently inflamed and non-healing tissue (Tang et al., 2021). A TME with these 

characteristics is full of signals that encourage feedback inhibition processes and are 

detrimental to immune effector function. Like host-pathogen interactions, some aspects of 

this immune suppression might be "locked-in" and challenging to reverse. Tumors can limit 

anti-tumor immune responses in a variety of ways, including by altering adjuvanticity and 

antigenicity or by taking advantage of feedback inhibition (Petitprez et al., 2020). The 

significance of immunoediting and neo-antigens in cancer progression and immunotherapy 

response has been thoroughly established by seminal work in mice models and new genomic 

evidence from cancer patients (Liu et al., 2022). 

Prolonged/ Chronic inflammation is a hallmark of cancer. Whether this inflammation initiates 

tumorigenesis or supports tumor growth is context dependent, but ultimately the global 

immune landscape beyond the tumor becomes significantly altered during tumor progression 

(Sica et al.,). 

The tumor immunology field has focused heavily on local immune responses in the tumor 

microenvironment (TME), yet immunity is coordinated across tissues. For example, many 

myeloid cells are frequently replenished from hematopoietic precursors in the bone marrow, 

and critical T cell priming events typically occur in lymphoid tissues (Tiwari et al., 2022). 

The localized antitumor immune response cannot exist without continuous communication 

with the periphery. Furthermore, virtually every subset of immune cell has been implicated in 

cancer biology. Therefore, a thorough understanding of immune responses to cancer must 
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encompass all immune cell lineages across the peripheral immune system in addition to 

within the TME (Tang et al., 2016). (FIGURE 6). 

 

 

 

 

1.8. Inflammation and cancer 

 Inflammatory processes in the immune system , irrespective of its occurrence weather in the 

context of chronic inflammatory diseases or in the appearance of a tumor-elicited smoldering 

inflammation, this has a tremendous effect on the dynamic composition of the TME, to the 

extent that it shapes the plasticity of tumor cells and also stromal cells , thus leaving the 

situation with two major choices: anti-tumorigenic function of immunity which is the result 

of immune-surveillance and immunological sculpting of tumor heterogeneity , at the same 

time pro-tumorigenic function of immunity favors cancer by blocking anti-tumor immunity 

(Zhao et al., 2021). This leads to shaping of a TME which tilts towards a more tumor-

permissive state and exerts direct tumor -promoting signals and functions onto tumor stroma 

and malignant cells.  Cancer-associated inflammation can be induced at different time points 

 

Figure 6 Tumor Microenvironment. The TME is composed of cancer cells and heterogenous nonmalignant 

cells integrated in a complex extracellular matrix (ECM). The main cellular components of the TME are T 

lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), natural 

killer (NK) cells, tumor-associated neutrophils (TANs), and cancer-associated fibroblasts (CAFs). Immune 

cells play a key role in tumor cell growth and dissemination.  
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of tumor development (Greten and Grivennikov, 2019). It can precede carcinogenesis in form 

of autoimmunity or infection, can be induced by malignant cells or can be triggered by anti-

cancer therapy. Various cell intrinsic, host dependent or environmental factors can cause 

tumor-associated inflammation in different tumor types (Todoric et al., 2016). 

1.9. Effector myeloid cells in the tumor microenvironment and their 

function 

 Myeloid cells constitute the predominant cellular population in TME, Myeloid cells are the 

predominant population which establishes an immunosuppressive milieu and leads to tumor 

immune evasion, the diverse myeloid cell population particularly TAMs (Tumor Associated 

Macrophages) (Porta et al., 2018) , TANs (Tumor Associated Neutrophils), DCs (Dendritic 

cells), and MDSCs, contribute to tumor progression, enhanced angiogenesis, metastasis, and 

immunotherapy resistance (Krishnamoorthy et al., 2021). Myeloid cells have all the critical 

attributes of playing a regulatory role in tumor biology. Therefore, deciphering the role of the 

individual myeloid cell population in TME is essential for understanding immunotherapy 

resistance and failure and developing combinatorial therapeutic strategies in cancer 

(Aghamajidi et al., 2022). 

1.10. Cancer-induced phenotypical alterations in circulating monocytes. 

The most frequently reported cancer-induced phenotypical change in human peripheral blood 

monocytes is the acquisition of immunosuppressive activity. The distant tumor not only 

skews the differentiation path of myeloid progenitors in hematopoietic tissue, but it also 

influences the phenotype of circulating monocytes. This typically occurs concurrently with 

the downregulation of the MHC class II surface protein HLA-DR, an important mediator of 

antigen presentation that is highly expressed on monocytes in healthy individuals (Canè et al., 

2019). 

The concept that a pathological state of immune activation is a common feature associated 

with the emergence of MDSCs, pathological activation arises from persistent stimulation of 

the myeloid cell compartment owing to the prolonged presence of myeloid growth factors 

and inflammatory signals in the settings of cancer, chronic infections or inflammation, and 

autoimmune diseases (Gabrilovich and Nagaraj, 2009). Examples of such activating signals 

include cytokines and various growth factors like granulocyte–macrophage colony-

stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF; also known as 
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CSF1), IL-6, IL-1β, adenosine signaling or endoplasmic reticulum (ER) stress signaling 

(Veglia et al., 2021). 

1.11. Myeloid derived suppressor cells (MDSCs)  

1.11.1. Definition and Biological Dimension of MDSCs:  

The definition of myeloid-derived suppressor cells (MDSC) that best captures both their 

origin and function is that they are immature myeloid cells with the capacity to dampen 

adaptative immune responses. Aside from cancer patients and experimental animals, MDSC 

accumulations have also been observed in other pathological circumstances such 

chronic/acute infections, autoimmune illnesses, and various forms of immunological stress 

(Gimeno and Barquinero, 2011). In each of these circumstances, MDSC may fulfill their 

physiological function by modifying both innate and adaptive immune responses that are 

typical. There are several different ways that MDSC functions, but they all include either 

cell-to-cell interaction or the release of soluble substances (Veglia et al., 2021). 

The biological entity known as myeloid-derived suppressor cells (MDSCs) is one of the most 

spoken about in immunology. Although the context and classification of this type of cells 

have changed, MDSCs most frequently refer to cells that emerge during chronic 

inflammation, particularly late-stage malignancies, and are characterized by their 

immunosuppressive T cell activities. Although the MDSC idea has been useful in explaining 

myeloid phenomena linked to illness outcomes, it still lacks precise definitions and a 

paradigm that applies to all disorders (Scalea et al., 2018). Monocytic and granulocytic 

myeloid-derived suppressor cells (M-MDSCs and PMN-MDSCs, respectively) are the major 

myeloid populations associated with cancer development along with TAM (Millrud et al., 

2016).  

Although this MDSC idea has assisted in describing observed myeloid behaviors linked to 

disease outcome, efforts to distinguish MDSCs as discrete states, regulate them 

experimentally, and investigate their direct contribution to pathology have been impeded. 

MDSCs' primary characteristic, their immunosuppressive nature, does not set them apart 

from ordinary myeloid cells' immunoregulatory actions during inflammation (Dysthe and 

Parihar, 2020). 
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1.11.2. Phenotypes of MDSCs 

Since the discovery of MDSC, multiple molecular markers have been proposed to define the 

MDSC population, and HLA-DR− Lin low/− CD33+ CD11b+ label is commonly used for 

MDSC recognition, even though MDSCs are frequently referred to as a distinct population, 

their phenotypic definition is constantly changing. Human M-MDSCs have typically been 

described as CD11b+CD14+CD33+HLA-DRlow/neg, while G-MDSCs have typically been 

described as CD11b+CD15+HLA-DRlowCD66b+. Lin− (including CD3, CD14, CD15, 

CD19, CD56) HLA-DR− CD33+ cells is a mixed group of MDSC that tends to be more 

immature. And immature-MDSC (i-MDSC) or early-stage (e-MDSC) has been proposed to 

define these subsets. PMN-MDSC is phenotypically and morphologically similar to 

neutrophils (PMN), and the most abundant population of MDSC in most types of cancers. It 

is always a puzzle to distinctly differentiate the PMN-MDSC form PMN in cancer tissues. 

Strikingly, a recent study reported that lectin-type oxidized LDL receptor 1 (LOX-1) may 

serve as a specific marker of human PMN-MDSC and could be used to specifically identify 

PMN-MDSC (Bronte et al., 2016) (FIGURE 7) . 

                                                             

 

 

  

Figure 7 Myelopoiesis is altered under chronic inflammation. Under physiological conditions, 

hematopoietic progenitor cells (HPC) differentiate via common myeloid progenitor cells (CMP) into 

granulocyte/macrophage progenitor cells (GMP). These immature myeloid cells (IMC) further 

differentiate into monocytic/dendritic progenitor cells (MDP) or myeloblasts (MB) from which these 

cells further develop into dendritic cells (DCs)/macrophages or neutrophils, respectively. Under 

cancerous conditions, the tumor alters myelopoiesis in general and impairs further differentiation of 

progenitor cells, leading to the accumulation of monocytic myeloid-derived suppressor cells (M-

MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs)  
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1.11.3. Mechanisms of activity in cancer  

Immunosuppressive pathways are affected generally by MDSC’s, which promotes cancer 

growth and progression, MDSC’s shows its presence in abundance in bone marrow and 

peripheral circulation of patients in several cancer types including terminal cancers and are 

corelated with disease stage and outcome. T-cell proliferation is strongly inhibited by 

MDSC’s and patients with elevated MDSC’s tend to have worse prognoses, IFN-γ production 

were markedly reduced in these patients, and this suppression was partially reversed by L-

arginine or anti-TGFβ treatment. In gastrointestinal malignancies, upregulated plasma IL-6 

was found to be linked with CD33+HLA-DR−CD15+ MDSCs, while upregulated plasma IL-

10 was linked with CD33+HLA-DR−CD15− MDSCs, which are associated with worse 

prognosis; additionally, the percentages of CD15+ and CD15− cells were negatively linked 

with IFN-α-induced STAT1 phosphorylation in CD4+ T cells. MDSC-derived S100A8/A9 

interacts with RAGE and carboxylated glycans on colon cancer cells to facilitate activation of 

the MAPK/NF-κB axis, which promotes tumor growth and metastasis (Wu et al., 2022). 

MDSCs promoted hepatocellular carcinoma development and sensitization by inhibiting TLR 

ligand-induced IL-12 production in dendritic cells via generating IL-10 and suppressing T 

cell stimulatory activity in dendritic cells. Compared with controls, MDSCs are significantly 

elevated in pancreatic, esophageal, and gastric cancers; MDSC ratios, accompanied 

by arginase I and IL-13, are also correlated with an increased risk of death (Gao et al., 2022). 

In summary, MDSCs represent one of the many possible pathways used by tumors to create 

an immunosuppressive environment. (FIGURE 8). 
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Figure 8 Immunosuppressive functions of MDSCs in the tumor microenvironment. DCs: dendritic cells; TAM: 

tumor-associated macrophage; ER: endoplasmic reticulum; Arg-1: arginase 1; iNOS: inducible nitric oxide 

synthase; In the tumor microenvironment, MDSCs are exposed to hypoxic conditions. This leads to an increase 

in HIF-1α-mediated elevation of Arg1 and iNOS and upregulation of inhibitory PD-L1 on the MDSC surface, all 

of which can suppress T cell immune activity. It also produces IL-10 and TGF-β, etc., which attract Treg cells to 

the tumor site and enhance their immunosuppressive functions, while suppressing the functions of NK cells, and 

DCs. Adenosine from MDSCs is a further major NK suppressive factor.  
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1.11.4. Immune Stimulation and Antitumor Activity of MDSCs 

According to recent research, MDSCs can potentially operate as immunostimulants rather 

than just immunosuppressive, some studies have shown that the presence of MDSCs is not 

always associated with inhibited T cell function. When MDSCs are exposed to the 

appropriate cytokine milieu, they can develop immunostimulatory properties (Gao et al., 

2022). MDSCs could develop into cells that present antigens, as demonstrated by Bronte et 

al. Additionally, their research showed that suppressive MDSC's cells are transformed into 

stimulatory cells (with CD86 overexpression) in the presence of IFN-, TNF-, or IL-12, which 

increases the cytotoxic T lymphocyte response in vitro (Hofer et al., 2021).  

1.11.5. MDSC as a predictive and prognostic biomarker of ICI therapy in cancer 

patients 

 Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. 

Diverse clinical criteria have been proposed as predictive indications for ICI therapy due to 

the limited response rate of ICI therapy. Numerous clinical studies have demonstrated high 

level of MDSC to be positively correlated with poor prognosis in patients with cancer (Diaz-

Montero et al. 2014). Recently, MDSC have been suggested as a predictive biomarker for ICI 

therapy in certain types of cancer patients. 

Numerous studies have revealed that MDSCs increase PD-L1 expression to induce T-cell 

anergy through interacting with PD-1 on T cells. Tumor-infiltrating MDSCs always come 

with higher PD-L1 expression compared with their counterparts in the periphery, indicating 

their acclimatization in the hypoxic microenvironment. Interestingly, Cassetta et al. reported 

that in cancer patients, profound PD-L1 expression was restricted to M-MDSCs and e-

MDSCs, whereas LOX-1 expression was confined to PMN-MDSCs. Besides, MDSCs also 

express cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), although the specific 

regulating mechanism is unclear. Blocking CTLA-4 has been reported to dampen the 

accumulation of granulocytic MDSCs and reduce their arginase 1 (ARG1) production in the 

peripheral blood of patients with metastatic melanoma.  

Additionally, in preclinical models of melanoma, MDSCs have been shown to reduce the 

efficacy of anti-PD-1 and anti-CTLA4 therapies (Weber et al., 2018). MDSCs may be used as 

a prognostic marker for the efficacy of immunotherapy with ICIs. Meyer et al. show that 

MDSC frequencies in the peripheral blood of metastatic melanoma patients correlate with 

their response to ipilimumab, an anti-CTLA-4 antibody. Analysis of peripheral blood 
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mononuclear cells (PBMCs) via flow cytometry, before and during treatment with 

ipilimumab, indicated that patients with low frequencies of circulating M-MDSCs showed an 

improved clinical response to this therapy. Current research is focused on identifying a 

reliable and clinically relevant method to use MDSC frequency as a biomarker for the clinical 

response to ipilimumab in melanoma patients. In patients with advanced non-small-cell lung 

cancer (NSCLC), those who had progressive disease had higher percentages of PMN-MDSCs 

at baseline than those who showed a clinical response when treated with nivolumab, an anti-

PD-1 antibody (Li et al., 2021). These clinical observations suggest that MDSCs contribute to 

primary resistance to immunotherapy regardless of cancer type or ICI administered 

(Krishnamoorthy et al., 2021). 

The specific mechanisms of MDSC-mediated immunotherapy resistance in the previous 

studies were not explicitly stated; however, some studies have elucidated resistance 

mechanisms in their models. Gebhardt et al. demonstrated that in addition to elevated 

frequencies of MDSCs in the peripheral blood, MDSC activity was associated with poor 

clinical response in melanoma patients treated with ipilimumab. In this retrospective 

immune-monitoring study, a significant increase of M-MDSCs in the peripheral blood of 

non-responders was observed, while M-MDSC frequencies declined in responding patients 

compared to baseline values. This trend was observed after the first ipilimumab treatment in 

this cohort. In assessing the production of NO by MDSCs and concentration of S100A8/A9 

proteins in serum, non-responders displayed elevated levels of both molecules after the first 

infusion of ipilimumab compared with responders. As NO and S100A8/A9 are employed by 

MDSCs and actively suppress anti-tumor immunity, this may indicate a mechanism by which 

MDSCs confer resistance to ICIs (Blattner et al., 2018). 

As TGF-β signaling can amplify the immunosuppressive processes within the TME and 

beyond, these pathways also display a putative role in ICI resistance (Benjamin and Lyou, 

2021). In a study in which a subset of patients with urothelial cancer unresponsive to the ICI, 

anti-PD-L1, RNA sequencing revealed that TGF-β is associated with poor response. 

Specifically, these patients expressed a TGF-β-induced cancer-associated fibroblast gene 

signature that was associated with an immune-excluded tumor phenotype (Song et al., 2019). 

Using colon adenocarcinoma (MC38) and mammary (EMT6) mouse models, this study 

revealed that therapeutic blockade of TGF-β with antibodies promoted CD8+ T-cell 

inflammation and anti-tumor immunity, sensitizing tumors to PD-L1 therapy (Lan et al., 

2018). Evidence from another study using the MC38 mouse model revealed that anti-PD-1-
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resistant tumors exhibited reduced infiltration of effector T-cells and NK cells when treated 

with anti-PD-1 (Bernardo et al..). Mice displaying resistance were found to have active TGF-

β and Notch signaling. Inhibiting both pathways during treatment with anti-PD-1 decelerated 

tumor growth in resistant tumors (Denis et al., 2022). 

Specific evidence of MDSC-mediated immunotherapy resistance through TGF-β production 

has been demonstrated using a 4T1 mammary mouse model. TGF-β neutralization was 

shown to promote anti-tumor activity of T-cells co-cultured with MDSCs (Dyck et al., 2022). 

Moreover, the depletion of MDSCs diminished anti-tumor effects mediated by TGF-β 

neutralization. These data indicate that TGF-β plays a vital role in the immunosuppressive 

activity of MDSCs and may contribute to the poor response associated with ICIs. Evidence 

using preclinical models suggests that combining specific TGF-β inhibitors with ICIs can 

facilitate effector T-cell infiltration and reduce the immunosuppressive myeloid 

compartment. In turn, this stimulates anti-tumor immunity and mitigates ICI resistance 

(Jayaraman et al., 2018). 

1.11.6. Crosstalk between MDSCS and other immune cells 

Apart from T cells, MDSCs also deliver immune inhibition on other tumoricidal immune 

cells such as NK cells, DCs, and B cells (Sanaei et al., 2020). It was reported that membrane-

bound TGF-β1 on MDSCs contributed to suppressing the innate immune function of NK 

cells in mouse tumor models (Zalfa and Paust, 2021). Moreover, M-MDSCs from liver 

cancer patients were found to cause autologous NK cells anergy in vitro, mainly via the 

interaction of NKp30 receptor on NK cells with NKp30 ligand on MDSCs (Hoechst et al., 

2009). Additionally, PMN-MDSCs were reported to block antigen cross-presentation of DCs 

by transferring oxidized lipids from PMN-MDSCs to DCs in tumor-bearing mice (Ugolini et 

al.). 

MDSCs also can impair the function of B cells to suppress humoral immune responses, this 

was demonstrated on lung and breast cancer animal models (Wang et al., 2018) (Xu et al., 

2017) . MDSCs can incite other immune inhibitory cells such as Tregs and TAMs to facilitate 

immunosuppression. Macrophage is another accomplice of MDSCs (Fujimura et al., 2012). 

The cell–cell interactions between MDSCs and macrophages can elicit a type 2 tumor-

promoting immune response, which is mediated by elevated IL-10 production in MDSCs and 

downregulated IL-12 production in macrophages. Overall, MDSCs together with other 
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immune suppressive cells build an inhibitory network, crippling the cytotoxic effects on 

tumor cells (Kwak et al., 2020). (FIGURE 9) 

 

 

1.11.7. NON-IMMUNOLOGICAL FUNCTIONS OF MDSCS 

Other than the effects on immune responses, MDSCs also contribute to tumor progression via 

multiple non-immunological mechanisms such as supporting angiogenesis, promoting 

stemness of tumor cells, facilitating epithelial–mesenchymal transition (EMT) and pre-

metastatic niche formation (Murdoch et al., 2008).  

1.12. HEME-OXIGENASE -1 (HO-1) 

Endogenous iron protoporphyrin Heme is broken down by the enzyme heme oxygenase 

(HO), which catalyzes the reaction's rate-limiting step and generates ferrous ions, carbon 

monoxide (CO), and biliverdin (BV), whose reduction is carried out by biliverdin reductase 

and results in the synthesis of bilirubin (BR) (Tenhunen et al., 1968). In numerous 

pathological contexts, HO-1 displays important cytoprotective, anti-inflammatory, 

antioxidant, and antiapoptotic properties (Keyse and Tyrrell, 1989) (Petrache et al., 2000). 

 Catalytic heme degradation requires an electron donor, that is Nicotinamide adenine 

Figure 9 Crosstalk between MDSCs and other immune cells.  
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dinucleotide phosphate (NADPH) provided by P450 cytochrome reductase and oxygen 

(Applegate et al., 1991). 

HMOX-1 and HMOX2 are two different genes which encodes for HO-1 and HO-2 

respectively. Unlike HO-2 which is constitutive isoform expressed mainly in brain and testes, 

HO-1 is induced by variety of factors(Infante et al., 2010). This is a complex and dynamic 

cellular metabolism which is highly contextual and cell type specific. Among the most 

obvious advantage of HO-1 activity removal of free heme remains crucial because it is 

known to have pro-oxidant property, and it also regulates several transcriptional factors 

(Abraham, 1991) (Kietzmann et al., 2003). Moreover, heme can act as a damage -associated 

pattern (DAMP) and activate innate immune response (Murdoch et al., 2008) . 

Apart from this, as known hematopoietic system transport all the necessary nutrients to the 

whole organism and provides immunological protection. Blood cells in circulation have high 

turnover, which calls for a dynamic control of this system, also a broad conditional 

regeneration potential is a must have. This complex system is regulated by HO-1 and 

sometimes its by-products from degradation (Jeney et al., 2002). (FIGURE 10) 

1.12.1. Heme-degradation its by-products and their role  

CO - Among all the heme degradation products, CO seems to be the most important in 

regulating the immune system. CO reduces the production of pro-inflammatory cytokines, 

IL-1, IL-6, TNF- α, and expression of adhesion molecules. This also simultaneously increase 

the production of anti-inflammatory IL-10. In terms of signal transmission from certain TLRs 

(Toll like receptors) CO plays a role, and this is a very important factor as this mechanism is 

responsible for the initiation of immune response (Otterbein et al., 2000).  

Biliverdin- This is instantly converted to bilirubin-by-bilirubin reductase (BVR) and exhibits 

potent antixioxidant and anti-inflammatory factors. This is also an efficient scavenger of 

reactive oxygen species (ROS) and inhibits adhesion molecules signaling (Tenhunen et al., 

1968) (Jansen and Daiber, 2012) (Mazzone et al., 2009).  

Ferrous Ions- These can be considered harmful, however, the release of pro-oxidant 

Fe2+ ions induce the expression of ferritin, which apart from sequestering iron, also can have 

an anti-apoptotic effect. (Balla et al., 1992) (Walter-Nuno et al., 2018).  
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1.12.2. Role of HO-1 in regulation of innate immunity 

A lot of evidence concerning the role of HO-1 in the normal and disease conditions were 

reported after the generation of genetically modified mice that lack the expression of HO-1 

(HO-1−/−). HO-1−/− mice are affected by a chronic proinflammatory state and dysregulated 

iron homeostasis (Kapturczak et al., 2004). In the context of alloreactivity, it is demonstrated 

that HO-1 contributes to the immunosuppressive properties of myeloid cells (Kapturczak et 

al., 2004). The current knowledge about the role of HO-1 in the regulation of Innate 

immunity is limited and points to a more complex scenario from affecting the production and 

regulation of above-mentioned inflammatory mediators to innate immunity in the context of 

Figure 10 The oxidative degradation of heme by HO-1. In the first step of heme degradation, the ER membrane 

bound HO-1 interacts with the electron donor NADPH-cytochrome P450 reductase, and an oxygen molecule. 

The complex degrades heme to biliverdin, carbon monoxide (CO), and a ferrous iron (Fe2+). NADPH-biliverdin 

reductase competitively binds to HO-1 to reduce biliverdin to bilirubin, by using NADPH as an electron donor. 
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monocyte/macrophage lineage function (Cuitino et al., 2019). Studies have demonstrated that 

lack of HO-1 over activate pro-inflammatory phenotype of macrophages, the CO produced 

by HO-1 stimulates the production of IL-10 by macrophages, and this IL-10 in turn 

upregulates the HO-1 expression (Kietzmann et al., 2003). This indicates the presence of a 

positive feedback mechanism and emphasizes the importance of HO-1 in anti-inflammatory 

function of IL-10 (Kapturczak et al., 2004). 

1.12.3. HO-1 in monocyte/macrophage lineage. 

The role of HO-1 in monocyte/macrophage lineage is not limited to the regulation of the 

function of mature macrophages. Recent study evidenced that HO-1 is involved in the 

maturation of the myeloid cells from hematopoietic stem and progenitor cells. The specific 

deletion of HO-1 in myeloid lineage (LysMCre/+Hmox1fl/fl) reduced the differentiation of 

myeloid progenitors toward macrophages (Wegiel et al., 2014). It was shown that CO, 

produced by HO-1, stimulates the differentiation of myeloid progenitors to macrophages, 

increases CD14 on their surface and enhances sensitivity to M-CSF (macrophage colony-

stimulating factor) stimulation (Wegiel et al., 2014). The importance of HO-1 already in early 

differentiation steps of myeloid development was further confirmed by its role in myeloid-

derived suppressor cells (MDSC). HO-1 was crucial for the immunosuppressive function of 

MDSC population in the IL-10-dependent manner (Condamine and Gabrilovich, 2011) . 

As discussed and defined in earlier sections immunological stresses skews the myelopoietic 

output through emergency myelopoiesis, and this leads to generation of different myeloid 

populations endowed with pro-tumorigenic activities and to add to this in a clinical as well as 

biological point of view these population of immature cells and differentially 

programmed/adapted normal myeloid cells also hinders the activity of ICI’s and limit their 

effect in the treatment of cancer (Stewart and Smyth, 2011). One example among this is 

TAM which represents final commitment of pro-tumoral reprogramming of myeloid lineage 

(Consonni et al., 2021) . The pro-tumoral functions of these cells are boosted by 

heterogenous (cancer specific, therapy induced, TME signals directed etc.) myeloid subsets 

and co-operatively fulfilled (Sica et al.).  

As reported by A. Sica et., al transcription factors such as cEBPβ and RORγ (Rorc) regulate 

emergency myelopoiesis and contribute to the heterogeneous expansion of suppressive 

myeloid populations, nuclear factor-κB1 (NF-κB1, also known as p50) stimulates neutrophil 

production by induction of c/EBPα and promotes resolution of inflammation by diversion of 



41 | P a g e  
 

monocytes/macrophages toward a resolving anti-inflammatory M2-like phenotype. However, 

even though the resolution phase of acute inflammatory response is crucial for tissue 

homeostasis and is supported by an adaptation of hematopoietic output to inflammatory 

insults, no information is yet available on the mechanisms linking altered myelopoiesis to 

macrophage shift toward an alternative M2-polarized state, as observed in persistent 

infections and cancer (Gordon and Plüddemann, 2019). 

1.13. The complement system as a regulator of tumor-promoting activities 

mediated by myeloid-derived suppressor cells. (CD5aR1/ CD88). 

Existing and accumulating new evidence suggest that the complement system plays a major 

role in regulation of TME. Cancer cells along with the optimization of complement mediated 

functions remodel the TME and facilitate the tumor progression, metastasis, and evasion of 

immune system (Thurman et al., 2020) . Complement system a crucial player of innate 

immune response represents the first line of defense against harmful entities. The system 

compromises a set of more than 50 soluble membrane bound proteins, which are organized in 

independent but interactive networks (Zhang et al., 2019). To prevent damage to host tissues, 

complement is tightly controlled by fluid-phase and cell surface regulators. Defective or 

deregulated complement activation is associated with cancer. The enzymatic cleavage 

associated with complement activation leads to the production and release of a range of 

bioactive fragments, including C3a, C5a, C3b and C4b. Binding of the anaphylatoxins C3a 

and C5a to their respective cognate seven transmembrane domain receptors, C3a receptor 

(C3aR), C5a receptor 1 (C5aR1; CD88) or C5a receptor 2 (C5aR2; C5L2), plays a critical 

role in inflammation and immunomodulation (Thurman et al., 2020) (Wang et al., 2019). 

C5a have been shown to inhibit antitumor response mediate CD4 T cells CD8 T cells or NK 

cells (FIGURE 11). With these premises it is crucial to evaluate the intracellular activity of 

C5a, since C5a/ C5aR signaling promotes tumorigenesis through variety of mechanisms, 

including β-catenin stabilization (Melero et al., 2014) . One study reported that melanoma 

was reduced in C5aR1 deficient mice, but this is largely unexplored are and additional studies 

are required to understand the underlying complex mechanisms (“C5a receptors C5aR1 and 

C5aR2 mediate opposing pathologies in a mouse model of melanoma,” n.d.).  

In a syngeneic model of metastatic breast cancer C5aR1 promoted angiogenesis and 

suppressed effector CD8 and DC4 T-cell response in the lungs (Vadrevu et al., 2014). The 

most astonishing aspect of this the mechanism of this suppression which involved the 
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recruitment of immature Myeloid cells, this connects the dot between tumor induced 

emergency myelopoiesis and skewed pro-tumorigenic immune landscape (Wang et al., 2019). 

Genetic abrogation of C5aR1 impaired M2-polarized TAMs, leading to a decrease of liver 

and lung metastases from colon cancer cells. Similarly, C5aR1 signaling activated a 

CXCL16-mediated osteoclastogenic program to sustain the osseous metastatic colonization 

of lung tumors. To sum up C5a/C5aR1 axis is involved in the distribution of MDSCs in the 

TME (Senent et al., 2022). Based on several evidence, a clinical trial was launched to 

evaluate the efficacy of the combined blockade of C5aR1 and PD-L1 in patients with solid 

tumors (Ajona et al., 2017).  

Finally Complement-related biomarkers, such as circulating C5a or intratumorally 

C5a/C5aR1 levels, or C5aR1 levels on myeloid cells, may aid to identify those patients more 

likely to benefit from the ICI’s and combination treatment. 

 

 

 

 

 

 

 

 

Figure 11 Complement system C5a/C5aR1 control the tumor microenvironment. Tumor cells actively promote 

complement activation by several mechanisms. Cancer cells also produced complement proteins, such as C5, 

which fuels local activation. Cancer cells can also release proteases, such as cathepsin L, which directly activate 

complement proteins. Complement activation within tumors likely causes apoptosis and necrosis of some target 

cells, but it also produces C3a and C5a which recruit inhibitory myeloid cells into the tumor microenvironment. 

These myeloid cells suppress the anti-tumor function of CD4 and CD8 T cells. 
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1.14. Cancer And Metabolism  

As addressed in preclinical models challenged with hematopoietic stresses and metabolic 

influence has been shown to alter host metabolism, for example in the obese patients (Sica et 

al.). Indeed, obesity-induced chronic inflammation is a key component in the pathogenesis of 

both insulin resistance and metabolic syndrome and is characterized by continuous 

production of proinflammatory cytokines that can lead to significant alteration in HSCs 

function and output, ultimately leading to a skewed hematopoiesis, which might favor the 

pro-tumorigenic functions or alter the therapeutic outcomes to worse (Giles et al., 2016). 

Failure to efficiently resolve inflammatory insults can have serious consequences for tissue 

maintenance and function. Indeed, in the context of chronic inflammation due to metabolic 

diseases such as obesity and type 2 diabetes, the inflammatory stress fails to resolve, leading 

to a persistent inflammatory state. Parallelly diabetes negatively impacts the mobilization 

capacity of HSCs by altering chemokine expression in the BM niche. Obesity, presence of 

high levels of Insulin are only the few examples which favors the adverse outcome in the 

patient treated for several cancer types. There are emerging recent evidence that patients with 

higher Body Mass Index (BMI) have an improved outcome if treated with immunotherapy 

for advanced tumors (Bolton et al., 2019). This evidence indeed gives an indication that 

immune system, its targeting by cancer immunotherapy and patient metabolic status are all 

inter-connected (Sica et al.).  

1.15. Existing and potential investigational liquid biomarkers in cancer and 

immunotherapy  

It has become increasingly evident that the host immune response is critical in determining 

the magnitude of benefit from immunotherapy. Thus, multiple studies have examined routine 

blood-based parameters with response to immunotherapy (Arora et al., 2019). These blood-

based parameters include absolute neutrophil counts (ANC), absolute or relative lymphocyte 

counts, total leucocyte counts, neutrophil-to-lymphocyte ratio (NLR), absolute or relative 

eosinophil counts, relative basophils, absolute monocyte counts (AMC), serum lactate 

dehydrogenase (LDH), and C-reactive protein (Arora et al., 2019) (Sankar et al., 2022).  

Elevated leukocyte dehydrogenase (LDH) levels at baseline can indicate high tumor burden 

and have been shown to correlate with low response rate to immunotherapy such as 
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pembrolizumab (Wu et al., 2021). The overall response rate (ORR) to pembrolizumab in 

melanoma was noted to be 26% for patients with high LDH levels as compared to 40% in a 

general study patient population (Forkasiewicz et al., 2020). Similarly, response rates were 

40% when LDH was in the normal range, 34% when LDH was up to 2 times the upper 

normal limit, and 8% when LDH is elevated over 2 times the upper normal limit in a first-line 

setting (Miao et al., 2013). 
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2. Materials and Methods 

2.1. Study design and patients 

This project is a mono-center, observational study that involves patients coming from the 

Hospital ‘Maggiore della Carità’, Novara, Italy.  

Peripheral whole blood samples were collected from patients, who were eligible for ICIs 

therapy. 126 patients have been recruited so far. Informed consent was signed before the 

recruitment and the following inclusion/exclusion criteria was followed.  

Inclusion criteria:  

• Patients aged ≥ 18 years. 

 • Patients with a diagnosis of an advanced stage solid tumor (lung, melanoma, head and 

neck, renal).  

• Patients who are candidates for immunotherapy with anti PD1 or anti PD-L1 or anti CTLA4 

in any line of therapy for advanced disease, either alone or in combination with 

chemotherapy; other chemo-immunotherapy regimens could be included when available in 

clinical practice.  

• Patients able to sign informed consent.  

Exclusion criteria: 

 • Patients in psychological, family, social and geographical conditions that they could 

contraindicate compliance and adherence to proposed therapies. 

• Pregnant patients 

. • Patients that already received ICIs 

. • Patients with blood tests non compatible with the treatment. 

 141 patients were screened through the collection of whole blood at baseline. 

2.2. Blood Sample collection and processing  

Whole blood samples were collected from patients diagnosed with advanced-stage cancers. 

20 mL of peripheral blood were collected for each patient in 10 mL K2 or K3 potassium salt 

of EDTA (Ethylene Diamine Tetra Acetic acid) Vacutainer and were processed within 4 



46 | P a g e  
 

hours after collection. Each blood sample was diluted in a 50 mL falcon tube with 20 mL 

physiological solution, and then 15 mL of cell separation media (Ficoll-Paque Lympholyte, 

Cedarlane, Canada) was added. The tube was then centrifuged for 20 min at 800 xg without 

any application of brake. Peripheral blood mononuclear cells (PBMCs) were collected from 

the interphase between diluted plasma and cell separation media and washed twice by 

centrifugation at 400gx in physiological solution in the appropriate volume, and the pellet of 

PBMC was collected. (Figure 12). 

2.3.  Cells Staining and Flow cytometry. 

2.3.1. Myeloid Derived Suppressor cells: MDSC’S  

Fresh PBMCs were incubated with antibodies (Table 1) in pre-defined concentration and 

volumes for 15 minutes at room temperature and dark conditions. After a standard wash step 

by centrifugation, cells were resuspended in 200ul of staining buffer (2%FBS, 98% PBS 1X) 

and immediately acquired by Flow Cytometer (BD FACSymphony™ A5 Cell Analyzer, 

Milan, Italy) and the data were collected for analysis.  

MDSC subpopulation phenotypes among lymphomonocyte gate (CD45+) were defined as 

follows:  

 M-MDSC: HLA-DR−/low CD33+ CD15− CD14+ 

 PMN-MDSC: HLA-DR−/low CD33int CD15+ CD14−. 

 e-MDSC: HLA-DR−/low CD33int CD15− CD14− 

 

 

 

 

 

 

 

 
Table 1 Antibodies, respective fluorophore, quantity used for identification of MDSCs.  
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2.3.2. Phenotyping Peripheral Blood monocyte subsets and measuring expression levels 

of intracellular Heme-oxygenase-1 and surface C5aR1/CD88: 

Previously cryopreserved PBMC’s were thawed in pre-warmed complete RPMI-1640 

medium. Standard washing procedures were done, and cells were counted for vaibality in 

Burker chamber by diluting 1:10 with Turk solution. 

Staining and Flow cytometry: 

Cells were incubated with ZombieAqua solution for 20 minutes for live/dead cell 

discrimination. Then it was added with the listed antibodies for flow cytometry analysis: 

(Table 2) 

Cells were incubated for pre-defined time period and in optimal conditions. standard wash 

steps were followed at the end of incubation. Cells were then incubated for 20 minutes on ice 

with BD Cytofix/Cytoperm solution (BD Bioscence, Milan, Italy), to permeabilize the 

membrane for the staining with intracellular heme-oxygenase-1. Finally, the HO-1 antibody 

(Prodotti Gianni Corp, Milano, Italy) was added to the solution with cells and incubated on 

ice for 30 minutes. After the incubation, the cells ware washed in BD Permeabilization buffer 

1X, resuspended in 200uL of staining buffer and acquired Flow Cytometer (BD 

FACSymphony™ A5 Cell Analyzer, Milan, Italy).  

Peripheral Blood monocyte subsets (Lineage negative) were phenotyped and gated as 

follows. 

Classical monocytes (CD14++ CD16−),  

Non-classical monocyte (CD14-CD16+) and  

Intermediate monocytes (CD14+CD16+). 

Geometric Mean Fluorescence Intensity (gMFI) was used to measure the expression of HO-1 

and CD88, in all the three monocyte subsets. 
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Table 2 Antibodies, respective fluorophore, quantity used for identification of monocyte subsets, expression 

of HO-1 and CD88.  

Figure 12: A schematic representation of workflow included in the study. 
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2.4. Blood Count Biomarker evaluation and quantification   

Peripheral complete blood count was performed at baseline, and the absolute number of 

lymphocytes, platelets, monocytes and neutrophils determined to quantify absolute values of 

LMR, PLR, NLR, dNLR, NWR, SII as follows:  

• LMR (lymphocyte monocyte ratio) was calculated by dividing the absolute lymphocyte 

value by the absolute monocyte value. 

 • NLR (Neutrophil Lymphocyte ratio) was calculated by dividing the absolute neutrophil 

value by the absolute lymphocyte value.  

• PLR (Platelet lymphocyte ratio) was calculated by dividing the absolute platelet vale by the 

absolute lymphocyte value.  

•  dNLR (derived neutrophil lymphocyte ration) was calculated by dividing absolute 

neutrophil value by total white blood cells minus neutrophils. 

• NWR (neutrophils to white blood cells ratio) was calculated by dividing absolute neutrophil 

value by total white blood cells value. 

• SII (Systemic inflammation index) was calculated as (N×P)/L (N, P and L represent 

neutrophil counts, platelet counts and lymphocyte counts, respectively). 

The other clinical parameters like cholesterol (LDL, HDL), Tri-acyl glycerol (TAG) , 

carboxy hemoglobin (COHb), glucose levels , body mass index , smoking status , ECOG 

scores were derived from the patient clinical profile at baseline of ICI therapy .  

2.5. Statistics and Survival Data Analysis  

Data were presented as mean, standard deviation (SD) and Standard Error of Mean (SEM). 

For statistical purposes, baseline characteristics were defined as categorical variables and 

reported as values and percentages. Statistical analysis was performed using Either one-way 

ANOVA or a Kruskal–Wallis test was used to compare multiple groups. A two-tailed, 

unpaired Student’s t-test was used to compare unmatched groups with Gaussian distribution. 

A Mann–Whitney U-test was used in cases of non-Gaussian distribution. Flow cytometry 

Data was analyzed using BD FACSDiva v9.0 and FlowJo™ v10.8. Association of 

biomarkers with survival was tested by Kaplan-Meier model in the univariate approach using 
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Graph Pad prism V.7. Hazard ratio relative to a variation per unit of the scale was calculated, 

together with 95% confidence interval and associated P value.  

2.6. Images 

Bio render online platform was used to create images for introduction and materials and 

methods.  
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3. Results 

3.1. Baseline characteristics and clinical predictors of advanced cancer 

patients treated with immune checkpoint inhibitors.  

The present study enrolled a total of 126 patients undergoing immune checkpoint therapy for 

advanced solid tumors over the period between 03/2020-05/2022. Among which (n=89;71%), 

(n=13;10%), (n=14;11%), (n=10; 8%) were diagnosed with advanced lung cancer, 

melanoma, head and neck cancer, and renal cell carcinoma respectively. (Table 3 to Table 6) 

Clinical outcomes analyzed were OS and PFS. OS was defined as the time from 

randomization or initiation of treatment until death from any cause. PFS was defined as the 

time from randomization or initiation of treatment to first progression or death from any 

cause. The median overall survival rate (OS) and progression-free survival rate for the patient 

undergoing immune checkpoint inhibitor therapy were postulated using Kaplan Meier 

survival analysis. The median OS and PFS for lung cancer patients after the initiation of 

therapy were 22.2 months and 7.9 months respectively. In melanoma median OS and PFS 

rates were 5.3 months and 3.9 months respectively. In Head and neck cancer OS and PFS 

rates were 6.7 months and 3.3 months respectively, and in Renal cell carcinoma, median OS 

was not reached at the end of the study (16.3 months) more than 50% of patients were either 

alive or censored and hence OS remains undefined whereas PFS rate among patients was 6.7 

months. Different clinical characteristics of patients are shown separately based on cancer 

type from Table 3 to Table 6. The median age for advanced lung cancer patients, melanoma 

patients, advanced head and neck cancer patients, and advanced renal cell carcinoma were 

69.4 (37.6-88.7) years ,73.1(35-87) years, 63.6 (53.4-87) years,70.2 (49.8-78.8) years 

respectively. Among which 71.6%(n=63) were male and 28.4%(n=25) were female for lung 

cancer, 69.2%(n=9) were male and 30.7%(n=4) were female for melanoma, 85.7% (n=12) 

were male and 14.2% (n=2) were female for head and neck cancer, and 50%(n=5) were male 

and 50% (n=5) were female for renal cell carcinoma 

3.2. Univariate Cox proportional hazard analysis of clinical characteristics  

3.2.1. Smoking status:  

Among lung cancer patients 10.2% (n=9), 70.4% (n=63), and 19.3% (n=17) were non, 

former, and active smokers respectively, in patients with melanoma 30.7% (n=4), 30.7% 

(n=4), 7.6% (n=1), were non, former and active smokers respectively, In head and neck 
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cancer patients 21.4% (n=3), 50% (n=7), 28.5% (n=4) were non, former and active smokers 

respectively, in renal cell carcinoma 50% (n=10), 30% (n=3), 20% (n=2) were non, former 

and active smokers respectively. Survival curves were derived using Kaplan Meier survival 

analysis for OS and PFS even though there was a difference in both OS and PFS between the 

three groups there was no statistical significance established. 

3.2.2. ECOG Performance status:  

We have compared the PFS, and OS of patients stratified by ECOG status. In lung cancer, 

melanoma, and head and neck cancer we observed a comparatively short PFS in those with 

higher ECOG status and this finding reflected on the OS except for head and neck cancer, the 

statistics are shown in (Table 3 to Table 6) and survival curves are shown in (Figure 13).  

3.2.3. Therapy:  

As shown in Tables 3 to 6, among the lung cancer patients, anti-PD-1/PD-L1 immunotherapy 

was given to 60.6 %/37.0%, whereas anti-CTLA-4 was used in 2.2% of patients, while 64.0% 

of patients were previously chemotherapy-treated group and 36% had no previous 

chemotherapy status. In melanoma patients, anti-PD-1/PD-L1 immunotherapy was given to 

84.6%/15.3%, while no patients had a history of chemotherapy, for head and neck cancer 

patients, 100% patients were treated with anti-PD-1 immunotherapy, while 42.8% of patients 

were previously chemotherapy-treated group and 57.1% had no previous chemotherapy. In 

renal cell carcinoma patients, anti-PD-1 immunotherapy was given to 100%, while no 

patients were among the previously chemotherapy-treated group. There was no statistical 

significance found between the patients with previous chemotherapy status, both in terms of 

OS and PFS.  

3.2.4. Body Mass Index: 

 With regards to BMI values, in this study, we stratified the BMI value into high BMI group 

and low BMI group by cutoff value (summarized in Table 3 to Table 6), which was obtained 

by median value independently for each cancer type. We analyzed Cox Proportional hazard 

ratios (HRs) with 95% confidence intervals for OS and PFS. In the analysis comparing 

survival differences between patients with high BMI and those with low BMI, no statistically 

significant difference in both OS and PFS patients treated with ICIs therapy was found, in 

any of the advanced cancer types. 

 



53 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Baseline clinical characteristics of patients with advanced lung cancer treated with ICI’s. n: number, %: percentage, BMI: 

Body mass index, ICI: immune checkpoint Inhibitor, OS: overall survival, PFS: Progression free survival, HR: Hazard ratio, 95% 

CI: 95% confidence interval, Y: years, PD-1: Programmed Cell Death Protein 1, PD-L1: Programmed Cell Death ligand 1, CTLA-

4: Cytotoxic T-lymphocyte-associated protein 4. Significant p-Values are represented in bold.  
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Table 4: Baseline clinical characteristics of patients with melanoma treated with ICI’s. n: number, %: percentage, BMI: Body 

mass index, ICI: immune checkpoint Inhibitor, OS: overall survival, PFS: Progression free survival, HR: Hazard ratio, 95% CI: 

95% confidence interval, Y: years, PD-1: Programmed Cell Death Protein 1, PD-L1: Programmed Cell Death ligand 1, CTLA-4: 

Cytotoxic T-lymphocyte-associated protein 4. Significant p-Values are represented in bold.  
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Table 5: Baseline clinical characteristics of patients with advanced head and neck cancer treated with ICI’s. n: number, %: 

percentage, BMI: Body mass index, ICI: immune checkpoint Inhibitor, OS: overall survival, PFS: Progression free survival, HR: 

Hazard ratio, 95% CI: 95% confidence interval, Y: years, PD-1: Programmed Cell Death Protein 1, PD-L1: Programmed Cell 

Death ligand 1, CTLA-4: Cytotoxic T-lymphocyte-associated protein 4. Significant p-Values are represented in bold.  
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Table 6: Baseline clinical characteristics of patients with advanced renal cell carcinoma treated with ICIs. n: number, %: 

percentage, BMI: Body mass index, ICI: immune checkpoint Inhibitor, OS: overall survival, PFS: Progression-free survival, HR: 

Hazard ratio, 95% CI: 95% confidence interval, Y: years, PD-1: Programmed Cell Death Protein 1, PD-L1: Programmed Cell 

Death ligand 1, CTLA-4: Cytotoxic T-lymphocyte-associated protein 4. Significant p-Values are represented in bold.  
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Figure 13: Kaplan-Meier Survival Curves with 95% CI for Overall Survival (OS; a, b,) and Progression-Free 

Survival (PFS; c,d, e) of advanced Lung Cancer, head and neck and melanoma Patients treated With ICI’s. Time is 

represented in months at baseline. (a) (OS; advanced lung cancer patient) and (b) (OS; melanoma patients) (c,d,e ) 

(PFS; advanced head and neck cancer , advanced lung cancer patient and melanoma patient respectively) , patients 

are stratified by ECOG score 0, 1 and 2 .Blue line represents ECOG;0 Red line represents ECOG;1 and Green line 

represents ECOG;2 . Dotted lines represent upper and lower limit of 95% CI (Confidence Interval) . Results are 

from univariable cox proportional Hazard model. (ECOG; Eastern Cooperative Oncology Group status). 
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3.2.5. Serum lipids and Glucose:  

Cox Proportional hazard ratios (HRs) with 95% confidence intervals for the association 

between the serum biomarkers and ICI therapy outcome (OS and PFS ) among the study 

population at the time of the end of the study are displayed at (Table 7-10), the patients were 

divided into low and high-value groups based upon cut-off value (median value) 

individualized for each cancer type for, Total cholesterol, low-density lipoprotein (LDL), 

high-density lipoprotein (HDL), triacylglyceride (TAG), and glucose levels, no statistically 

significant difference in both OS and PFS after receiving ICIs therapy was found, in any of 

the advanced cancer types for total cholesterol, LDL, HDL, TAG and Glucose levels (Table 

7-10). 

3.2.6. Carboxyhaemoglobin (COHb): 

The circulation levels of CO (measured as COHb) that is majorly derived from HO-1 

catalyzed heme metabolism, were obtained for all the patients included in the study, the cut-

off values were defined as median levels (in%) among individual advanced cancer type 

(Table 7-10), no statistically significant difference in both OS and PFS was observed for 

COHb levels (Table 7-10). 

 

 

 

Table 7: Represents baseline lipoproteins HDL, LDL, TAG and total cholesterol levels, COHb levels and glucose 

levels of advanced lung cancer patients treated with ICI’S. OS; overall survival PFS; progression free survival, 

ICI’S; Immune checkpoint inhibitors.  Results are from univariable cox proportional Hazard model. Significant p-

Values are represented in bold.    
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Table 8: Represents baseline lipoproteins HDL, LDL, TAG and total cholesterol levels, COHb levels and glucose 

levels of melanoma patients treated with ICI’S. OS; overall survival PFS; progression free survival, ICI’S; Immune 

checkpoint inhibitors. Results are from univariable cox proportional Hazard model. Significant p-Values are 

represented in bold.   

Table 9: Represents baseline lipoproteins HDL, LDL, TAG and total cholesterol levels, COHb levels and glucose 

levels of advanced head and neck cancer patients treated with ICI’S. OS; overall survival PFS; progression free 

survival, ICI’S; Immune checkpoint inhibitors. Results are from univariable cox proportional Hazard model. 

Significant p-Values are represented in bold.   
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3.2.7. Baseline Peripheral blood count biomarkers are associated with therapy 

outcomes in advanced cancer patients treated with ICIs:  

To identify peripheral blood biomarker candidates for advanced cancer patients treated with 

ICIs, we examined nine peripheral blood parameters, measured at treatment initiation or 

baseline (Table 11-14). Univariable Cox proportional hazard analysis of these factors 

revealed that in lung cancer ANC of 5.64x103/uL or higher was associated with poor OS 

(HR = 0.52, 95% CI: 0.26-1.02, p = 0.0488), NLR of 4.38 or higher was associated with poor 

OS (HR = 0.45, 95% CI: 0.23-.0.88, p = 0.0172). dNLR of 2.58 or higher was associated with 

poor OS (HR = 0.45, 95% CI: 0.23-.0.88, p = 0.0156) and PFS (HR = 0.57, 95% CI: 0.34-

0.95, p = 0.0204). SII of 1227 or higher was associated with poor OS (HR = 0.38, 95% CI: 

0.19-0.73, p = 0.0055) and PFS (HR = 0.61, 95% CI: 0.37-1.01, p = 0.0486). In contrast, a 

trend toward a better OS (HR = 2.91, 95% CI: 1.51-5.61, p = 0.0033) and PFS (HR = 1.18, 

95% CI: 1.12-2.98, p = 0.0158) was apparent in patients with an LMR of 2.45. (Table 11) 

(Figure 14).In patients with melanoma an NWR of 0.68 or higher was associated with poor 

Table 10: Represents baseline lipoproteins HDL, LDL, TAG and total cholesterol levels, COHb levels, and 

glucose levels of advanced renal cell carcinoma patients treated with ICI’S. OS; overall survival PFS; progression-

free survival, ICI’S; Immune checkpoint inhibitors. Results are from the univariable cox proportional Hazard 

model. Significant p-Values are represented in bold.   
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PFS (HR = 0.24, 95% CI: 0.05-1.12, p = 0.0208), an NLR of 3.3 or higher was associated 

with poor PFS (HR = 0.24, 95% CI: 0.05-1.12, p = 0.0208, a dNLR of 2.58 or higher was 

associated with poor PFS (HR = 0.21, 95% CI: 0.05-0.89, p = 0.0248), a PLR of 178.2 or 

higher was associated with poor PFS (HR = 0.14, 95% CI: 0.06-1.11, p = 0.019). On the 

contrary, no parameter showed any statistically significant effect on OS. (Table 12) (Figure 

15). In patients with advanced Head and neck cancer ALC of 1.47x103/uL or higher was 

associated with better PFS (HR = 2.7, 95% CI: 0.84-9.21, p = 0.0337), an NWR of 0.66 or 

higher was associated with better PFS (HR = 2.7, 95% CI: 0.88-8.44, p = 0.0391). No 

parameter showed any statistical significance for OS. (Table 13) (Figure 16). In a patient 

with advanced Renal cell carcinoma, none of the nine-parameter analyzed has shown a 

statistically significant effect on both OS and PFS. (Table 15). 

 

 

 

 

 

 

 

 

 

Table 11: Summarizes the blood count-based biomarkers in advanced lung cancer patients treated with ICIs. OS; overall survival 

PFS; progression-free survival ICI’S; Immune checkpoint inhibitors. Results are from the univariable cox proportional Hazard 

model. Significant p-Values are represented in bold.    
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Table 12: Summarizes the blood count-based biomarkers in melanoma patients treated with ICIs. OS; overall survival PFS; 

progression-free survival ICI’S; Immune checkpoint inhibitors. Results are from the univariable cox proportional Hazard model. 

Significant p-Values are represented in bold.    

Table 13: Summarizes the blood count-based biomarkers in advanced head and neck cancer patients treated with ICIs. OS; 

overall survival PFS; progression-free survival ICI’S; Immune checkpoint inhibitors. Results are from the univariable cox 

proportional Hazard model. Significant p-Values are represented in bold.    
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Table 14: Summarizes the blood count-based biomarkers in advanced renal cell carcinoma patients treated with ICIs. OS; 

overall survival PFS; progression-free survival ICI’S; Immune checkpoint inhibitors. Results are from the univariable cox 

proportional Hazard model. Significant p-Values are represented in bold.    



64 | P a g e  
 

 

   

 

 

 

 

 

 

 

 

 

 

  

Figure 14: Kaplan-Meier Survival Curves with 95% CI for Overall survival (OS; a,b,c,d,e) Progression-Free Survival (PFS; 

f,g,h) of advanced lung cancer Patients treated With ICIs. Time is represented in months at baseline. (a) OS; ANC > 5.15 

X103/µL (red line) v/s ANC < 5.15 X103/µL(blue line) , (b) OS; NLR > 4.38 (red line) v/s NLR < 4.38 (blue line), (c) OS; dNLR 

> 2.58 (red line) v/s dNLR < 2.58 (blue line) (d) OS; LMR > 2.88 (red line) v/s LMR < 2.88 (blue line) (e) OS; SII > 1115.7 ( red 

line) v/s SII< 1115.7 (blue line) (f) PFS; dNLR > 2.58 (red line) v/s dNLR < 2.58 (blue line) (g) PFS; LMR > 2.88 (red line) v/s 

LMR < 2.88 (blue line) (h) PFS; SII > 1115.7 (red line) v/s SII< 1115.7 (blue line) . The dotted lines represent the upper and 

lower limit of 95% CI (Confidence Interval). Results are from the univariable cox proportional Hazard model. (NWR; Neutrophil 

to white blood cell ratio, NLR; Neutrophil to lymphocyte ratio, dNLR; Derived Neutrophil to lymphocyte ratio, LMR; 

Lymphocyte to monocyte ratio, SII, Systemic Inflammatory Index, OS; overall survival PFS; progression-free survival). 
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Figure 15: Kaplan-Meier Survival Curves with 95% CI for Progression-Free Survival (PFS; a,b,c,d) of melanoma Patients 

treated With ICIs. Time is represented in months at baseline. (a) PFS; NWR > 0.68 (red line) v/s NWR < 0.68 (blue line), 

(b) PFS; NLR > 3.3 (red line) v/s NLR < 3.3 (blue line), (c) PFS; dNLR > 2.2 (red line) v/s dNLR < 2.2 (blue line) (d) PFS; 

PLR > 178.2 (red line) v/s PLR < 178.2 (blue line) . The dotted lines represent upper and lower limits of 95% CI 

(Confidence Interval). Results are from the univariable cox proportional Hazard model. (NWR; Neutrophil to white blood 

cell ratio, NLR; Neutrophil to lymphocyte ratio, dNLR; Derived Neutrophil to lymphocyte ratio, PLR; Platelet to 

lymphocyte ratio, OS; overall survival PFS; progression-free survival). 

Figure 16: Kaplan-Meier Survival Curves with 95% CI for Progression-Free Survival (PFS; a,b) of advanced head and neck 

Patients treated With ICI’s. Time is represented in months at baseline. (a) PFS; ALC > 1.47X10
3
/µL (red line) v/s ALC < 

1.47X10
3
/µL (blue line) and (b) PFS; NWR > 0.66 (red line) v/s NWR < 0.66 (blue line). The dotted lines represent the upper 

and lower limit of 95% CI (Confidence Interval). Results are from the univariable cox proportional Hazard model. (ALC; 

absolute lymphocyte count NWR; Neutrophil to white blood cell ratio, PFS; progression-free survival). 
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3.3. Identification of MDSCs in Peripheral Blood of advanced cancer 

patients. 

A panel of seven markers and nine parameters were used to phenotype the population of 

MDSCs using flow cytometry which was sub-categorized as Mo-MDSCs, e-MDSCs, PMN-

MDSCs a novel marker LOX-1 was used to define LOX 1+ PMN-MDSCs, PBMC were 

stained for CD45, HLA-DR, CD15, CD16, CD14, CD33, and LOX-1. The initial gating was 

done for the physical parameters of PBMC SSC-A and FSC-A, further doublets were 

excluded using FSC-A and FSC-H. We then selected CD45+ cells using SSC-A on the X-

axis on a dot plot to gate lymphomonocytes, HLA-DR-positive cells were excluded using a 

tight gate on the HLA-DR-negative population on an HLA-DR vs CD33 dot plot, which 

consistently placed the HLA-DR positive/negative threshold, leading to a slightly more 

stringent definition of MDSC’s. Finally, total MDSCs were identified by expression of 

CD33+ and HLA-DR-, while polymorphonuclear (PMN-MDSC) and monocytic (Mo-MDSC) 

subpopulations were determined by CD15 and CD14 expression, respectively. Cells that did 

not express either CD14 or CD15 were considered and are referred to as early stage-MDSC 

(e-MDSC). (Figure 16).  
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3.4. MDSCs: levels in Peripheral blood of advanced cancer patients: 

We analyzed the proportion of Mo-MDSCs, e-MDSCs, and PMN-MDSCs in the PBMCs of 

advanced cancer patients using the mentioned gating strategy. 

 Flow cytometry data were analyzed using FlowJo v10.8.1 software. t-SNE was run using 

default FlowJo parameters (iterations = 1000, perplexity = 30). A range of 10000 to 60000 

CD45+ live cells was acquired. In each figure, all samples were derived from the same t-SNE 

run. Individual flow cytometry standard files from each t-SNE run were combined into a 

single flow cytometry standard file to assist in defining spatially distinct populations using 

the concatenation tool. t-SNE heat maps show the fluorescent intensity of each marker for 

each event. Scales on the heat maps are individually generated for each surface marker from 

low to high expression.  

In advanced lung cancer patients and head and neck cancer patients presence of all three 

subsets of MDSCs was identified and analyzed for 56 and 11 patient samples respectively, 

Mo-MDSCs were the most prevalent among all the three subsets, followed by e-MDSCs 

PMN-MDSCs and LOX-1+PMN-MDSCs were least abundant population among all the 

MDSCs. (Figure 18), (Figure 20). In 7 patient samples with melanoma, the trend was similar 

Figure 17: Gating strategy for identification of MDSCs in peripheral blood mononuclear cells of advanced cancer 

patients treated with ICI’S. Contour plots - (PBMC; Peripheral Blood Mononuclear Cells, HLA-DR; Human 

Leucocyte Antigen, MDSC; Myeloid-Derived Suppressor Cells, Mo-MDSC; Monocytic-Myeloid Derived 

Suppressor Cells, PMN-MDSC; Polymorphonuclear-Myeloid Derived Suppressor Cells, e-MDSC; Early Stage 

Myeloid-Derived Suppressor Cells SSC-A; Side Scatter Area, FSC-A; Forward Scatter Area, FSC-H; Forward 

Scatter- Height) 
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except there was no statistically significant difference between the frequency of Mo-MDSCs 

and e-MDSCs population. (Figure 19). Whereas in 9 samples of patients with renal 

carcinoma e-MDSCs were most prevalent followed by Mo-MDSCs and PMN-MDSCs 

(Figure 21).  

 

FIGURES 18-21 

 

 

 

 

Figure 18 (a,b): Identification of MDSCs and their subsets in peripheral blood mononuclear cells of advanced 

lung cancer patients. (a) tSNE plot of concatenated 56 whole PBMC samples stained for seven markers 

(represented with heat map) for identification of MDSCs, (b) tSNE plot, Clusters of  monocyte subsets and 

MDSCs; Purple large dots represents Mo-MDSCs, Red large dots represents e-MDSCs, Blue large dots 

represents PMN-MDSCs and yellow large dots represents LOX-1+ PMN-MDSCs . 
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Figure 18 (c): Scatter plot representing percentage of MDSCs subset among HLA-DR
-
 and CD33

+
 population with 

corresponding column statistics. P-values are represented as ( ns:P > 0.05 , * : P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; 

**** : P ≤ 0.0001) . 



70 | P a g e  
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 19: Identification of MDSCs and their subsets in peripheral blood mononuclear cells of melanoma patients. (a) 

tSNE plot of concatenated 7 whole PBMC samples stained for seven markers (represented with heat map) for 

identification of MDSCs , (b) tSNE plot , Clusters of  monocyte subsets and MDSCs ; RED large dots represents Mo-

MDSC’S, Blue large dots represents e- MDSCs, Dark green large dots represents PMN- MDSCs and Pink large dots 

represents LOX-1
+
 PMN- MDSCs . (C) Scatter plot representing percentage of MDSCs subset among HLA-DR

-
 and 

CD33
+
 population With corresponding column statistics. P-values are represented as ( ns:P > 0.05 , * : P ≤ 0.05, ** : P ≤ 

0.01 *** : P ≤ 0.001 ; **** : P ≤ 0.0001 . 
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Figure 20: Identification of MDSCs and their subsets in peripheral blood mononuclear cells of advanced head and 

neck cancer patients. (a) tSNE plot of concatenated 11 whole PBMC samples stained for seven markers (represented 

with heat map) for identification of MDSCs , (b) tSNE plot , Clusters of  monocyte subsets and MDSCs ; RED large 

dots represents Mo- MDSCs, Orange large dots represents e- MDSCs, Black large dots represents PMN- MDSCs and 

Bluelarge dots represents LOX-1
+
 PMN- MDSCs . (C) Scatter plot representing percentage of MDSCs subset among 

HLA-DR
-
 and CD33

+
 population With corresponding column statistics. P-values are represented as ( ns:P > 0.05 , * : 

P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; **** : P ≤ 0.0001 . 

Figure 21 (a,b) : Identification of MDSCs and their subsets in peripheral blood mononuclear cells of advanced renal 

cell carcinoma patients. (a) tSNE plot of concatenated 9 whole PBMC samples stained for seven markers 

(represented with heat map) for identification of MDSCs, (b) tSNE plot, Clusters of monocyte subsets and MDSCs ; 

Purple large dots represents Mo- MDSCs, Dark green large dots represents e- MDSCs, Lavender large dots 

represents PMN- MDSCs and Light Blue large dots represents LOX-1
+
 PMN-MDSCs. 
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3.5. Levels MDSCs are associated with therapy outcomes in advanced 

cancer patients treated with ICIs. 

The patients were divided into low and high-frequency groups for each MDSCs subtype, for 

all the cancer types in the study. Univariable Cox proportional hazard analysis was 

performed, and Kaplan Meier survival curves were generated, the cut-off value was decided 

on the median percentage values of each MDSCs subset among total MDSCs. In advanced 

lung cancer patients, the frequency of Mo-MDSCs higher than 56.2% within total MDSCs 

was associated with poor PFS (HR = 0.477, 95% CI: 0.24-0.93, p = 0.0214) (Figure 22a). In 

head and neck cancer patients, the frequency of Mo-MDSCs higher than 72.2% within total 

MDSCs was associated with poor OS (HR = 0.25, 95% CI: 0.01-3.18, p = 0.0422) (Figure 

22b). The PMN-MDSCs and e-MDSCs did not show any statistically significant effect on the 

outcome of therapy in terms of both OS and PFS, also no statistical significance on therapy 

outcome was established for patients with melanoma and renal cell carcinoma.  

Figure 21 (C): Scatter plot representing percentage of MDSCs subset among HLA-DR
-
 and CD33

+
 population with 

corresponding column statistics. P-values are represented as (ns:P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01 ***: P ≤ 0.001; 

****: P ≤ 0.0001. 
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Figure 22: Kaplan-Meier Survival Curves with 95% CI for Overall survival (OS; a) Progression-Free Survival (PFS; b) 

of advanced head and neck cancer and lung cancer Patients respectively treated With ICI’s. Time is represented in months 

at baseline. (a) PFS; Mo- MDSCs high (red line) v/s Mo- MDSCs Low (blue line), (b) OS; Mo- MDSCs high (red line) 

v/s Mo- MDSCs Low (blue line). Dotted lines represent upper and lower limit of 95% CI (Confidence Interval). Results 

are from univariable cox proportional Hazard model (OS; overall survival PFS; progression free survival). 
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3.6. Identification of monocyte subsets in human blood 

To properly identify monocyte subpopulations in blood, we employed a negative exclusion 

gating strategy, firstly the physical parameters were plotted on a dot plot using SSC-A and 

FSC-A, and the doublets were excluded using FSC-A and FSC-H dot plots then the lympho-

monocyte population of cells was gated as CD45+ population among this population a 

negative selection was gated for monocytes which excluded CD3+, CD56+ and CD19+ T-

cells, NK-cells and B-cells respectively. The left-over population was concluded as true or 

lineage-negative monocytes. The resulting final population was discriminated on CD14 and 

CD16 surface expression to give three distinct monocyte subsets. (Figure 22). As Classical 

monocytes (CD14+ CD16−), Non-classical monocyte (CD14-CD16+) and Intermediate 

monocytes (CD14+CD16+). 

 

 

 

 

 

 

   

 

 

 

 

 

 

  

  

Figure 23: Gating and Identification of monocyte subsets, 

evaluating Hemeoxigenase-1 and C5aR1 (CD88) expression in 

monocyte subsets from PBMC of advanced cancer patients 

treated with ICI’S. (PBMC; Peripheral Blood Mononuclear 

Cells, SSC-A; Side Scatter Area, FSC-A; Forward Scatter Area, 

FSC-H; Forward Scatter- Height) 
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3.7. Frequency of monocyte subset in advanced cancer patients peripheral 

blood treated with ICIs:  

In advanced lung cancer patients’ peripheral blood, the frequency of classical monocytes was 

37.4%, the intermediate monocytes were 26.4%, and the non-classical monocytes were 36%. 

In head and neck cancer patients’ peripheral blood, the frequency of classical monocytes was 

37.8%, the intermediate monocytes were 10.9%, and the non-classical monocytes were 

52.2%. In melanoma patients’ peripheral blood, the frequency of classical monocytes was 

28.0%, the intermediate monocytes were 12.7%, and the non-classical monocytes were 

59.2%. In renal cell carcinoma patients’ peripheral blood, the frequency of classical 

monocytes was 23.9%, the intermediate monocytes were 12.2%, and the non-classical 

monocytes were 63.8%. These results suggest that except for advanced lung cancer patients 

the predominant circulating monocyte subset is non-classical monocytes, however since this 

data is on a small patient population it requires further validation.  (Figure 24-Figure 27).  
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Figure 24: Identification of circulating monocyte subsets in peripheral blood mononuclear cells of advanced lung cancer 

patients. (a) tSNE plot of concatenated 84 whole PBMC samples stained for nine markers (represented with heat map) for 

identification of monocyte subset, (b) tSNE plot, Clusters of  monocyte subsets ; Dark Blue  large dots represents classical 

monocyte subset, (c) tSNE plot , Clusters of  monocyte subsets ; Red large dots represents intermediate monocyte subset, (d) 

tSNE plot , Clusters of  monocyte subsets ; Red large dots represents non-classical monocyte subset . (e) Box and Whisker 

plot representing percentage of Monocyte subset among total monocyte population With corresponding column statistics. P-

values are represented as ( ns:P > 0.05 , * : P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; **** : P ≤ 0.0001) (CM; classical 

Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes )  . 
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Figure 25: Identification of circulating monocyte subsets in peripheral blood mononuclear cells of melanoma patients. (a) 

tSNE plot of concatenated 11 whole PBMC samples stained for nine markers (represented with heat map) for identification 

of monocyte subset, (b) tSNE plot , Clusters of  monocyte subsets ; Dark Blue  large dots represents classical monocyte 

subset, (c) tSNE plot , Clusters of  monocyte subsets ; Brown large dots represents intermediate monocyte subset, (d) tSNE 

plot , Clusters of  monocyte subsets ; Dark brown large dots represents non-classical monocyte subset . (e) Box and Whisker 

plot representing percentage of Monocyte subset among total monocyte population with corresponding column statistics. P-

values are represented as (ns:P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01 ***: P ≤ 0.001; ****: P ≤ 0.0001) . (CM; classical 

Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes). 



79 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 26: Identification of circulating monocyte subsets in peripheral blood mononuclear cells of advanced head and neck 

cancer patients. (a) tSNE plot of concatenated 14 whole PBMC samples stained for nine markers (represented with heat 

map) for identification of monocyte subset , (b) tSNE plot , Clusters of  monocyte subsets ; Dark Emrald  large dots 

represents classical monocyte subset, (c) tSNE plot , Clusters of  monocyte subsets ; Orange large dots represents 

intermediate monocyte subset, (d) tSNE plot , Clusters of  monocyte subsets ; Brown large dots represents non-classical 

monocyte subset . (e) Box and Whisker plot representing percentage of Monocyte subset among total monocyte population 

With corresponding column statistics. P-values are represented as ( ns:P > 0.05 , * : P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; 

**** : P ≤ 0.0001) . (CM; classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes) .  
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3.8. Circulating monocyte subsets are associated with therapy outcomes in 

advanced cancer patients treated with ICIs. 

In advanced lung cancer presence of a higher level of classical monocytes had a higher risk of 

poor OS and PFS, a median percentage was set as the cutoff value, and patients who had 

above 51% of classical monocytes in peripheral blood had a higher risk of poor outcome, OS 

(HR = 0.55, 95% CI: 0.28-1.07, p = 0.077), PFS (HR = 0.71, 95% CI: 0.42-1.18, p = 0.1748). 

Although this result was not statistically significant the median OS was reduced to 9.7 

months in the higher classical monocyte group compared to the low classical monocyte group 

for which the median OS was 22.2 months. similarly, the median PFS was 11.3 months in the 

low classical monocyte group v/s 7.1 months for patients who had a higher percentage of 

classical monocytes. (Figure 28). 

A similar trend was also observed in the intermediate monocytes where the higher levels 

(cutoff value10.9%) of this subset were associated with higher risk both in terms of OS 

(HR = 0.65, 95% CI: 0.33-1.26, p = 0.2091) and PFS (HR = 0.70, 95% CI: 0.42-1.16, p = 

0.1686). The median OS was 22.2 months v/s 10.9 months for the low v/s high intermediate 

Figure 27: Identification of circulating monocyte subsets in peripheral blood mononuclear cells of advanced 

renal cell carcinoma. (a) tSNE plot of concatenated 10 whole PBMC samples stained for nine markers 

(represented with heat map) for identification of monocyte subset, (b) tSNE plot , Clusters of  monocyte subsets 

; Dark blue  large dots represents classical monocyte subset, (c) tSNE plot , Clusters of  monocyte subsets ; 

Orange large dots represents intermediate monocyte subset, (d) tSNE plot , Clusters of  monocyte subsets ; 

Brown large dots represents non-classical monocyte subset . (e) Box and Whisker plot representing percentage 

of Monocyte subset among total monocyte population with corresponding column statistics. P-values are 

represented as (ns:P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01 ***: P ≤ 0.001; ****: P ≤ 0.0001). (CM; classical 

Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes)  . 
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monocytes group and the median PFS was 9.8 months v/s 6.3 months for the low v/s high 

intermediate monocytes group (Figure 28). There was no significant effect on OS and PFS 

was established for the presence of the non-classical monocytes’ subset. In advanced head 

and neck cancer, melanoma, and renal cell carcinoma the results remained inconclusive.  

 

  

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

Figure 28: Kaplan-Meier Survival Curves with 95% CI for Overall survival (OS; a) Progression-Free Survival 

(PFS; b) of advanced lung cancer Patients respectively treated With ICI’s. Time is represented in months at 

baseline. (a) OS; CM high (red line) v/s CM Low (blue line), (b) OS; IM high (red line) v/s IM Low (blue line) (c) 

PFS; CM high (red line) v/s CM Low (blue line), (d) PFS; IM high (red line) v/s IM Low (blue line). Dotted lines 

represent upper and lower limit of 95% CI (Confidence Interval). Results are from univariable cox proportional 

Hazard model (OS; overall survival PFS; progression free survival CM; classical Monocytes, IM; Intermediate 

Monocytes). 
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3.9. Heme-oxygenase-1 (HO-1) in peripheral blood Monocytes and therapy 

outcome in advanced cancer patients.  

The expression of HO-1 in all the three identified monocyte subsets was measured as gMFI, 

HO-1 predominately showed higher expression among the classical monocyte subset 

followed by intermediate and non-classical monocytes in all cancer types, however, there was 

no significant difference was observed for melanoma between classical and non-classical 

monocyte subset.   

Advanced lung cancer: In classical monocytes, HO-1 was expressed significantly higher 

compared to the other two subsets gMFI Mean±SD: classical monocytes 5317±5099; 

intermediate monocytes 3577±3814; non-classical monocytes 1347±1242. P<0.0001 

(Kruskal-Wallis test) (Figure 29) 

Melanoma: In classical monocytes, HO-1 was significantly expressed higher compared to 

other non-classical monocytes, there was no statistically significant difference in expression 

levels between classical and intermediate monocyte subset, gMFI Mean±SD: classical 

monocytes 5406±4412; intermediate monocytes 4479±5093; non-classical monocytes 

988±442. P=0.0013 (Kruskal-Wallis test) (Figure 30) 

Advanced head and neck cancer: In classical monocytes HO-1 was significantly expressed 

higher compared to other two subsets gMFI Mean±SD: classical monocytes 8004±6699; 

intermediate monocytes 3051±3135; non-classical monocytes 861±508 P<0.0001 (Kruskal-

Wallis test) (Figure 31) 

Renal Cell Carcinoma: In classical monocytes, HO-1 was significantly expressed higher 

compared to the other two subsets gMFI Mean±SD: classical monocytes 6124±5978; 

intermediate monocytes 2625±2880; non-classical monocytes 892±682. P=0.0005 (Kruskal-

Wallis test) (Figure 32).  
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Figure 29: Expression of HO-1 in three monocyte subsets in peripheral blood mononuclear cells of advanced lung cancer 

patients. (a) tSNE plot of HO-1 expressing classical monocyte subset, (b) tSNE plot of HO-1 expressing intermediate monocyte 

subset; (c) tSNE plot of HO-1 expressing non-classical monocyte subset (d) Box and Whisker plot representing gMFI of HO-1 in 

classical, intermediate and non-classical monocyte subsets With corresponding column statistics. P-values are represented as (ns:P 

> 0.05, * : P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; **** : P ≤ 0.0001) . (H0-1; hemeoxigenase-1, gMFI; geometric mean 

fluorescent intensity, CM; classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes). 



84 | P a g e  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Expression of HO-1 in three monocyte subsets in peripheral blood mononuclear cells of Melanoma patients. (a) 

tSNE plot of HO-1 expressing classical monocyte subset, (b) tSNE plot of HO-1 expressing intermediate monocyte subset; (c) 

tSNE plot of HO-1 expressing non-classical monocyte subset (d) Box and Whisker plot representing gMFI of HO-1 in 

classical, intermediate and non-classical monocyte subsets with corresponding column statistics. P-values are represented as 

(ns:P > 0.05, * : P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; **** : P ≤ 0.0001) . (H0-1; hemeoxigenase-1, gMFI; geometric 

mean fluorescent intensity, CM; classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes). 
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Figure 31: Expression of HO-1 in three monocyte subsets in peripheral blood mononuclear cells of advanced head and neck 

cancer patients. (a) tSNE plot of HO-1 expressing classical monocyte subset, (b) tSNE plot of HO-1 expressing intermediate 

monocyte subset; (c) tSNE plot of HO-1 expressing non-classical monocyte subset (d) Box and Whisker plot representing gMFI of 

HO-1 in classical, intermediate and non-classical monocyte subsets With corresponding column statistics. P-values are represented 

as (ns:P > 0.05, * : P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; **** : P ≤ 0.0001) . (H0-1; hemeoxigenase-1, gMFI; geometric mean 

fluorescent intensity, CM; classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes). 
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3.10. Heme-oxygenase-1 in circulating monocyte subset and its association 

with therapy outcome in advanced cancer patients treated with ICIs:  

The expression levels of HO-1 were correlated with the clinical outcome in terms of OS and 

PFS. Univariable Cox proportional hazard analysis was performed between the high-

expression group and low-expression group, divided by a cutoff value (median value of 

gMFI) in each monocyte subset. In advanced lung cancer patients, higher expression of HO-1 

in the classical monocyte subset(OS: HR = 1.29, 95% CI: 0.66-2.52, p = 0.4313 (PFS: HR = 

1.07, 95% CI: 0.64-1.78, p = 0.7723)) and non-classical monocyte subset (OS: HR = 1.65, 

95% CI: 0.84-3.21, p = 0.1322) (PFS: HR = 1.48, 95% CI: 0.89-2.47, p =0.1110) was 

associated with lower risk of progression or death .while the high expression of HO-1 in 

intermediate monocytes was associated with poor outcome in terms of both OS and PFS. 

(OS: HR = 0.87, 95% CI: 0.44-1.70, p = 0.6799) (PFS: HR = 0.73, 95% CI: 0.43-

1.23, p =0.2165) (Figure 33). 

Figure 32: Expression of HO-1 in three monocyte subsets in peripheral blood mononuclear cells of advanced renal 

cell carcinoma patients. (a) tSNE plot of HO-1 expressing classical monocyte subset, (b) tSNE plot of HO-1 

expressing intermediate monocyte subset; (c) tSNE plot of HO-1 expressing non-classical monocyte subset (d) Box 

and Whisker plot representing gMFI of HO-1 in classical, intermediate and non-classical monocyte subsets With 

corresponding column statistics. P-values are represented as (ns:P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01 ***: P ≤ 0.001; 

****: P ≤ 0.0001). (H0-1; hemeoxigenase-1, gMFI; geometric mean fluorescent intensity, CM; classical Monocytes, 

N-CM; Non- classical Monocytes IM; Intermediate Monocytes). 
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The median OS was 13.7 months v/s 22.2 months for the low v/s high HO-1 expressing 

classical monocytes group and the median PFS was 7.3 months v/s 7.6 months low v/s high 

HO-1 expressing classical monocytes group. The median OS was 13.9 months v/s 22.2 

months for the low v/s high HO-1 expressing non-classical monocytes group and the median 

PFS was 7.6 months v/s 11.3 months for low v/s high HO-1 expressing non-classical 

monocytes group. The median OS was 22.2 months v/s 16.2 months for the low v/s high HO-

1 expressing intermediate monocytes group and the median PFS was 11.6 months v/s 7.1 

months low v/s high HO-1 expressing non-classical monocytes group. 

A similar trend was observed in melanoma, advanced head and neck cancer, and renal cell 

carcinoma, but the result remained inconclusive because of the lower sample size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 (a,b,c): Kaplan-Meier Survival Curves with 95% CI for Overall survival of advanced lung cancer Patients 

respectively treated With ICI’s. Time is represented in months at baseline. (a) OS; CM-HO-1 high (red line) v/s CM-

HO-1 Low (blue line), (b) OS; IM-HO-1 high (red line) v/s IM-HO-1 Low (blue line) (c) OS; N-CM-HO-1 high (red 

line) v/s N-CM-HO1 Low (blue line). Dotted lines represent upper and lower limit of 95% CI (Confidence Interval). 

Results are from univariable cox proportional Hazard model (OS; overall survival PFS; progression free survival 

CM; classical Monocytes, IM; Intermediate Monocytes, H0-1; hemeoxigenase-1). 
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3.11. Heme-oxygenase-1 (HO-1) expression on monocyte subpopulation and 

its corelation with arterial Carboxy-haemoglobin (COHb).  

Carbon-Monoxide (CO) is one of the byproducts of heme degradation by heme-oxygenase-1. 

We corelated the arterial Carboxy-hemoglobin percentage with the gMFI of HO-1 in all the 

three monocyte subsets. No statistically significant correlation was established in any of the 

advanced cancer type. (Figure 34). 

 

 

Figure 33 (d,e,f) : Kaplan-Meier Survival Curves with 95% CI for Progression-Free Survival of advanced lung cancer 

Patients respectively treated With ICI’s. Time is represented in months at baseline (d) PFS; CM-HO-1 high (red line) v/s 

CM-HO-1 Low (blue line), (e) PFS; IM-HO-1 high (red line) v/s IM-HO-1 Low (blue line), (f) PFS; N-CM-HO-1 high (red 

line) v/s N-CM-HO1 Low (blue line). Dotted lines represent upper and lower limit of 95% CI (Confidence Interval). 

Results are from univariable cox proportional Hazard model (OS; overall survival PFS; progression free survival CM; 

classical Monocytes, IM; Intermediate Monocytes, H0-1; hemeoxigenase-1). 
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3.12. Expression of C5aR1(CD88) on monocyte subset of advanced cancer 

patients treated with ICIs: 

We evaluated the expression of C5aR1 (CD88) on the three-monocyte subset identified and 

reported as gMFI.  

In advanced lung cancer patient samples, CD88 was expressed more on intermediate 

monocytes but was statistically insignificant compared to the expression on classical 

monocytes, non-classical monocytes had the least CD88 expression among the three subsets. 

In melanoma patient samples head and neck cancer patient samples and advanced renal cell 

carcinoma a similar trend was observed. [Advanced lung cancer patients: gMFI Mean±SD: 

classical monocytes 3290±3833; intermediate monocytes 4694±5257; non-classical 

monocytes 1120±2240. P= <0.0001 Melanoma: gMFI Mean±SD: classical monocytes 

3039±2045; intermediate monocytes 4268±3263; non-classical monocytes 53.23±23.76. P= 

<0.0001. Advanced head and neck cancer gMFI Mean±SD: classical monocytes 

3094±1882; intermediate monocytes 3505±2052; non-classical monocytes 100.2±159.1. P= 

<0.0001(Kruskal-Wallis test).] (Figure 35 – Figure 38) 

 

Figure 34: Correlation between %COHb on X-axis and HO-1(gMFI) on Y-axis, Pearson correlation 

coefficient were calculated and reported within the graphs (a) Advanced Lung Cancer, (b) Melanoma (c) 

Advanced Head and neck cancer (d) Advanced Renal cell Carcinoma. (COHb: Carboxy-hemoglobin; HO-1: 

Hemeoxygenase-1; CM; classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes, 

gMFI; geometric mean fluorescent intensity.  
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Figure 35: Expression of CD88 on three monocyte subsets in peripheral blood mononuclear cells of advanced lung 

cancer patients. (a) tSNE plot of CD88 expressing classical monocyte subset, (b) tSNE plot of CD88 expressing 

intermediate monocyte subset; (c) tSNE plot of CD88 expressing non-classical monocyte subset (d) Box and Whisker 

plot representing gMFI of CD88 in classical, intermediate, and non-classical monocyte subsets with corresponding 

column statistics. P-values are represented as (ns:P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01 *** : P ≤ 0.001 ; **** : P ≤ 

0.0001) . (gMFI; geometric mean fluorescent intensity, CM; classical Monocytes, N-CM; Non- classical Monocytes 

IM; Intermediate Monocytes). 
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Figure 36: Expression of CD88 on three monocyte subsets in peripheral blood mononuclear cells of melanoma patients. (a) 

tSNE plot of CD88 expressing classical monocyte subset, (b) tSNE plot of CD88 expressing intermediate monocyte subset; 

(c) tSNE plot of CD88 expressing non-classical monocyte subset (d) Box and Whisker plot representing gMFI of CD88 in 

classical, intermediate, and non-classical monocyte subsets with corresponding column statistics. P-values are represented as 

(ns:P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01 ***: P ≤ 0.001; ****: P ≤ 0.0001). (gMFI; geometric mean fluorescent intensity, CM; 

classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes). 
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Figure 37: Expression of CD88 on three monocyte subsets in peripheral blood mononuclear cells of advanced head and 

neck cancer patients. (a) tSNE plot of CD88 expressing classical monocyte subset, (b) tSNE plot of CD88 expressing 

intermediate monocyte subset; (c) tSNE plot of CD88 expressing non-classical monocyte subset (d) Box and Whisker plot 

representing gMFI of CD88 in classical, intermediate and non-classical monocyte subsets With corresponding column 

statistics. P-values are represented as (ns:P > 0.05, *: P ≤ 0.05, ** : P ≤ 0.01 *** : P ≤ 0.001 ; **** : P ≤ 0.0001) . (gMFI; 

geometric mean fluorescent intensity, CM; classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate 

Monocytes). 
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Figure 38: Expression of CD88 on three monocyte subsets in peripheral blood mononuclear cells of advanced renal cell 

carcinoma patients. (a) tSNE plot of CD88 expressing classical monocyte subset, (b) tSNE plot of CD88 expressing intermediate 

monocyte subset; (c) tSNE plot of CD88 expressing non-classical monocyte subset (d) Box and Whisker plot representing gMFI 

of CD88 in classical, intermediate, and non-classical monocyte subsets with corresponding column statistics. P-values are 

represented as (ns:P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01 ***: P ≤ 0.001; ****: P ≤ 0.0001). (gMFI; geometric mean fluorescent 

intensity, CM; classical Monocytes, N-CM; Non- classical Monocytes IM; Intermediate Monocytes). 
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3.13. C5aR1(CD88) on circulating monocyte subset and its association with 

therapy outcome in advanced cancer patients treated with ICIs:  

The expression levels of CD88 were associated with the clinical outcome in terms of OS and 

PFS. univariable Cox proportional hazard analysis was performed between the high 

expression group and low expression group, divided by a cutoff value (median value of 

gMFI) in each monocyte subset. In advanced lung cancer patients’ higher expression of 

CD88 on the classical monocyte subset (OS: HR = 1.26, 95% CI: 0.64-2.45, p = 0.4949 and 

non-classical monocyte subset (OS: HR = 1.65, 95% CI: 0.84-3.21, p = 0.1322) was 

associated with relatively lower risk of death. (Figure 38). 

The median OS was 13.7 months v/s 25.2 months for the low v/s high CD88 expressing 

classical monocytes group the median OS was 16.2 months v/s 22.2 months for the low v/s 

high CD88 expressing non-classical monocytes group. 

A similar trend was observed in melanoma, advanced head and neck cancer, and renal cell 

carcinoma, but the result remained inconclusive because of the lower sample size. 

 

  

Figure 39: Kaplan-Meier Survival Curves with 95% CI for Overall survival (OS:a,b) of advanced lung cancer Patients respectively 

treated With ICI’s. Time is represented in months at baseline. (a) OS; CM-CD88 high (red line) v/s CM-CD88 Low (blue line), (b) 

OS; N-CM-CD88 high (red line) v/s N-CM-CD88 Low (blue line) Dotted lines represent upper and lower limit of 95% CI 

(Confidence Interval) . Results are from univariable cox proportional Hazard model (OS; overall survival PFS; progression free 

survival CM; classical Monocytes, IM; Intermediate Monocytes). 
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4. Discussion 

The immune system is the core defense against cancer development and progression. Failure 

of the immune system to recognize and eliminate malignant cells plays an important role in 

the pathogenesis of cancer. Tumor cells evade immune recognition, in part, due to the 

immunosuppressive features of the tumor microenvironment. Immunotherapy augments the 

host immune system to generate an antitumor effect. Immune checkpoints are pathways with 

inhibitory or stimulatory features that maintain self-tolerance and assist with immune 

response. The most well-described checkpoints are inhibitory in nature and include the 

cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 

(PD-1), and programmed cell death ligand-1 (PD-L1). Antibodies that block these pathways, 

also called Immune Checkpoint Inhibitors (ICIs), are developed to enhance the host 

immunologic activity against tumors and become standard of care in the treatment of many 

malignancies. However only a small percentage of patients have meaningful responses to 

these treatments.  

The identification of blood-based biomarkers that can predict, at baseline of therapy, the 

benefits of outcome, remains a challenging task for clinicians. Several studies in literature 

suggest that peripheral blood based systemic inflammatory biomarkers such as NWR 

(Neutrophil to white blood cell ratio),  PLR (Platelet to Lymphocyte Ratio), NLR (Neutrophil 

to lymphocyte ratio) , dNLR (derived Neutrophil to lymphocyte ratio),LMR (Lymphocyte to 

monocyte ratio) and SII (systemic inflammation Index) as good prognosticators (Li et al., 

2019) (Zhou et al., 2014) (Ding et al., 2021). In this work we show that, NLR and dNLR had 

a significant impact on overall and progression free survival in advanced lung cancer, and in 

melanoma the higher NLR and dNLR was shown to have a poor overall and progression free 

survival, the mechanism by which NLR and dNLR relates to ICI activity and clinical 

outcome is unknown. An elevated LMR in advanced lung cancer has shown a better overall 

survival and longer progression free survival, LMR is believed to reflect the host immune 

status and the degree of tumor progression. Given that both a low lymphocyte count and high 

monocyte count reflect insufficient anti-tumor immunity and an elevated tumor burden (Goto 

et al., 2018). In melanoma a higher PLR was associated with poor progression free survival, 

the specific mechanism by which the PLR was associated with progression in cancer remains 

unknown. A higher value of NWR was associated with poor progression free survival in 

melanoma and advanced head and neck cancer. In advanced lung cancer patients, a higher 
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systemic inflammation index was associated with poor overall and progression free survival. 

Overall, these blood-based biomarkers at baseline could be interpreted by clinicians for low-

cost and noninvasive prognostic marker for patients receiving ICI’s.  

 Aberrant immune cells have been reported both in tumor microenvironment (TME) and in 

peripheral blood of cancer patients and these cells greatly influence the tumor progression 

and failure to ICIs through several immunosuppressive mechanisms (Mallick and Duttaroy, 

2021). In this work we report the presence of immature immune suppressive myeloid cell 

population in peripheral blood by using multicolor flow cytometry and our results 

demonstrate that higher levels of Mo-MDSCs are associated with progression of the disease 

in advanced lung cancer and poor overall survival in head and neck cancer patients. These 

results highlight that only Mo-MDSCs achieve statistically significant prognostic effects. So, 

an insight in the mechanisms of immunosuppression by MDSCs should be considered. 

However, different levels of immune and T-cell suppression by these subsets of MDSCs are 

known: PMN-MDSCs induce antigen-specific T-cell tolerance through high levels of ROS 

and low levels of NO. Conversely, M-MDSCs impair both antigen-specific and neoantigen-

specific T-cell responses through low ROS levels and high NO levels, and this inhibition appears to 

be continuous. This becomes relevant both for the detection of immunotherapy resistance biomarkers 

and for the definition of therapeutic strategies targeting MDSCs. 

 During cancer and inflammation, classical and intermediate monocytes are tethered and invade tissue. 

It is now widely accepted that classical monocytes can differentiate into monocyte derived 

macrophages or tumor associated macrophages and play an integral part in shaping 

inflammation and its resolution in tissues and tumor microenvironment (Robinson et al., 

2021). Intermediate monocytes express the highest levels of antigen presentation-related 

molecules (Sakakura et al., 2021). Some studies shown that intermediate monocyte numbers 

are expanded in the blood of patients with cancer, implying that they must play an important 

role. However, their exact role in immunity remains elusive as it is reported that they are the 

main producers of IL-10. Whether these cells can produce pro- and anti-inflammatory 

mediators simultaneously or whether there are different kinetics of expression for these 

factors, especially in tumorigenesis requires further exploration (Prat et al., 2020). In this 

study we demonstrate that the frequency of occurrence of classical monocytes in advanced 

lung cancer is associated with higher risk of poor outcome in terms of OS and PFS, which 

adds to the existing evidence that classical monocytes migrate into tumor sites and then 

differentiate into TAMs. By contrast, non-classical monocytes have been documented to be 



98 | P a g e  
 

initially protective through the enhancement of NK cell activity (Cassetta and Pollard, 2016). 

However, in advanced cancers, the protumoral effect of classical monocytes appears to win. 

Moreover, classical monocytes can stimulate tumor cell transendothelial cell migration in a 

process mimicking extravasation((Strell and Entschladen, 2008). We observed a similar trend 

in the intermediate monocytes where the higher levels of this subset were associated with 

higher risk both in terms of OS and PFS, and this observation is consistent with previous 

studies showing that a high proportion of intermediate monocytes is positively correlated 

with decreased effector/regulatory T-cell ratio in tumor ascites(Prat et al., 2020). So, we can 

postulate tha, higher frequency of classical monocytes and intermediate monocytes in 

advanced lung cancer produce unfavorable outcome in patients treated with the ICI’s  

As classical monocyte remains the source of TAMs, and TAMs with high levels of 

hemeoxigenase-1 (HO-1+) seem to play a crucial defense mechanism through antioxidant, 

anti-inflammatory and anti-apoptotic properties (Krukowska and Magierowski, 2022). With 

these premises, we evaluated the prognostic role of HEME catabolism by the assessment of 

HO-1 expression level in monocytes subpopulations in peripheral blood samples of patients 

affected by advanced lung cancer. Our results suggest that in advanced lung cancer patients 

treated with ICIs higher levels of HO-1 in classical monocytes and in non-classical 

monocytes have a protective role and is associated with lower risk of progression or death, 

however we could not establish a statistical significance for this. The balance of HO-1 levels 

maintained in cancer and in normal cells is implicated in cancer prevalence, prognosis, or 

progression (Fang et al., 2021). Therefore, upregulation of HO-1 in neoplasm surrounding 

tissues could be considered as a defensive and protective response, this hypothesis is 

supported by the fact that therapeutic use of CO in various cancer types was already 

described, demonstrating a wide range of advantages exerted by CO (Tien Vo et al., 2021), 

however we could not establish a statistically significant correlation between the arterial CO 

levels and HO-1 expression , further robust analysis is needed to understand this complex 

phenomenon and role of both CO and HO-1 in TME In contrast to these higher levels of HO-

1 in intermediate monocytes were found to be associated with poor outcome in advanced lung 

cancer, one possible explanation for this could be that in cancer patients there is a bias toward 

immature status in myeloid cells and expression of immunosuppressive surface molecules by 

intermediate monocytes may associate with poor outcome (Sakakura et al., 2021). This 

complex phenomenon within the different subsets of monocytes and this analysis raises a key 

question on how the signaling pathways that have been defined for the recruitment and 
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differentiation of monocytes interact with tumor microenvironment, tumor derived factors, 

and other immune cells, and how these interactions are overlaid with biological factors within 

the blood and tissue in cancer. This question is also relevant because it might be possible to 

derive interventions that can define a switch in cell fate or phenotype for therapeutic 

purposes. Thus, insights into intra- and inter-cellular crosstalk may better inform the roles of 

myeloid population especially monocyte subsets and macrophages in homeostasis, immunity, 

and cancer.  

Imbalanced complement activation and the deposition of complement proteins have been 

demonstrated in many types of tumors. Plasma proteins, receptors, and regulators of 

complement activation regulate several biological functions of stromal and immune cells in 

the TME and promote the malignant biological properties of tumors. The main pathway 

involved in complement activation in the TME remains unclear (Afshar-Kharghan, 2017). 

With the premise that C5a generation in squamous cell carcinomas foster an 

immunosuppressive TME during carcinogenesis by activating C5aR1+ macrophages and C5a 

mediated macrophage polarization by activation of the nuclear factor-κB (NF-κB) pathway 

and C5a receptor (C5aR1) expressed on TAMs exhibited a tumor-promoting functional 

profile (Piao et al., 2018), we evaluated the expression of CD88 (C5aR1) on monocyte 

subsets. Our results in advanced lung cancer showed CD88 was expressed more on 

intermediate monocytes but was statistically insignificant compared to the expression on 

classical monocytes. Non-classical monocytes had the least CD88 expression among the three 

subsets. In melanoma advanced head and neck cancer and advanced renal cell carcinoma a 

similar trend was observed but the observation remained inconclusive due to low sample size 

studied. In advanced lung cancer higher expression of CD88 on classical monocyte subset 

and non-classical monocyte subset was associated with relatively higher overall survival. 

However, our results were contrast to the other documented studies on role of complement in 

creating a immunosuppressive microenvironment it cannot be ruled out because C5a/C5aR is 

required of maturation of antigen presenting cells and their interactions with T-cells (Kemper 

and Atkinson, 2007) (Merle et al., 2015) , a scope and possibility is still open for better 

understanding of the mechanistic interaction between the complement system and TME 

which might provide a new understanding in cancer immunotherapy. 

In conclusion to this study on advanced cancer patients, the clinical blood biomarkers can be 

postulated as a good prognostic and predictive biomarkers for therapeutic outcomes, as it falls 

in line with literature and various other independent studies. We were able to phenotype the 
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MDSCs in peripheral blood samples of advanced lung cancer. Melanoma, Head and neck 

cancer and Renal cell carcinoma patients, and our data show that Mo-MDSCs play a major 

role in unfavorable therapeutic outcome in advanced lung cancer and head and neck cancer 

patients, thus suggesting Mo-MDSCs (given its proven immunosuppressive role in cancer) as 

a potential target and biomarker for therapeutic intervention. Further we identified three 

major subsets of monocytes and report that higher frequencies of classical and intermediate, 

monocytes are associated with poor therapeutic outcomes in advanced lung cancer patients. 

HO-1 and C5aR1(CD88) expression in these three monocyte subsets were evaluated and our 

results suggest that both HO-1 and CD88 when expressed in higher levels in/on classical and 

non-classical monocytes are associated with better therapeutic outcome in advanced lung 

cancer patients treated with ICI’s. At present we could not establish any therapeutic outcome 

association for MDSCs in melanoma and renal cell carcinoma, also we were not able to 

establish any therapeutic outcome association between HO-1 expression levels, CD88 

expression levels on monocyte subsets in melanoma, head and neck cancer and renal cell 

carcinoma, this was due to the lower number of patients with this cancer included in the 

study. This is a set of preliminary findings further deep investigations on heterogeneity of 

monocyte subsets, myelopoiesis including emergency myelopoiesis, and TME on larger 

numbers of cancer patients can provide a better understanding on mechanism and factors 

involved for disease progression and poor therapeutic outcomes.  
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Other Research and teaching activities: 

 

During this period of PhD program, I was also involved in other projects studying host 

immunology in perspective of cancer. The study of T-cell senescence in breast cancer 

patients and Geriatric hematological and solid tumors patients can be mentioned. 

 

As teaching activities for bachelor’s and master’s students has been a part of PhD curriculum 

at Professor Alassandra Gennari’s laboratory, I took part in teaching and assisting several 

students during my PhD. The major role was to teach laboratory techniques, research 

methodologies and assisting with thesis writing.  

  

  Skills and techniques learned and used during PhD course: 

 

1. Handling, processing, and banking of biological samples.  

2. Peripheral Blood separation. 

3. Multicolor Flow cytometry. 

4. PCR techniques (RT- PCR; nanodrop PCR). 

5. Managing clinical data. 

6. Research Methodologies (Clinical and biological) 

7. Literature, databases search, data analysis and statistics. 

8. Data presentation. 

 

 List of seminars, congress and webinars attended.  

 

1. 04/11/2019:  Prof. A Goris "Novel DNA and RNA “omics” technologies" 

2. 06/11/2019: Prof. A Goris “A lecture on MS genetics: “The genetics of the immune 

system in health and disease” 

 25/11/2019: Dr. Mandar Bawadekar "Citrullination and the Peptidylarginine 

Deiminases in Immunity, Inflammation, and Arthritis" 

4. 10/12/2019: Dr. Massimo Tommasino "Novel mechanisms of HPV-driven 

carcinogenesis" 

5. 11/12/2019: Prof. M. Falasca “Targeting the endocannabinoid system in pancreatic 

cancer” 
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6. 16/12/2019: Prof. M. Falasca “Lipidomic and proteomic analysis of exosomes” 

7. 16/01/2020: Prof. Francesco Peri "Small molecules targeting Toll-Like Receptor 4: 

towards a new generation of therapeutics" 

8. 18/02/2020: Prof. Cristina Meini, Dr. Emiliano Loria “Aging and attachment. Early 

caregiving relationships and Aging” 

9. 05/05/2020: Prof. Davide Porporato “Gastronomy of longevity: the memory of food, a 

trajectory of well-being” 

10. 03/06/2020: Prof. Bianca Gardella Tedeschi "The elderly: a new legal entity?" 

11. 30/07/22020: Dr. Elisa Francone “The role of gut microbiota in colorectal cancer” 

12. 31/07/2020: Dr. Davide Susta “Intermittent Hypoxia-Hyperoxia Conditioning and 

Cardiorespiratory Fitness in Older Comorbid Cardiac Outpatients.” 

13. 02/09/2020: Whole Genome Genotyping with Infinium Assay.  

14. 30/08/2021- 03/09/2021 Conferma iscrizione "International Summer School on 

Immuno-Oncology: emerging targets and combination therapies"  

15. 08/06/2021 Dr ANSELMO:"Flow cytometry analysis of extracellular vesicles in 

cardiovascular diseases; from bench to bedside” 

16.      26/10/2021 “The Molecular Underpinnings of mRNA Vaccines” Prof. Steven R. Ellis 

Department of Biochemistry and Molecular Genetics University of Louisville, Louisville KY, 

USA  

17.     16/02/2022 “Peculiar aspects of pediatric multiple sclerosis” Dott. Angelo Ghezzi. 

18.      09/05/2022 Development of 3D cell culture models for tumor engineering, Prof Dr. 

Bojana Obradović. 

19.      06/06/2022 Diamond Blackfan Anemia and Cancer Predisposition: More Questions 

than Answers” Prof. Steven R. Ellis Department of Biochemistry and Molecular Genetics 

University of Louisville, Louisville KY, USA. 

20.      12/07/2022 Prevention and Prediction of Type 1 Diabetes Prof. Francesco Chiarelli. 

21.     14/09/2022-17/09/2022 – International summer school on immuno oncology. 

22.     30/07/2021-03/08/2022– International summer school on immuno oncology.  

 

List of publication: 

 

1) Breast Cancer Survivorship, Quality of Life, and Late Toxicities: Simone Nardin, 

Edoardo Mora, Feba Mariam Varughese, Francesca D'Avanzo, Ajay Ram Vachanaram, 

Valentina Rossi, Chiara Saggia, Sara Rubinelli and Alessandra Gennari* (Frontiers in 

oncology 2020 June 16; 10: 864. doi: 10.3389/fonc.2020.00864, PMID: 32612947). 
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2) Psychotropic drugs show anticancer activity by distrupting mitochondrial and lysosomal 

function: Marco Varalda, Annamaria Antona, Valentina Bettio, Konkonika Roy, Ajay 

Ram Vachanaram, Vaibhav Yellenki, Alberto Massarotti, Gianluca Baldanzi, Daniela 

Capello* (Frontiers in oncology 2020 Oct 19;10:562196. doi: 10.3389/fonc.2020.562196. 

PMID: 33194631). 

3) A randomized clinical study on the impact of Comprehensive Geriatric Assessment 

(CGA) based interventions on the quality of life of elderly, frail, onco-hematologic 

patients candidate to anticancer therapy: protocol of the ONCO-Aging study  : 

Abdurraouf Mokhtar Mahmoud, Federica Biello, Paola Maria Maggiora, Riccardo Bruna, 

Giovanni Burrafato, Miriam Cappelli, Feba Varughese, Veronica Martini, Francesca 

Platini, Clara Deambrogi, Andrea Patriarca, Maura Nicolosi, Ajay ram Vachanaram, 

Carla Pisani, Eleonora Ferrara, Elvira Catania, Danila Azzolina, Francesco Barone-Adesi, 

Marco Krengli, Gianluca Gaidano & Alessandra Gennari *.(BMC geriatrics 2021 May 

19;21(1):320. doi: 10.1186/s12877-021-02237-3. PMID: 34011271). 
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1) PD-L1 status and efficacy of immune check-point inhibitors (ICIs) in advanced 
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Vachanaram, Edoardo Mora, Simone Nardin, Paolo Bruzzi, Antonio Sica, 
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