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Abstract
We extend the simply-typed lambda-calculus with a mechanism for dynamic rebinding of code
based on parametric nominal interfaces. That is, we introduce values which represent single
fragments, or families of named fragments, of open code, where free variables are associated with
names which do not obey α-equivalence. In this way, code fragments can be passed as function
arguments and manipulated, through their nominal interface, by operators such as rebinding,
overriding and renaming. Moreover, by using name variables, it is possible to write terms which
are parametric in their nominal interface and/or in the way it is adapted, greatly enhancing
expressivity. However, in order to prevent conflicts when instantiating name variables, the name-
polymorphic types of such terms need to be equipped with simple inequality constraints. We
show soundness of the type system.
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1 Introduction

We propose an extension of the simply-typed lambda-calculus with a mechanism for dynamic
and incremental rebinding of code based on parametric nominal interfaces. That is, we
introduce values which represent single fragments, or families of named fragments, of open
code, where free variables are associated with names which do not obey α-equivalence.
Moreover, by using name variables, it is possible to write terms which are parametric in
their nominal interface and/or in the way it is adapted, greatly enhancing expressivity. For
instance, it is possible to write a term which corresponds to the selection of an arbitrary
component of a module. We summarize here below the language features.
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4:2 Constrained Polymorphic Types for a Calculus with Name Variables

Unbound terms, of shape 〈x1 7→ X1, . . . , xm 7→ Xm | t〉, and rebindings, of shape
〈x1 7→ X1, . . . , xm 7→ Xm | Yn 7→ t1, . . . ,Yn 7→ tn〉, are values representing a single frag-
ment, and a family of named fragments, respectively, of open code. That is, t, t1, . . . , tn,
may contain free occurrences of variables x1, . . . , xm to be dynamically bound through
the global nominal interface X1, . . . ,Xm. Unbound terms can be “unboxed” and executed
through the run operator only after their open code has been completed through one
or more applications of rebindings, so that they do not contain unbound variables; for
instance, the unbound term 〈x 7→ X | x+1〉 can be made self-contained with the rebinding
〈 | X 7→ 0,Z 7→ 1〉.
Rebinding application is incremental, that is, an unbound term can be partially rebound,
leading to still open code. For instance, the term 〈x 7→ X , y 7→ Y | x+y〉 can be com-
bined with the rebinding 〈 | X 7→ 1,Z 7→ 2〉, getting 〈y 7→ Y | 1+y〉. This allows code
specialization, similarly to what partial application achieves for positional binding.
Moreover, rebindings can be open, hence rebinding application is incremental even in
the sense that it can introduce new variables to be dynamically bound. For instance,
the term 〈y 7→ Y | 1+y〉 can be combined with the rebinding 〈x 7→ X , z 7→ Z | Y 7→ x+z〉,
getting 〈x 7→ X , z 7→ Z | 1+x+z〉. As illustrated in [1, 2], this allows a form of generative
programming.
Finally, rebindings are first-class values, and can be manipulated by operators such as
overriding and renaming.

A name X can be either a name constant N or a name variable α, and name abstraction
Λα.t and name application t X can be used analogously to lambda-abstraction and application
to define and instantiate name-parametric terms.

The types of such name-parametric terms need, correspondingly, to be polymorphic on
names, and, moreover, must be equipped with simple inequality constraints. Formally, we
get constrained name-polymorphic types of shape ∀α:c.T , where c is a set of constraints
of shape X 6=Y among names. Such constraints are necessary to guarantee that for each
possible instantiation of α we get well-formed terms and types. For instance, the term
Λα:α 6= N .〈 | N :int 7→ 0, α:int 7→ 1〉 is a rebinding parametric in the name of one of its
two components, which, however, must be different from the constant name N of the other
component.

We refer to our previous work [1, 2], where we presented a monomorphic version with
no name variables, for more examples and details on the features which are not novel here.
This paper is a revised and improved version of [4]. Notably, we have added an algorithmic
presentation of the type system, specified in full the notion of well-formedness and provided
detailed proofs of the type soundness results.

The rest of the paper is structured as follows. In Section 2 we provide the formal definition
of an untyped version of the calculus and an example motivating the introduction of name
polymorphism. We then define a typed version of the calculus in Section 3, and a complete
example of typing in Section 4. In Section 5 we prove the relevant results about the type
system. We show the algorithmic presentation of the type system in Section 6, and finally in
the Conclusion we discuss related and future work.

2 Untyped Calculus

The syntax and reduction rules of the untyped calculus are given in Figure 1, where we leave
unspecified constructs of primitive types such as integers, which we will use in the examples.
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t :: = . . . | v | x term
| t1 t2 application
| t X name application
| t1 � t2 rebinding operator
| !t run
| t1 C t2 overriding
| σ1ntoσ2 renaming operator

u :: = x1 7→ X1, . . . , xm 7→ Xm unbinding map
r :: = X1 7→ t1, . . . ,Xm 7→ tm rebinding map
σ :: = X1 7→ Y1, . . . ,Xm 7→ Ym renaming
X ,Y :: = N | α name
v :: = . . . | λx.t | 〈u | t〉 | 〈u | r〉 | Λα.t value
E :: = [ ] | . . . | E t | v E | E X | E � t | v � E | !E | E C t evaluation context

| v C E | σ1nEoσ2
s :: = x1 7→ t1, . . . , xm 7→ tm substitution

(Ctx)
t −→ t′

E [t] −→ E [t′] (App) (λx.t) v −→ t{x 7→ v}

(Name-App) (Λα.t) N −→ t{α 7→ N}

(Reb-App)
〈u|r〉 � 〈u1, u2|t〉 −→ 〈u, u2|t{x 7→ r(u1(x))|x∈dom(u1)}〉

rng(u2)∩dom(r) = ∅

(Run) !〈 | t〉 −→ t (Over)
〈u1 | r1〉C 〈u2 | r2〉 −→ 〈u1, u2 | r1[r2]〉

(Rename)
σ1n〈u | r〉oσ2 −→ 〈σ1 ◦ u | r ◦ σ2〉

Figure 1 Untyped calculus: syntax and reduction rules

We assume infinite sets of variables x, name constants N and name variables α. We use
X ,Y to range over names which are either name constants or name variables.

We use various kinds of (sequences which represent) finite maps: unbinding maps u from
variables to names, rebinding maps r from names to terms, renamings σ from names to
names, and substitutions s from variables to terms. Order and repetitions are immaterial in
such sequences. Moreover, in well-formed terms, they are assumed to be actually maps, that
is, e.g., given a rebinding, X1 7→ t1, . . . ,Xm 7→ tm, if Xi = Xj then ti = tj . Hence, we can
use the following notations: dom and rng for the domain and range, respectively, r1 ◦ r2 for
map composition, assuming rng(r2) ⊆ dom(r1), r1, r2 for the union of two maps, and r1[r2]
for the map coinciding with r2 wherever the latter is defined, with r1 elsewhere.

Besides lambda-abstractions and values of primitive types, there are three new kinds of
values in the calculus: unbound terms 〈u | t〉, rebindings 〈u | r〉 and name abstractions Λα.t.

An unbound term, e.g., 〈x 7→ N | x+1〉, represents code which is not directly used but,
rather, “boxed”, as the brackets suggest. This boxed code is possibly open, and can be
dynamically rebound through a nominal interface.

TYPES 2015
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Conversely, a rebinding represents code which can be used to dynamically rebind
open code. A rebinding can be unbound as well, that is, its code can be open, as in
〈x 7→ N | N1 7→ 0,N2 7→ 1+x〉. According to the sequence notation, an unbound term with
an empty unbinding map is simply written 〈 | t〉, and analogously for a rebinding.

Name abstractions can be used to write terms which are parametric w.r.t. the nominal
interface, e.g., Λα.〈x 7→ α | x+1〉 is the parametric version of the above unbound term. Note
that, differently from, e.g., [12], we take a stratified approach where names are not terms,
to keep separate the conventional language, which is here lambda-calculus for simplicity,
from the meta-level constructs, whose semantics is in principle independent. Hence, we have
ad-hoc constructs for name abstraction and name application.

Besides values and variables, terms include compound terms constructed by the following
operators: application, name application, rebinding, run, overriding, and renaming. They
are illustrated together with reduction rules given in Figure 1.

Rule (Ctx) is the usual contextual closure.
Rule (App) is standard. The application of a substitution to a term, t{s}, is defined in the

standard way. Note that a variable occurrence in the domain of an unbinding map behaves
like a λ-binder. Hence, the variables in dom(u) are not free in 〈u | t〉, and not subject to
substitution.

In a name application t X , t and X are expected to reduce to a name abstraction, and
a name constant, respectively. The name abstraction is applied to the name constant, as
modeled by rule (Name-App). The application of a name substitution to a term, t{α 7→ N}, that
is, substitution of a name variable with a name constant, is defined in the standard way. In
particular, the only construct that introduces binders is name abstraction, whereas name sub-
stitution has to be propagated also to unbinding maps, rebinding maps, and renamings. Note
that, by name substitution, we could obtain ill-formed terms, e.g., 〈 | α 7→ 0,N 7→ 1〉{α 7→ N}
gives 〈 | 〈 | N 7→ 0,N 7→ 1〉〉. Since reduction is defined on well-formed terms, in this case
the rule cannot be applied.

In a term t1 � t2, the arguments of the rebinding operator t1 and t2 are expected to
reduce to a rebinding and to an unbound term, respectively. When the rebinding is applied
to the unbound term, rule (Reb-App), all the variables associated with names provided by
the rebinding (side condition rng(u2) ∩ dom(r) = ∅) are replaced by the corresponding
terms, and are therefore removed from the unbinding map of the unbound term. However,
the unbinding map of the resulting unbound term is augmented with the unbinding map
of the rebinding term. The condition dom(u) ∩ dom(u2) = ∅, implicitly required for the
well-formedness of u, u2, can be always satisfied by applying a suitable α-renaming to one
of the two terms. We also tacitly assume that the rule is applicable only when r(u1(x)) is
defined for all x ∈ dom(u1), that is, rng(u1) ⊆ dom(r). For instance,

〈y 7→ N2 | N1 7→ y+2,N3 7→ y〉 � 〈x 7→ N1, y 7→ N2 | x+y〉

reduces to 〈y 7→ N2, y′ 7→ N2 | (y+2)+y′〉.
In a term !t, the argument of the run operator is expected to reduce to an unbound

term with no names to be rebound, which can be “unboxed”, rule (Run). For instance,
!〈 | 0+1〉 reduces to 0+1, which can then be evaluated. Unbound terms can be unboxed and
executed through the run operator only after their open code has been completed through
one or more applications of rebindings so that they do not contain unbound variables; for
instance, the unbound term 〈x 7→ N | x+1〉 can be made self-contained with the rebinding
〈 | N 7→ 0,N ′ 7→ 1〉.

In a term t1 C t2, the arguments of the overriding operator are expected to reduce to two
rebindings. Rule (Over) allows one to merge the two rebindings giving preference to the right
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one in case of conflict. Unbinding maps u1 and u2 are simply merged together (hence, names
are shared). As it happens for rule (Reb-App), the implicit condition dom(u1) ∩ dom(u2) = ∅
can be always satisfied by applying a suitable α-renaming to one of the two terms. For
instance,

〈x 7→ N1 | N2 7→ x 1,N3 7→ 1〉C 〈x 7→ N1 | N3 7→ 2,N4 7→ x 2〉

reduces to 〈x 7→ N1, x ′ 7→ N1 | N2 7→ x 1,N3 7→ 2,N4 7→ x ′ 2〉.
In a term σ1ntoσ2, the argument of the renaming operator is expected to reduce to a

rebinding 〈u | r〉. The renaming operator is used for adapting the nominal interfaces of the
unbinding and rebinding map u and r , respectively, rule (Rename). With the renaming σ1 it
is possible to merge names, while with σ2 one can duplicate and remove terms; for instance

(N1 7→ N2,N2 7→ N2)n〈x 7→ N1, y 7→ N2 | N1 7→ 0,N3 7→ 1〉o(N1 7→ N1,N2 7→ N1)

reduces to 〈x 7→ N2, y 7→ N2 | N1 7→ 0,N2 7→ 0〉. As for rule (Reb-App), we tacitly assume that
rng(u) ⊆ dom(σ1) and rng(σ) ⊆ dom(r2) respectively hold.

Renamings and name abstractions can be used together to favor dynamic software
adaptation and reuse. For instance, the term

t = Λα1.Λα2.λxr .(nxro(N1 7→ α1,N2 7→ α2)) � 〈x1 7→ N1, x2 7→ N2 | x1 x2〉

is expected to take a rebinding xr with generic shape 〈 | α1 7→ t1, α2 7→ t2, . . .〉, to adapt it
by renaming and then to apply it to the unbound term 〈x1 7→ N1, x2 7→ N2 | x1 x2〉; as an
example, t N3 N4 〈 | N3 7→ λx.x+1,N4 7→ 1〉 reduces (in some steps) to 2.

To make the paper self-contained, we briefly recall some examples which show the role of
our calculus as unifying foundation for dynamic scoping, rebinding, and meta-programming
features, referring to [1, 2] for other examples and more explanations. Then, we illustrate
in more detail two examples, that is, selection of an arbitrary component of a module, and
adaptation of mixins (also used in Section 4), which illustrate the expressive power of the name
variables introduced in this paper. In the examples we use the let construct, let x = t1 in t2,
as syntactic sugar for (λx.t2) t1.

Dynamic Scoping

In our calculus, names play the role of dynamic variables, and dynamic scoping can be
encoded by unbinding and rebinding, e.g., in the traditional example

let x=3 in
let f= lambda y.x+y in

let x=5 in
f 1

dynamic scoping, which leads to result 6 rather than 4, can be encoded as follows:

let x=3 in
let f= lambda y.<x 7→ X | x+y> in

let x=5 in
!(< | X 7→ x> � (f 1))

TYPES 2015
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Rebinding of marshalled computations

Assuming to enrich the calculus with primitives for concurrency, we can model exchange of
mobile code, which may contain unbound variables to be rebound by the receiver, by the
parallel composition tsnd || trcv where tsnd is defined by

let x = tx in
let y = ty in

let f_code = < x 7→ X, y 7→ Y | t(x,y)> in
let f = !(< | X 7→ x, Y 7→ y> � f_code ) in
t(f) //f is used locally
send( f_code ). nil

and trcv is defined by

let x = tnew
x in

receive ( f_code ). send (< | X 7→ x> � f_code ). nil

In this example, open code f_code is first used locally in the process on the left-hand side
of the parallel operator, binding resources x and y to their local versions, and then sent to
the process on the right-hand side. Note that incremental rebinding allows this process to
receive the code, to provide a new version of the resource x, and to resend still open code.
Here t(x,y) and t(f) are terms with free variables x,y and f, respectively.

Multi-stage programming

First of all, note that a rebinding of shape 〈y 7→ Y | Y 7→ f y〉, where f is some function, acts
as a filter which, applied to an open code of shape 〈y 7→ Y | y〉, transforms it in 〈y 7→ Y | f y〉.
Hence, a repeated application obtained, e.g., by recursion, transforms the original open code
in 〈y 7→ Y | fn y〉.

This “recursive rebinding pattern” is used in the example below, one of the most typically
used in literature for illustrating program specialization via generative programming: the
power function pow which, taken the integer n, returns the optimized function lambda x.x*. . .*x
computing xn.

let rec aux_pow = lambda n.
if n>0 then <x 7→ X, y 7→ Y | Y 7→ x*y> � aux_pow (n -1)
else <y 7→ Y | y>

let pow = lambda n.
let f = < | Y 7→ 1> � ( aux_pow n) in

lambda x. !(< | X 7→ x> � f)

Multi-staging is obtained by incrementally rebinding unbound terms; the recursive
function aux_pow returns an unbound term which depends on the two names X and Y: the
former corresponds to the base, whereas the latter is used as a hook to generate the desired
specialization, and then it is bound to 1 in the pow function. We refer to [4] for more details
and an example of computation.

We now turn to show more in details two examples which illustrate the expressive power
of the notion of name variable introduced in this paper.

Module/component selection

Rebinding terms directly support the notion of module/component. We have already shown
[2] how member selection of closed (that is, where all dependencies have been resolved)
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modules/components can be encoded. For instance, the following term encodes an operator
which selects the Y member of a (closed) module represented by a rebinding:

ts =lambda x. !(x � < y 7→ Y | y >)

For instance the term ts < | X 7→0, Y 7→42> evaluates to 42. However, in this way selection
can be encoded only for a single fixed name constant (Y in this specific case).

With the newly introduced construct of name abstraction, a generic definition of the
selection operator can be provided by a single term of the calculus.

t′s =Lambda α. lambda x. !(x � < y 7→ α | y >)

In this way, the same term t′s can be used for selecting members associated with arbitrary
names. For instance, if t =< | F 7→lambda n.n+1, N7→ 41>, then (t′s F t) (t′s N t) evaluates
to 42.

In mainstream object-oriented languages such meta-programming facilities are supported
either by specific libraries for reflection, or by more flexible constructs, as the JavaScript
bracket notation. In all cases, no static checking is performed to ensure that the selected
names will be always defined at runtime.

For instance, with the use of the bracket notation in JavaScript1 it is possible to define
the following function:

function select (name , object ){ return object [name ]}

The notation e1[e2] allows programmers to access properties of the object denoted by e1
whose name is defined by the arbitrary expression e2. Therefore, select ("val",{val:42})
returns 42, whereas select ("foo",{val:42}) is undefined.

Adaptation of mixins

Mixin classes [5] and mixin modules [3] are notions commonly employed in generic program-
ming to support software reuse.

Among statically typed mainstream object-oriented programming languages, mixins are
only supported by C++, with templates, see [15]. The following class template defines class
CheckedMixin which is parametric in its base class, represented by the template parameter B.

template <class B>
class CheckedMixin : public B {
public :

static int checked_op (int value) {
if(B:: in_bounds (value ))

return B::op(value );
else

throw std :: logic_error (" Illegal argument ");
}

};

The mixin adds the static method checked_op, and can be instantiated with classes defining
op(int) and in_bounds(int), as in the following code fragment:

1 All examples presented here are compliant with the ECMAScript 5 syntax, although some of them could
be written in a slightly more concise way by using the new features and shorthands introduced with the
recently released specification of ECMAScript 6.
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class Sqrt {
public :

static int op(int value) { return sqrt(value ); }
static bool in_bounds (int value ){ return value >= 0; }

};

class Checked_sqrt : public CheckedMixin <Sqrt > { };

int main () {
assert ( Checked_sqrt :: checked_op (4)==2) ;
assert ( Checked_sqrt ::op ( -4)!=2) ;
assert ( Checked_sqrt :: checked_op ( -4)!=2) ; // throws logic_error

}

Thanks to the generic code defined by CheckedMixin, class Sqrt is extended with the static
method checked_op which checks whether the argument is non negative, before applying the
static method op which, in turn, applies the library function2 sqrt.

The main limitation of mixins implemented with C++ class templates is their inability
to be adapted to classes where methods have names different from those chosen in the
mixin. In the case of CheckedMixin, the parametric base class must provide static methods
named op(int) and in_bounds(int). Furthermore, typechecking of C++ templates is not
compositional, therefore such constraints are checked every time the template is instantiated.

Dynamic languages, as JavaScript [10], allow, instead, adaptation of mixins, in the sense
that they can be parameterized not only on the implementation, but also on the name, of a
required method.

In this case the mixin is defined by a function3 taking three arguments that are expected
to contain strings: op denotes the name of the operation that has to be checked, in_bounds
denotes the name of the operation that performs the check, and new_op denotes the name of
the newly added operation corresponding to the checked version of op.

function CheckedMixin (op ,in_bounds , new_op ){
this[ new_op ] = function (x){

if (! this[ in_bounds ](x))
throw new Error(’Illegal argument ’)

return this[op](x)
}

}

Thanks to the bracket notation the programmer can pass to the CheckedMixin function the
proper strings to adapt the instances of CheckedMixin.

var sqrt ={ // a new object with two properties
sqrt:Math.sqrt ,
check_arg : function (x){ return x >=0}

}
var chk_sqrt =new CheckedMixin (’sqrt ’,’check_arg ’,’checked_sqrt ’)
Object . setPrototypeOf (chk_sqrt ,sqrt) // sqrt prototype of chk_sqrt
chk_sqrt .sqrt (-4) // evaluates to NaN

2 Function sqrt does not perform any check, unless math_errhandling has the constant MATH_ERREXCEPT
set.

3 We recall that JavaScript is a prototype-based language where objects are dynamically created through
functions, although an equivalent class-based notation has been introduced in ECMAScript 6.
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chk_sqrt . checked_sqrt (4) // evaluates to 2
chk_sqrt . checked_sqrt (-4) // throws Error: Illegal argument

The same function CheckedMixin can be used to extend an object which computes the log
function.

var log ={ // a new object with two properties
log:Math.log10 ,
check_arg : function (x){ return x >=0}

}
var chk_log =new CheckedMixin (’log ’,’check_arg ’,’safe_log ’)
Object . setPrototypeOf (chk_log ,log) // log prototype of chk_log
chk_log .log ( -10) // evaluates to NaN
chk_log . safe_log (10) // evaluates to 1
chk_log . safe_log ( -10) // throws Error: Illegal argument

Thanks to the support for name manipulation, mixin adaptation and application can
be expressed in our calculus; furthermore, as will be shown in Section 3, compositional
typechecking ensures the type correctness of mixin adaptation and application. The JavaScript
example given above can be recast4 in our calculus as follows:

tm =Lambda αop. Lambda αin b. Lambda αn op. lambda r.
let n op =

!(r � < op 7→ αop , in b 7→ αin b| lambda x. if (not in b(x)) -1 else op(x)>)
in r C < | αn op 7→ n op >

As in the previous example, the mixin takes three names αop, αin b, and αn op, corresponding
to the name of the operation that has to be checked, the name of the operation that performs
the check, and the name of the newly added operation which is the checked version of the
operation αop. Then it takes a rebinding r, which is expected to provide a definition for the
operations αop and αin b, and that is applied to an unbound term which defines the new
operation in terms of αop and αin b. The result of the application of the rebinding is run
to get the value corresponding to the new operation, and, finally, the rebinding is extended
with the new component by means of the overriding operator.

3 Typed Calculus

Figure 2 shows the syntax of the typed calculus, which is extended by annotating variables
and names with types, and name variables with constraints, as explained in detail below.

Constraints c are sequences of inequalities X 6= Y . We assume that c is a set, that is,
order and repetitions are immaterial, and, moreover, inequalities of shape N1 6= N2 for N1
and N2 different names are immaterial as well, that is, we can always assume that c does not
contain such inequalities.

Types includes function types, constrained name-polymorphic types, unbound types
〈∆ | T 〉, and rebinding types 〈∆1 | ∆2〉ν . For simplicity we omit basic types for primitive
values such as integers or booleans. In the explanations that follow, we illustrate in more
detail the new feature of the type system, that is, constrained name-polymorphic types. The
reader can refer to our previous work [1, 2] for more explanations and examples on unbound
types and open/closed rebinding types.

4 Since the calculus does not support exceptions, in case the bounds are not verified the function simply
returns the conventional value -1.
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t :: = . . . | λx:T .t | 〈u | t〉 | 〈u | r〉 | Λα:c.t | x | t1 t2 | t X |
t1 � t2 | !t | t1 C t2 | σ1ntoσ2 term

u :: = x1:T1 7→ X1, . . . , xm:Tm 7→ Xm unbinding map
r :: = X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm rebinding map
σ :: = X1 7→ Y1, . . . ,Xm 7→ Ym renaming
X ,Y :: = N | α name
T :: = . . . |T1 → T2 | ∀α:c.T | 〈∆ | T〉 | 〈∆1 | ∆2〉ν type
c :: = X1 6=Y1 . . .Xm 6=Ym constraints
∆ :: = X1:T1, . . . ,Xm:Tm name context
ν :: = ◦ | + (variance) annotation
Σ :: = A; c; Γ typing context
A :: = α1 . . . αn name variables
Γ :: = x1:T1, . . . , xm:Tm variable context

Figure 2 Typed calculus: syntax

Function types correspond to lambda abstractions, where the variable is now annotated
with a type.

Constrained name-polymorphic types correspond to name abstractions, where the name
variable is now annotated with constraints. Constraints are necessary to guarantee that for
each possible instantiation of the name variable we get well-formed terms and types. For
instance, the term Λα:α 6= N .〈 | N :int 7→ 0, α:int 7→ 1〉 is a rebinding parametric in the
name of one of its two components, which, however, must be different from the constant
name N of the other component.

Unbound types 〈∆ | T 〉 correspond to open code: ∆ is a sequence X1:T1, . . . ,Xm:Tm
called name context. The type specifies that the open code needs the rebinding of the names
Xi to terms of type Ti (1 ≤ i ≤ m) in order to correctly produce a term of type T .

Rebinding types 〈∆1 | ∆2〉ν correspond to rebindings; the name context ∆1 specifies the
names which the rebinding depends on, while the name context ∆2 = X1:T1, . . . ,Xm:Tm
specifies that the rebinding map associates each name Xi with a term of type Ti (1 ≤ i ≤ m).
If the type is annotated with ν = +, then we say that the type is open (or non-exact), and
the rebinding map is allowed to contain more associations than those specified in the name
context. The annotation ν = ◦ is used for closed (or exact) types, to enforce that the domain
of the rebinding map exactly coincides with the domain of ∆2. In the typing rules we will
use the binary operator t over annotations, defined by ◦ t ν = ν t ◦ = ν, and + t+ = +.

Renamings, as well as values, evaluation contexts, and substitutions are defined as for
the untyped language.

3.1 Well-Formedness
Figure 3 defines well-formed names, constraints, types, name contexts, rebinding maps and
renamings. We say that X could be equal to Y under c, written c |= X ?=Y , if X 6= Y 6∈ c
and Y 6= X 6∈ c, and that all constraints in c refer to α, written α 
 c, if for all Y 6= X in c,
either X = α or Y = α.

A name X is well-formed under name variables A (written A ` X) if it is either a name
constant, rule (WF-name-const), or a name variable in A, rule (WF-name-var).

A set of constraints c is well-formed under name variables A, written A ` c, if variables
occurring in c belong to A.

Well-formedness of a type T under name variables A and constraints c is written
A; c ` T OK.
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(WF-name-const) A ` N (WF-name-var) A ` α α ∈ A

(WF-empty-cons) A ` (WF-non-empty-cons)
A ` X1 A ` X2 A ` c

A ` X1 6= X2, c
not X1 = X2

(WF-arrow-type)
A; c ` T OK A; c ` T ′ OK

A; c ` T → T ′ OK
(WF-name-arrow-type)

A ∪ {α} ` c′ α 
 c′
A ∪ {α}; c, c′ ` T OK

A; c ` ∀α:c′.T OK
α 6∈ A

(WF-unb-type)
A; c ` ∆ OK A; c ` T OK

A; c ` 〈∆ | T〉 OK
(WF-reb-type)

A; c ` ∆′ OK A; c ` ∆ OK
A; c ` 〈∆′ | ∆〉ν OK

(WF-name-ctx)

A; c ` Tk OK (1 ≤ k ≤ m) A ` Xk (1 ≤ k ≤ m)
c |= Xi

?=Xj ⇒ Ti = Tj (1 ≤ i, j ≤ m)
A; c ` X1:T1, . . . ,Xn:Tm OK

(WF-reb-map)
A ` Xk (1 ≤ k ≤ m) c |= Xi

?=Xj ⇒ ti = tj (1 ≤ i, j ≤ m)
A; c ` X1 7→ t1, . . . ,Xm 7→ tm OK

(WF-ren)
A ` Xk (1 ≤ k ≤ m) A ` Yk (1 ≤ k ≤ m) c |= Xi

?=Xj ⇒ Yi = Yj (1 ≤ i, j ≤ m)
A; c ` X1 7→ Y1, . . . ,Xm 7→ Ym OK

Figure 3 Well-formed names, constraints, types, name contexts, rebinding maps, and renamings

The side condition α 6∈ A in (WF-name-arrow-type) avoids unsoundness caused by conflicts
between name variables; otherwise, for instance, the type ∀α:α 6= N .∀α:.〈N :int, α:bool | int〉
would be considered well-formed, because the constraint α 6= N referring to the outer
binder could be erroneously used also for the inner binder; however, in the unbound type
〈N :int, α:bool | int〉, α is bound to the inner binder α for which the constraint α 6= N
required for guaranteeing that the type is well-formed (see below) is missing. The side
condition α 6∈ A can be always satisfied by renaming the type variable; for instance, given the
type ∀α:.∀α:α 6= N .〈N :int, α′bool | int〉, it is possible to derive that the equivalent type
∀α:.∀α′:α′ 6= N .〈N :int, α′:bool | int〉 is well-formed, with α′ any name variable different
from α.

An unbound type is well-formed under name variables A and constraints c only if types
occurring in the sequence are well-formed, name variables occurring in the sequence belong
to A, and names which could be equal under c are mapped to the same type, as specified by
rules (WF-unb-type) and (WF-name-ctx) in Figure 3.

A rebinding type is well-formed under name variables A and constraints c only if types
occurring in the sequences ∆1 and ∆2 are well-formed, name variables occurring in the
sequences belong to A, and names which could be equal under c are mapped in the same
type, analogously to what is required for an unbound term, as specified by rules (WF-reb-type)

and (WF-name-ctx) in Figure 3.
(Untyped) rebinding maps are well-formed if names which could be equal under c are

mapped in the same term, and name variables belong to A, as specified by rule (WF-reb-map).
Well-formedness of renamings requires that name variables belong to A, and names which

could be equal under c are mapped in the same name, as specified by rule (WF-ren).
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A; c ` T OK A; c ` t OK
A; c ` λx:T .t OK

A ` Xi (1 ≤ i ≤ m) A; c ` Ti OK (1 ≤ i ≤ m) A; c ` t OK
A; c ` 〈x1:T1 7→ X1, . . . , xm:Tm 7→ Xm | t〉 OK

A ` Xi (1 ≤ i ≤ m) A; c ` Ti OK (1 ≤ i ≤ m) A; c ` r OK
A; c ` 〈x1:T1 7→ X1, . . . , xm:Tm 7→ Xm | r〉 OK

A ∪ {α} ` c′ α 
 c′ A ∪ {α}; c, c′ ` t OK
A; c ` Λα:c′.t OK

α 6∈ A

A; c ` t1 OK A; c ` t2 OK
A; c ` t1 t2 OK A; c ` t1 � t2 OK A; c ` t1 C t2 OK

A ` c{α 7→ X} A; c ` t OK
A; c ` t X OK

A; c ` x OK
A; c ` t OK
A; c ` !t OK

A; c ` σi OK (1 ≤ i ≤ 2) A; c ` t OK
A; c ` σ1ntoσ2 OK

Figure 4 Well-formed terms

(Sub-arr)
` T ′1 ≤ T1 ` T2 ≤ T ′2
` T1 → T2 ≤ T ′1 → T ′2

(Sub-name-arr)
c2 ` c1 ` T1 ≤ T2

` ∀α:c1.T1 ≤ ∀α:c2.T2

(Sub-unb)
` ∆′ ≤ ∆ ` T ≤ T ′

` 〈∆ | T〉 ≤ 〈∆′ | T ′〉 (Sub-open-reb)
` ∆′1 ≤ ∆1 ` ∆2 ≤ ∆′2
` 〈∆1 | ∆2〉ν ≤ 〈∆′1 | ∆′2〉

+

(Sub-closed-reb)
` ∆′1 ≤ ∆1 ` Ti ≤ T ′i (1 ≤ i ≤ n)

` 〈∆1 | X1:T1, . . . ,Xn:Tn〉◦ ≤ 〈∆′1 | X1:T ′1, . . . ,Xn:T ′n〉◦

(Sub-name-ctx)
∀i (1 ≤ i ≤ n) ∃j (1 ≤ j ≤ m) X ′i = Xj ∧ ` Tj ≤ T ′i

` X1:T1, . . . ,Xm:Tm ≤ X ′1:T ′1, . . . ,X ′n:T ′n

Figure 5 Typed calculus: subtyping rules

The notion of well-formedness is extended to typed terms in Figure 4. Note that, if
∅; ∅ ` t OK, then the erasure of t obtained by removing the type annotations is well-formed
in the sense of Section 2.

3.2 Subtyping
The subtyping relation ` T ≤ T ′ is defined in Figure 5.

Subtyping between function types is standard. A constrained polymorphic type can
be made more specific by relaxing the constraints (constraint entailment is defined in
Figure 6) or making more specific the type obtained by instantiation, while the two binders
can always be made equal by a suitable α-renaming. For instance, ` ∀α1:α1 6= α2.T ≤
∀α1:α1 6= N , α2 6= α1.T is derivable.

Subtyping between unbound types obeys a rule similar to that for function types: the
relation is contravariant in the name context, and covariant in the type returned after
rebinding. Subtyping between name contexts is defined by the usual rule for record subtyping:
both width and depth subtyping are allowed. Width and depth subtyping are also allowed
between rebinding types, in case the right-hand side (rhs for short) type in the relation is
open, because a closed type can always be considered as an open type, but not the other way
around. This is a consequence of the fact that closed types express more restrictive constraints
on rebinding maps. For instance, the rebinding 〈 | X :TX 7→ tx ,Y :TY 7→ ty〉 has, for any ∆,
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(Ent-empty) c ` ∅ (Ent-var)
c1 ` c2

c1 ` X1 6= X2, c2
X1 6= X2 ∈ c1 or X2 6= X1 ∈ c1

Figure 6 Constraint entailment

type 〈∆ | X :TX ,Y :TY 〉ν for both ν = + and ν = ◦, whereas it has type 〈∆ | X :TX〉ν only
for ν = +; note also that the most precise type for this term is 〈 | X :TX ,Y :TY 〉◦. When
the rhs type in the subtyping relation is a closed rebinding type, then the lhs type must be
closed as well, and, therefore, it must define the same set of names; in this case only depth
subtyping is allowed.

Figure 6 defines constraint entailment.
Rule (Ent-empty) states that the empty set of constraints is always entailed; rule (Ent-var)

states that X1 6= X2 is entailed from c if it is contained in c, up to symmetry. Since set of
constraints must be satisfiable, as specified in rule (WF-non-empty-cons) in Figure 3, the case
c1 ` c2 where c1 contains X 6= X is not considered.

3.3 Typing Rules
The typing judgment has shape A; c; Γ ` t : T , meaning that the term t has type T under
the name variables A, constraints c, and context Γ providing types for the free variables.
The typing rules are given in Figure 7.

The type system supports subsumption, as specified by rule (T-Sub); T ′ is required to
be well-formed, whereas the fact that T is well-formed can be derived from the premise
A; c; Γ ` t : T , as we will state in Lemma 5; indeed, it can be proved by induction on the
typing rules that if A; c; Γ ` t : T is derivable, then T is well-formed.

Rule (T-Abs) for lambda abstractions is standard.
In rule (T-Name-Abs), the term Λα′:c′.t is well-typed if the introduced constraints c′ are

consistent under the current name variables augmented by α′, t is well-typed taking the
union of the constraints, and the set of constraints c′ refer to α′. At the end of Section 4, we
show an example of how this last requirement is necessary for the proof of correctness.

In rule (T-Unb), the term 〈u | t〉 is well-typed if the name context extracted from u by
the auxiliary function name_ctx, say, X1:T1, . . . ,Xm:Tm , is well-formed under the current
name variables and constraints, that is, Xi belongs to A if it is a name variable, and, if Xi

could be equal to Xj under c, then they are mapped in the same type. The resulting type T
is obtained by typing t in the context updated by that extracted from u by the auxiliary
function ctx. Both auxiliary functions are defined at the bottom of Figure 7.

In rule (T-Reb), the term 〈u | r〉 is well-typed if the name contexts extracted from u and
r are well-formed under the current name variables and constraints. Moreover, r must be
well-formed under the current constraints, that is, names which could be equal are mapped
in the same term. Finally, for each name in the domain of r , annotated with type, say, T ,
the associated term must have type T in the context updated by that extracted from u by
the auxiliary function ctx. Note that an exact type can be always deduced.

Rules (T-Var) and (T-App) are standard.
In rule (T-Name-App), the term t X is well-typed if X belongs to A if it is a name variable,

t has a constrained polymorphic type ∀α:c′.T , and by replacing α by X in the constraints
c′ we do not get inequalities of shape Y 6=Y . In this case, the resulting type is obtained by
replacing α by X in T . The obvious definitions of replacing a name variable by a name in
constraints and types are omitted.
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(T-Sub)
A; c; Γ ` t : T A; c ` T ′ OK ` T ≤ T ′

A; c; Γ ` t : T ′ (T-Abs)
A; c ` T1 OK A; c; Γ[x:T1] ` t : T2

A; c; Γ ` λx:T1.t : T1 → T2

(T-Name-Abs)
A ∪ {α′} ` c′ A ∪ {α′}; c, c′; Γ ` t : T α′ 
 c′

A; c; Γ ` Λα′:c′.t : ∀α′:c′.T α′ 6∈ A

(T-Unb)
A; c ` ∆ OK A; c; Γ[Γ′] ` t : T

A; c; Γ ` 〈u | t〉 : 〈∆ | T〉
name_ctx(u) = ∆
ctx(u) = Γ′

(T-Reb)

A; c ` X1 7→ t1, . . . ,Xm 7→ tm OK
A; c ` 〈∆1 | ∆2〉◦ OK A; c; Γ[Γ′] ` ti : Ti (1 ≤ i ≤ m)

A; c; Γ ` 〈u | X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm〉 : 〈∆1 | ∆2〉◦
name_ctx(u) = ∆1

ctx(u) = Γ′
∆2 = X1:T1, . . . ,Xm:Tm

(T-Var) A; c; Γ ` x : T Γ(x) = T (T-App)
Σ ` t1 : T1 → T2 Σ ` t2 : T1

Σ ` t1 t2 : T2

(T-Name-App)
A− {α} ` c′{α 7→ X} A; c; Γ ` t : ∀α:c′.T A ` X

A; c; Γ ` t X : T{α 7→ X}

(T-Over)

A; c ` ∆1,∆2 OK
A; c; Γ ` t1 : 〈∆ | ∆1,∆′1〉

ν1 A; c; Γ ` t2 : 〈∆ | ∆2〉ν2

A; c; Γ ` t1 C t2 : 〈∆ | ∆1,∆2〉ν1tν2

(∆1 = ∅ or ν2 = ◦) and
dom(∆′1) ⊆ dom(∆2)

(T-Run)
A; c; Γ ` t : 〈 | T〉

A; c; Γ ` !t : T

(T-Reb-App)

A; c ` ∆1,∆2 OK
A; c; Γ ` t1 : 〈∆′,∆1 | ∆,∆2〉ν A; c; Γ ` t2 : 〈∆,∆1 | T〉

A; c; Γ ` t1 � t2 : 〈∆′,∆1 | T〉
(∆1 = ∅ or ν = ◦) and
dom(∆1) ∩ dom(∆2) = ∅

(T-Rename)
A; c ` σ1 OK A; c ` σ2 OK A; c ` σ1 ◦∆1 OK A; c; Γ ` t : 〈∆1 | ∆2〉ν

A; c; Γ ` σ1ntoσ2 : 〈σ1 ◦∆1 | ∆2 ◦ σ2〉◦

ctx(x1:T1 7→ X1, . . . , xm:Tm 7→ Xm) = x1:T1, . . . , xm:Tm
name_ctx(x1:T1 7→ X1, . . . , xm:Tm 7→ Xm) = X1:T1, . . . ,Xm:Tm

σ ◦∆ =

 ∆′ if dom(∆) ⊆ dom(σ)
and for all X ,T X :T ∈ ∆′ iff ∃Y Y :T ∈ ∆ ∧ σ(Y ) = X

undefined otherwise

∆ ◦ σ =

 ∆′ if rng(σ) ⊆ dom(∆)
and for all X ,T X :T ∈ ∆′ iff X ∈ dom(σ) ∧ T = ∆(σ(X))

undefined otherwise

Figure 7 Typed calculus: typing rules

In rule (T-Over), overriding t1 C t2 is well-typed only if t1 and t2 have rebinding types; the
name context of the type of t1 is deterministically split in two parts. The part ∆′1 corresponds
to names which are also defined in t2, as expressed by the side condition dom(∆′1) ⊆ dom(∆2),
hence are overridden, whereas the part ∆1 corresponds to names which are not defined in
t2. If ∆1 = ∅, then t1 is fully overridden, hence the name context of the result is that of t2;
in this particular case the type of t2 is allowed to be open, whereas if ∆1 6= ∅, then t2 is
required to have a closed type, otherwise it would not be possible to correctly identify ∆1.

The previously defined operator t combines the two annotations ν1 and ν2 so that the
resulting type is closed if and only if both types of t1 and t2 are closed.
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Note that, due to the presence of name variables, besides names which are necessarily
overridden, there are names which could be overridden in some instantiation. For instance,
in the term Λα:α 6= N1.〈 | N1:T1 7→ t1,N2:T2 7→ t2〉C 〈 | α:int 7→ 1〉, the name N1 is never
overridden, whereas the name N2 could be overridden for α = N2. The name context which
is assigned to the overriding term is that corresponding to the case of no overriding, that is,
N1:T1,N2:T2, α:int in this case. However, since this name context must be well-formed under
the constraints α 6= N1, the type T2 must necessarily be int, so that we get a well-formed
type even for the instantiation α = N2.

Rule (T-Run) states that a term of unbound type can be safely run only if its name context
is empty, that is, all variables have been already properly bound in the code.

The typing rule (T-Reb-App) for rebinding application t1 � t2 is similar to the typing rule
for overriding: to correctly identify the names in t1 that are not necessarily bound, denoted
by ∆1, the rule requires an exact type for t2, except when ∆1 = ∅ (that is, all names are
bound) for which an open type is allowed as well. This is due to the fact that the bound
names of t1 must have the same type of the corresponding names in t2, while additional
names in t2 not specified in the open type of t2 might be used for binding names of t1 with
incompatible types. Note that by applying subsumption, it is always possible to bind a name
with a term whose type is a subtype of the expected type.

Finally, in rule (T-Rename) for renaming, the two renamings must be well-formed under
current name variables and constraints, that is, the newly introduced names must be existing,
and names which could be equal are mapped in the same name. The name contexts of the
resulting type are propagated from the original ones by the auxiliary operators σ ◦∆ and
∆ ◦ σ, both partial, defined at the bottom of Figure 7. Note that if two names X and Y are
mapped by σ1 in two names which could be equal, then X and Y must have the same type,
as formally expressed by requiring the well-formedness of the name context σ1 ◦∆1.

4 Examples of typing

In this section we give some examples of type derivations. At the end, we present a name
abstraction term showing that: if constraint annotations are removed from name abstractions,
then there is not a “more general” way to infer such constraints in order to make the term
well typed.

For the typing derivations, we assume that our language supports the primitive types
of integers and booleans with their standard operators, semantics and typing. Moreover,
we assume to have the constructs let and if then else with the standard operational
semantics and typing rules. In particular, the let construct is typed as follows.

(T-Let)
A; c; Γ ` t′ : T ′ A; c; Γ[x:T ′] ` t : T A; c ` T ′ OK

A; c; Γ ` let x:T ′ = t′ in t : T

Let tm be the typed version of the mixin adaptation term defined at the end of Section 2:

Λαop:∅.Λαin b:ci.Λαn op:co.λr:Tr.let n op:T1 = !(r � 〈un|tn〉) in r C 〈 |αn op:T1 7→ n op〉

where
T1 = int→ int
T2 = int→ bool
ci = αin b 6=αop
co = αn op 6=αop, αn op 6=αin b
Tr = 〈 | αop:T1, αin b:T2〉+
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D1 A; ci, co ` Tr OK

A; ci, co; ∅ ` λr:Tr.tl : Tr→Tn r
(T-Abs) αn op 
 co

A ` co

{αop, αin b}; ci; ∅ ` Λ{αn op}:co.λr:Tr.tl : ∀{αn op}:co.Tr→Tn r
(T-Nm-Abs) αin b 
 ci

{αop, αin b} ` ci

{αop}; ∅; ∅ ` Λαin b:ci.Λαn op:co.λr:Tr.tl : ∀αin b:ci.∀αn op:co.Tr→Tn r
{αop} ` ∅ αop 
 ∅

(T-Nm-Abs)

∅; ∅; ∅ ` Λαop:∅.Λαin b:ci.Λαn op:co.λr:Tr.tl : ∀αop:∅.∀αin b:ci.∀αn op:co.Tr→Tn r
(T-Nm-Abs)

Tn r = 〈 | αop:T1, αin b:T2, αn op:T1〉+

tl = let n op:T1 = !(r � 〈un|tn〉) in r C 〈 |αn op:T1 7→ n op〉
A = {αop, αin b, αn op}

Figure 8 Typing derivation for the term t

A; ci, co; r:Tr ` r : Tr
(T-Var)

A; ci, co; r:Tr ` r � 〈un|tn〉 : 〈 |T1〉
(T-Reb-App)

D3

A; ci, co; r:Tr ` !(r � 〈un|tn〉) : T1
(T-Run)

D2

A; ci, co; r:Tr ` let n op:T1 = !(r � 〈un|tn〉) in r C 〈 |αn op:T1 7→ n op〉 : Tn r
(T-Let)

Figure 9 Typing derivation D1

tn = λx:int.if (not (in b x)) then −1 else (op x)
un = op:T1 7→ αop, in b:T2 7→ αin b

In Figures 8÷11 we give the derivation of ∅; ∅; ∅ ` tm : ∀αop:∅.∀αin b:ci.∀αn op:co.Tr → Tn r
With rule (T-Name-App), since there are no constraints on αop, we can derive

∅; ∅; ∅ ` tm N1 : ∀αin b:ci.(∀αn op:co.Tr → Tn r){αop 7→ N1}

for any name constants N1. Note that we cannot substitute a name variable, since the name
environment is empty. Again with rule (T-Name-App), we can derive

∅; ∅; ∅ ` (tm N1) N2 : (∀αn op:co.Tr → Tn r){αop 7→ N1, αin b 7→ N2}

In this case the name constant N2 must be such that ∅ ` (αin b 6=N1){αin b 7→ N2}. Finally,
we can derive

∅; ∅; ∅ ` ((tm N1) N2) N3 : (Tr → Tn r){αop 7→ N1, αin b 7→ N2αop 7→ N3}

where the name constant N3 must be such that ∅ ` (αn op 6=N1, αn op 6=N2){αn op 7→ N3}.
The typing derivation above is valid also if the constraint αn op 6=αop is removed from co;

indeed, rule (T-Over) can be correctly applied also when αn op 6=αop is not derivable, because
αn op and αop are associated with the same type. However, without the constraint αn op 6=αop
the user is allowed to override αop with αn op.

Note that, if we remove from the rule (T-Name-Abs) the condition that the constraint must
refer to the name variable introduced, we could give type
∀αop:∅.∀αin b:∅.∀αn op:ci, co.Tr → Tn r to the following term t′m

Λαop:∅.Λαin b:∅.Λαn op:ci, co.λr:Tr.let n op:T1 = !(r � 〈un|tn〉) in r C 〈 |αn op:T1 7→ n op〉

From this using (T-Name-App) twice we could get

∅; ∅; ∅ ` (t′m N ) N : (∀αn op:ci, co.Tr → Tn r){αop 7→ N , αin b 7→ N}

which is, however, a stuck term, since its subterm un{αop 7→ N , αin b 7→ N} = op:T1 7→
N , in b:T2 7→ N is not well-formed, and so cannot reduce with rule (Name-App) of Figure 1.
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A; c; Γ ` n op : T1
(T-Var)

A; c ` 〈 | αn op:T1〉◦ OK
A; c ` 〈|αn op:T1 7→ n op〉 OK

A; c; Γ ` 〈|αn op:T1 7→ n op〉 : 〈 | αn op:T1〉◦
(T-Reb)

A; c ` ∆ OK A; c; Γ ` r : Tr
(T-Var)

A; c; Γ ` r C 〈 |αn op:T1 7→ n op〉 : Tn r
(T-Over)

c = ci, co
Γ = r:Tr,n op:T1

∆ = αop:T1, αin b:T2, αn op:T1

Figure 10 Typing derivation D2

.... (T-If)

A; c; Γ′ ` if (not (in b x)) then −1 else (op x) : int
A; c; r:Tr, op:T1, in b:T2 ` tn : T1

(T-Abs)
A; c ` αop:T1, αin b:T2 OK

A; c; r:Tr ` 〈un|tn〉 : 〈αop:T1, αin b:T2 | T1〉
(T-Unb)

Γ′ = r:Tr, op:T1, in b:T2, x:int

Figure 11 Typing derivation D3

Exploring the possibility of inferring constraints on name variables, rather than explicitly
annotating name abstractions, is a more challenging research topic, since the type system
does not enjoy principality if constraint annotations are removed from name abstractions.
To see this, let us consider the following term:

t = Λα:c.(〈 |α:T1 7→ t1〉C 〈 |N :T2 7→ t2〉)

where

T1 = 〈 | N0:int,N1:int〉◦ t1 = 〈 |N0:int 7→ 0,N1:int 7→ 1〉
T2 = 〈 | N0:int〉◦ t2 = 〈 |N0:int 7→ 42〉

and N , N1 and N2 are distinct names.
One may think that the name abstraction t can be correctly typed only if c contains

the constraint α 6=N ; indeed, if c = α 6=N , then it is possible to derive the typing judgment
∅; ∅; ∅ ` t : ∀α:α 6=N .〈 | α:T1,N :T2〉◦.

However, the following different typing judgment can be derived if c = ∅: ∅; ∅; ∅ ` t :
∀α:∅.〈 | α:T ,N :T 〉◦, with T = 〈 | N0:int〉+; this is possible thanks to the subsumption
rule, and to the fact that T1 and T2 are both subtypes of T .

Surprisingly, neither of the typings above is “better” than the other, because the two types
associated with t are not comparable; indeed, both ` 〈 | α:T1,N :T2〉◦ ≤ 〈 | α:T ,N :T 〉◦

and α 6=N ` ∅ are derivable.

5 Results

First of all, we define consistency for a name substitution w.r.t. a set of constraints and
prove that applying a consistent name substitution to a well-formed element (type, name
context, rebinding, or renaming) produces a well-formed element.

I Definition 1. Let A and c be such that A ` c. A name substitution α 7→ N is consistent
with A and c if α ∈ A and A−{α} ` c{α 7→ N}.

I Lemma 2. Let A and c be such that A ` c, and let α 7→ N be consistent with A and c.
Let γ be T, ∆, r, or σ. If A; c ` γ OK, then A−{α}; c{α 7→ N} ` γ{α 7→ N} OK.
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Proof. By induction on the derivation of A; c ` γ OK and case analysis on the last applied
rule.

If the last applied rule is (WF-name-arrow-type), then γ = ∀α:c′.T ,
1. A ∪ {α′} ` c′,
2. α′ 
 c′
3. A ∪ {α′}; c, c′ ` T OK, and
4. α′ 6∈ A.
To apply the induction hypothesis on 3. we need to establish that A ∪ {α′} ` c, c′ and
that α 7→ N is consistent with A ∪ {α′} and c, c′.
From the assumption A ` c and 1. we have A ∪ {α′} ` c, c′.
From the assumption α 7→ N consistent with A and c, we have that A ` c{α 7→ N}.
Moreover, from 4., we get that α′ 6= α. From 2., if α occurs in c′ it can only be in a
constraint α′ 6= α or α 6= α′. So from N 6= α′ we have
1’. A ∪ {α′} ` c′{α 7→ N}
and A ∪ {α′} ` (c, c′){α 7→ N}. Therefore α 7→ N is consistent with A ∪ {α′} and c, c′.
By induction hypothesis on 3. we get
3′. (A ∪ {α′})− {α}; (c, c′){α 7→ N} ` T{α 7→ N} OK.
From 1′. since α does not occur in c′{α 7→ N} we derive that (A∪{α′})−{α} ` c′{α 7→ N}.
Therefore, from 2., 4. and 3′. applying rule (WF-name-arrow-type) we get

A−{α}; c{α 7→ N} ` X1:T1, . . . ,Xn:Tm{α 7→ N} OK.

If the last applied rule is (WF-name-ctx), then γ = X1:T1, . . . ,Xn:Tm
1. A; c ` Tk OK (1 ≤ k ≤ m),
2. A ` Xk(1 ≤ k ≤ m), and
3. c |= Xi

?=Xj ⇒ Ti = Tj (1 ≤ i, j ≤ m)
From the assumptions A ` c and α 7→ N consistent with A and c, by induction hypotheses
on 1., we have that
1′. A−{α}; c{α 7→ N} ` Tk{α 7→ N} OK (1 ≤ k ≤ m).
Let α = Xk for some k, 1 ≤ k ≤ m. From α 7→ N consistent with A and c we derive that
α 6= N 6∈ c and therefore c |= α

?=N . If c |= Xj
?=N for some j, 1 ≤ j ≤ m, then c |= Xj

?=α,
and, from 3., we have that Tj = Tk, which implies Tj{α 7→ N} = Tk{α 7→ N}. Therefore
3′. c{α 7→ N} |= Xi{α 7→ N} ?=Xj{α 7→ N} ⇒ Ti{α 7→ N} = Tj{α 7→ N} (1 ≤ i, j ≤
m)

It is immediate to see that, 3′. holds also for α 6∈ {X1, . . .Xm}. From 2. we derive that
2′. A−{α} ` Xk{α 7→ N}(1 ≤ k ≤ m).
Therefore, from 1′., 2′. and 3′., applying rule (WF-name-ctx) we derive

A−{α}; c{α 7→ N} ` ∀α:c′.T{α 7→ N} OK.

If the last applied rule is (WF-reb-map) or (WF-ren) the proof is similar to the previous one.
If the last applied rule is (WF-arrow-type), (WF-unb-type) or (WF-reb-type), the result follows
by induction hypotheses on the premises of the rules. J

The previous result may be proved also for terms.

I Lemma 3. Let A and c be such that A ` c, and let α 7→ N be consistent with A and c. If
A; c ` t OK, then A−{α}; c{α 7→ N} ` t{α 7→ N} OK.

Proof. Easy, using Lemma 2. J
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I Lemma 4 (Transitivity of ≤).
1. If ` ∆ ≤ ∆′ and ∆′ ≤ ∆′′, then ∆ ≤ ∆′′.
2. If ` T ≤ T ′ and ` T ′ ≤ T ′′, then ` T ≤ T ′′.

Proof. The two results are proved by simultaneous induction on derivations, considering the
rules of Figure 5.
1. If ` ∆ ≤ ∆′, and ` ∆′ ≤ ∆′′, then, in both cases, the last applied rule is (Sub-name-ctx).

Let ∆ = X1:T1, . . . ,Xm:Tm, ∆′ = X ′1:T ′1, . . . ,X ′n:T ′n and ∆′′ = X ′′1 :T ′′1 , . . . ,X ′′p :T ′′p . For
all X ′′i , 1 ≤ i ≤ p, from ` ∆′ ≤ ∆′′, there is X ′j , 1 ≤ j ≤ n, such that X ′′i = X ′j and
` T ′j ≤ T ′′i . Moreover, from ` ∆ ≤ ∆′, there is Xk, 1 ≤ k ≤ m, such that Xk = X ′j and
and ` Tk ≤ T ′j . Applying the inductions hypotheses 2. to ` T ′j ≤ T ′′i and ` Tk ≤ T ′j we
have that ` Tk ≤ T ′′i . Therefore, from (Sub-name-ctx) we have that ∆ ≤ ∆′′.

2. By cases on the last applied rule in the derivation of ` T ≤ T ′.
If the rule is (Sub-Arr), then T = T1 → T2, T ′ = T ′1 → T ′2, ` T ′1 ≤ T1, and ` T2 ≤ T ′2.
Since T ′ = T ′1 → T ′2, the last applied rule in the derivation of ` T ′ ≤ T ′′ must be
(Sub-Arr). Therefore, T ′′ = T ′′1 → T ′′2 , ` T ′′1 ≤ T ′1, and ` T ′2 ≤ T ′′2 . By induction
hypotheses on ` T ′1 ≤ T1 and ` T ′′1 ≤ T ′1, we derive that ` T ′′1 ≤ T1, and by induction
hypotheses on ` T2 ≤ T ′2 and ` T ′2 ≤ T ′′2 , we get ` T2 ≤ T ′′2 . Therefore, from rule
(Sub-Arr), we have that ` T ≤ T ′′.
Similarly if the rule is (Sub-unb) or (Sub-open-reb). The inductive hypotheses are on name
contexts and types.
If the rule is (Sub-closed-reb), then T = 〈∆1 | ∆2〉◦, T ′ = 〈∆′1 | ∆′2〉

◦, dom(∆2) =
dom(∆′2), ` ∆′1 ≤ ∆1, and ` ∆2 ≤ ∆′2. There are two cases: either the last applied
rule in the derivation of ` T ′ ≤ T ′′ is (Sub-closed-reb), or is (Sub-open-reb). In the first
case, T ′′ = 〈∆′′1 | ∆′′2〉

◦, and by inductive hypotheses we derive ` T ≤ T ′′ applying
rule (Sub-closed-reb). In the second case, T ′′ = 〈∆′′1 | ∆′′2〉

+, and by inductive hypotheses
we derive ` T ≤ T ′′ applying rule (Sub-open-reb).
If the rule is (Sub-name-arr), then T = ∀α:c1.T1, T ′ = ∀α:c2.T2, ` T1 ≤ T2, and
c, c2 ` c1. Since T ′ = ∀α:c2.T2, the last applied rule in the derivation of ` T ′ ≤ T ′′
must be (Sub-name-arr). Therefore, T ′′ = ∀α:c3.T3, ` T2 ≤ T3, and c, c3 ` c2. From
c, c2 ` c1 and c, c3 ` c2 we get c, c3 ` c1. By induction hypotheses on ` T1 ≤ T2
and ` T2 ≤ T3 we get ` T1 ≤ T3. Therefore, from rule (Sub-name-arr), we have that
` T ≤ T ′′. J

Well-typed terms are also well-formed and their type is well-formed.

I Lemma 5. Let A, c and Γ be such that: A ` c and for all x:T ′ ∈ Γ, we have that
A; c ` T ′ OK. If A; c; Γ ` t : T, then A; c ` T OK and A; c ` t OK.

Proof. By induction on the type derivation. J

Soundness of the type system w.r.t. the operational semantics states that well-typed
terms do not get stuck. This is derived from the subject reduction and progress properties.
To prove this properties we first need to introduce some lemmas.

I Lemma 6 (Inversion).
1. If A; c; Γ ` x : T, then A; c |= Γ(x) ≤ T.
2. If A; c; Γ ` λx:T1.t : T, then for some T2 we have that:

(a) ` T1 → T2 ≤ T, and
(b) A; c; Γ[x:T1] ` t : T2.

3. If A; c; Γ ` Λα′:c′.t : T, then for some T ′ we have that:
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(a) ` ∀α′:c′.T ′ ≤ T,
(b) A ∪ {α′}; c, c′; Γ ` t : T ′, and
(c) α′ 
 c′.

4. If A; c; Γ ` t1 t2 : T, then then for some T1 and T2 we have that:
(a) ` T2 ≤ T,
(b) A; c; Γ ` t1 : T1 → T2, and
(c) A; c; Γ ` t2 : T1.

5. If A; c; Γ ` 〈u | t〉 : T, then for some T ′ we have that:
(a) ` 〈name_ctx(u) | T ′〉 ≤ T,
(b) A; c; Γ[ctx(u)] ` t : T ′, and
(c) A; c ` name_ctx(u) OK.

6. If A; c; Γ ` 〈u | X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm〉 : T, let ∆1 = name_ctx(u) and ∆2 =
X1:T1, . . . ,Xm:Tm, we have that:
(a) ` 〈∆1 | ∆2〉◦ ≤ T,
(b) Γ[ctx(u)] ` ti : Ti (1 ≤ i ≤ m),
(c) A; c ` X1 7→ t1, . . . ,Xm 7→ tm OK, and
(d) A; c ` 〈∆1 | ∆2〉◦ OK.

7. If A; c; Γ ` t X : T, then for some T ′ and c′ we have that:
(a) ` T ′{α 7→ X} ≤ T,
(b) A; c; Γ ` t : ∀α:c′.T ′,
(c) A ` c′{α 7→ X} and A ` X.

8. If A; c; Γ ` !t : T, then for some T ′ we have that:
(a) ` T ′ ≤ T, and
(b) A; c; Γ ` t : 〈 | T ′〉.

9. If A; c; Γ ` t1 C t2 : T, then for some ∆, ∆∗, and ν we have that:
α. ` 〈∆ | ∆∗〉ν ≤ T,
β. A; c ` ∆∗ OK, and
(a) either for some ∆′1, ν1, and ν2 we have that:

(i) ν = ν1 t ν2,
(ii) A; c; Γ ` t2 : 〈∆ | ∆∗〉ν2 ,
(iii) A; c; Γ ` t1 : 〈∆ | ∆′1〉

ν1 , and
(iv) dom(∆′1) ⊆ dom(∆∗);

(b) or for some ∆1, ∆2, ∆′1 we have that:
(i) ∆∗ = ∆1,∆2 (dom(∆1) ∩ dom(∆2) = ∅),
(ii) A; c; Γ ` t2 : 〈∆ | ∆2〉◦,
(iii) A; c; Γ ` t1 : 〈∆ | ∆1,∆′1〉

ν (dom(∆1) ∩ dom(∆′1) = ∅), and
(iv) dom(∆′1) ⊆ dom(∆2).

10. If A; c; Γ ` t1 � t2 : T, then for some ∆1, ∆2, ∆′, and T ′ we have that:
α. ` 〈∆′,∆1 | T ′〉 ≤ T,
β. A; c ` ∆1,∆2 OK, and
(a) either ∆1 = ∅, and for some ν we have that:

(i) A; c; Γ ` t2 : 〈∆ | T ′〉,
(ii) A; c; Γ ` t1 : 〈∆′ | ∆,∆2〉ν (dom(∆) ∩ dom(∆2) = ∅);

(b) or we have that:
(i) A; c; Γ ` t2 : 〈∆,∆1 | T ′〉,
(ii) A; c; Γ ` t1 : 〈∆′,∆1 | ∆,∆2〉◦ (dom(∆) ∩ dom(∆2) = ∅), and
(iii) dom(∆1) ∩ dom(∆2) = ∅.
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11. If A; c; Γ ` σ1ntoσ2 : T, then for some ∆1 and ∆2 we have that:
(a) σ1 ◦∆1 and ∆2 ◦ σ2 are defined,
(b) ` 〈σ1 ◦∆1 | ∆2 ◦ σ2〉◦ ≤ T,
(c) A; c; Γ ` t : 〈∆1 | ∆2〉ν for some ν,
(d) A; c ` σ1 OK and A; c ` σ2 OK, and
(e) A; c ` σ1 ◦∆1 OK.

Proof. By induction on typing derivations. For each case, we have that either the last
applied rule in the derivation of A; c; Γ ` t : T is the typing rule corresponding to the
syntactic construct t, or rule (T-Sub). In the latter case, from Lemma 4, we get that, for some
T ′, such that ` T ′ ≤ T , A; c; Γ ` t : T ′ is a derivation in which the last applied rule is the
one corresponding to the syntactic construct t. The result then follows by case analysis on
the structural rules. J

I Lemma 7 (Substitution). If A; c; Γ[x1:T1, . . . , xm:Tm] ` t : T, and A; c; Γ ` ti : T ′i
(1 ≤ i ≤ m) where ` T ′i ≤ Ti (1 ≤ i ≤ m), then A; c; Γ ` t{x1 7→ t1, . . . , xm 7→ tm} : T.

Proof. By induction on terms. J

I Lemma 8 (Name Substitution). If A ∪ {α}; c; Γ ` t : T, and α 7→ N is consistent with
A ∪ {α} and c, then A; c{α 7→ N}; Γ{α 7→ N} ` t{α 7→ N} : T{α 7→ N}.

Proof. By induction on terms. Most cases are by induction hypotheses on the antecedent
of the type rule using Lemma 2. We consider only the most interesting case, which is
(T-Name-Abs). J

I Lemma 9 (Context). Let A; c; Γ ` E [t] : T, then
A; c; Γ ` t : T ′ for some T ′, and
if A; c; Γ ` t′ : T ′, then Γ ` E [t′] : T, for all t′.

Proof. By induction on evaluation contexts E . J

I Definition 10. Let A, c, and ∆ = X ′1:T ′1, . . .X ′m:T ′m be such that A; c ` ∆ OK.
1. Define unb(∆,A, c) = {u | u = x1:T1 7→ X1, . . . , xn:Tn 7→ Xn ∧ ∀i 1 ≤ i ≤ m ∃j 1 ≤ j ≤

n X ′i = Xj ∧ ` Tj ≤ T ′i}.
2. Let Γ be such that for all x:T ′ ∈ Γ, we have that A; c ` T ′ OK.

a. Define reb(∆,A, c,Γ)+ = {r | r = X1:T1 7→ t1, . . . ,Xn:Tn 7→ tn ∧ ∀i 1 ≤ i ≤ m ∃j 1 ≤
j ≤ n X ′i = Xj ∧ ` Tj ≤ T ′i ∧ A; c; Γ ` tj : Tj (1 ≤ j ≤ n)}.

b. Define reb(∆,A, c,Γ)◦ = {r | r ∈ reb(∆,A, c,Γ)+ ∧ dom(r) = dom(∆)}.
From the definition it is immediate to see that: if u ∈ unb(∆,A, c) then ` ∆ ≤ name_ctx(u),
and if r ∈ reb(∆,A, c,Γ) then ` name_ctx(r) ≤ ∆. Also, if for some ν, r ∈ reb(∆,A, c,Γ)ν ,
then r ∈ reb(∆,A, c,Γ)νtν′ for all ν′.

I Theorem 11 (Subject Reduction). Let A, c and Γ be such that: A ` c and for all x:T ′ ∈ Γ,
we have that A; c ` T ′ OK. Let t be such that, for some T we have A; c; Γ ` t : T. If t −→ t′,
then A; c; Γ ` t′ : T.

Proof. By case analysis on the rule used for t −→ t′. We consider only rules (Ctx), (Reb-App),
and (Name-App), which are the most interesting.

If the applied rule is (Ctx), then t = E [t1], t1 −→ t′1, and t′ = E [t′1]. From Lemma 9 for
some T ′, we have that A; c; Γ ` t1 : T ′. From induction hypothesis on t1, we derive that
A; c; Γ ` t′1 : T ′, and therefore, again by Lemma 9, A; c; Γ ` E [t′1] : T .
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If the applied rule is (Name-App), then t = (Λα:c.t′′) N , t′ = t′′{α 7→ N}, and ∅; ∅ ` t′ OK.
Therefore, ∅; ∅; Γ ` t : T , and we can assume that α does not occur neither in Γ nor in T .
From Lemma 6.7 for some T ′ and c′ we have that:
1. ` T ′{α 7→ N} ≤ T ,
2. ∅; ∅; Γ ` Λα:c.t′′ : ∀α:c′.T ′,
3. ∅ ` c′{α 7→ N}.
From 2. and Lemma 6.3, for some T ′′ we have that
4. ` ∀α:c.T ′′ ≤ ∀α:c′.T ′, i.e., c′ ` c and ` T ′′ ≤ T ′ (rule (Sub-name-arr) of Figure 5),
5. {α}; c; Γ ` t′′ : T ′′, and
6. α 
 c.
From 3., and c′ ` c (in 4.) we have that ∅ ` c{α 7→ N}. Therefore α 7→ N is consistent
with {α} and c. Applying Lemma 8 to 5. we get that ∅; c{α 7→ N}; Γ{α 7→ N} ` t′′{α 7→
N} : T ′′{α 7→ N}. From 6. (c refers to α) we have that c{α 7→ N} is an empty set of
constraints. Therefore, since Γ does not contain α, Γ = Γ{α 7→ N} and

∅; ∅; Γ ` t′′{α 7→ N} : T ′′{α 7→ N}

From ` T ′′ ≤ T ′ (in 4.) we have that ` T ′′{α 7→ N} ≤ T ′{α 7→ N}. Therefore, from 1.
and Lemma 4, we get ` T ′′{α 7→ N} ≤ T . From Lemma 5, and A; c; Γ ` t : T we derive
∅; ∅ ` T OK. Applying typing rule (T-Sub), we derive

∅; ∅; Γ ` t′′{α 7→ N} : T

which concludes the proof of this clause.
If the applied rule is (Reb-App), then t′ = 〈u, u2 | t′′{x 7→ r(u1(x)) | x ∈ dom(u1)}〉, t =
〈u | r〉 � 〈u1, u2 | t′′〉, rng(u1) ⊆ dom(r), and rng(u2) ∩ dom(r) = ∅. Moreover, by
definition of “u, u2”, dom(u) ∩ dom(u2) = ∅. From Lemma 6.10, for some ∆′, ∆1, ∆2,
and T ′ we have that:
α. ` 〈∆′,∆1 | T ′〉 ≤ T , and
β. A; c ` ∆1,∆2 OK.

Assume we are in the first of the two alternatives of Lemma 6.10, then ∆1 = ∅,
therefore u2 is empty, and for some ν we have that:
1. A; c; Γ ` 〈u1 | t′′〉 : 〈∆ | T ′〉,
2. A; c; Γ ` 〈u | r〉 : 〈∆′ | ∆,∆2〉ν (dom(∆) ∩ dom(∆2) = ∅).
From Lemma 6.5 and 1., u1 ∈ unb(∆,A, c), and
3. A; c; Γ[ctx(u1)] ` t′′ : T ′′ where ` T ′′ ≤ T ′.
From 3. and Lemma 6.5 we have that u ∈ unb(∆′,A, c) Moreover, from Lemma 6.6,
we get r ∈ reb((∆,∆2),A, c,Γ[ctx(u)])ν . From Definition 10.2, we can assume that
r = X1:T1 7→ t1, . . . ,Xm+n+k:Tm+n+k 7→ tm+n+k where ∆ = X1:T ′1 . . . ,Xm:T ′m, and
∆2 = Xm+1:T ′m+1 . . . ,Xm+n:T ′m+n,
4. ` Ti ≤ T ′i (1 ≤ i ≤ m+ n), and
5. A; c; Γ[ctx(u)] ` tj : Tj (1 ≤ j ≤ m+ n+ k).
From u1 ∈ unb(∆), u1 = x1:T ′′n1

7→ Xn1 , . . . , xp:T ′′np
7→ Xnp , where {n1, . . . , np} ⊆

{1, . . . ,m}, and
6. T ′ni

≤ T ′′ni
(1 ≤ i ≤ p).

From 5., and {n1, . . . , np} ⊆ {1, . . . ,m}, we derive that:
7. A; c; Γ[ctx(u)] ` tnj

: Tnj
(1 ≤ j ≤ p).

Without loss of generality we can assume that dom(u), and dom(u1) are disjoint. So
from 3. and 7 we derive:
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8. A; c; Γ[ctx(u, u1)] ` t′′ : T ′′.
9. A; c; Γ[ctx(u, u1)] ` tnj

: Tnj
(1 ≤ j ≤ p).

From 4., 6., and Lemma 4, ` Tni
≤ T ′′ni

(1 ≤ i ≤ p). From 8., 9., and Lemma 7 we
derive that:

A; c; Γ[ctx(u)] ` t′′{x1 7→ tn1 , . . . , xp 7→ tnp
} : T ′′.

(Note that, t′′{x1 7→ tn1 , . . . , xp 7→ tnp} = t′′{x 7→ r(u1(x)) | x ∈ dom(u1)} = t′.) From
2. we have that A; c ` ∆ OK, so applying rule (T-Unb), Γ ` t′ : 〈name_ctx(u) | T ′′〉.
From the fact that u ∈ unb(∆′,A, c), ` name_ctx(u) ≤ ∆′, and, from 3., we have
` T ′′ ≤ T ′. Therefore ` 〈name_ctx(u) | T ′′〉 ≤ 〈∆′ | T ′〉 ≤ T and , so applying
(T-Sub) we get A; c; Γ ` t′ : T .
Assume we are in the second of the two alternatives of Lemma 6.10, then for some ∆′2
we have that:
1. A; c; Γ ` 〈u1, u2 | t′′〉 : 〈∆,∆1 | T ′〉,
2. A; c; Γ ` 〈u | r〉 : 〈∆′,∆1 | ∆,∆2〉◦, and
3. dom(∆1) ∩ dom(∆2) = ∅.
From Lemma 6.5 and 1., u1, u2 ∈ unb((∆,∆1),A, c), (both u1 ∈ unb((∆,∆1),A, c),
and u2 ∈ unb((∆,∆1,A), c)), and
4. A; c; Γ[ctx(u1, u2)] ` t′′ : T ′′ where ` T ′′ ≤ T ′.
From 2. and Lemma 6.5, u ∈ unb((∆′,∆1),A, c), and from Lemma 6.6, r ∈
reb((∆,∆2),A, c,Γ[ctx(u)])◦. From Def. 10.2, r = X1:T1 7→ t1, . . . ,Xm+n:Tm+n+k 7→
tm+n.

Let ∆ = X1:T ′1 . . . ,Xm:T ′m, and ∆2 = Xm+1:T ′m+1 . . . ,Xm+n:T ′m+n,
5. ` Ti ≤ T ′i (1 ≤ i ≤ m+ n), and
6. A; c; Γ[ctx(u)] ` tj : Tj (1 ≤ j ≤ m+ n).
Since rng(u1) ⊆ dom(r), and 3. we get u1 ∈ unb(∆,A, c). So u1 = x1:T ′′n1

7→
Xn1 , . . . , xp:T ′′np

7→ Xnp
, where {n1, . . . , np} ⊆ {1, . . . ,m},

7. ` T ′ni
≤ T ′′ni

(1 ≤ i ≤ p), and
8. A; c; Γ[ctx(u)] ` tnj

: Tnj
(1 ≤ j ≤ p).

Without loss of generality we can assume that dom(u), dom(u1), and dom(u2), are
pairwise disjoint. So from 4. and 8. we derive:
9. A; c; Γ[ctx(u, u1, u2)] ` t′′ : T ′′.
10. A; c; Γ[ctx(u, u1, u2)] ` tnj : Tnj (1 ≤ j ≤ p).
From 5., 7., and and Lemma 4, ` Tni ≤ T ′′ni

(1 ≤ i ≤ p). From 9., 10., and Lemma 7
we derive that:

A; c; Γ[ctx(u, u2)] ` t′′{x1 7→ tn1 , . . . , xp 7→ tnp} : T ′′.

From 2. we have that A; c ` ∆′,∆1 OK, so applying rule (T-Unb), A; c; Γ ` t′ :
〈name_ctx(u, u2) | T ′′〉. From u ∈ unb((∆′,∆1),A, c), ` name_ctx(u) ≤ ∆′,∆1, and
from 4. we have ` T ′′ ≤ T ′, therefore ` 〈name_ctx(u) | T ′′〉 ≤ 〈∆′,∆1 | T ′〉 ≤ T , so
applying (T-Sub) we get Γ ` t′ : T . J

In the following we write ` t : T for ∅; ∅; ∅ ` t : T .

I Lemma 12 (Canonical forms).
1. If ` v : T1 → T2, then v = λx:T ′1.t where ` T1 ≤ T ′1.
2. If ` v : 〈∆ | T 〉, then v = 〈u | t〉, and rng(u) ⊆ dom(∆).
3. If ` v : 〈∆1 | ∆2〉◦, then v = 〈u | r〉, rng(u) ⊆ dom(∆), and dom(∆2) = dom(r).
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4. If ` v : 〈∆1 | ∆2〉ν , then v = 〈u | r〉, rng(u) ⊆ dom(∆), and dom(∆2) ⊆ dom(r).
5. If ` v : ∀α:c.T, then v = Λα:c.t.

Proof. By case analysis on the shape of values. J

I Theorem 13 (Progress). Let t be such that, for some T we have ` t : T. Then either t is
a value or for some t′, we have that t −→ t′.

Proof. By induction on the derivation of ` t : T with case analysis on the last typing rule
used. Notice that since ` t : T , t cannot a variable.

If the last applied rule is (T-App), then

` t1 : T1 → T2 ` t2 : T1

` t1 t2 : T2

If t1 is not a value, then, by induction hypothesis, t1 −→ t′1. So t1 t2 = E [t1] with
E = [ ] t2, and by rule (Cont), t1 t2 −→ t′1 t2. If t1 is a value v, and t2 is not a value, then,
by induction hypothesis, t2 −→ t′2. So t1 t2 = E [t2] with E = v [ ], and by rule (Cont),
v t2 −→ v t ′2.
If both t1 and t2 are values, then by Lemma 12.1, t1 = λx:T1.t′′. Therefore, t −→ t′ with
rule (App).
If the last applied rule is (T-Name-App), then

∅ ` c{α 7→ X} ` t1 : ∀α:c.T ∅ ` X
` t1 X : T{α 7→ X}

Therefore X = N for some N . If t1 is not a value, then, by induction hypothesis, t1 −→ t′1.
So t1 X = E [t1] with E = [ ] X , and by rule (Cont), t1 X −→ t′1 X . If t1 is a value v, then
by Lemma 12.5, t1 = Λα:c.t′′.
From ` t1 : ∀α:c.T and Lemma 5, we have ∅; ∅ ` Λα:c.t′′ OK. From the definition of
Figure 4, {α}; c ` t′′ OK. Since ∅ ` c{α 7→ X} we derive that α 7→ N is consistent
with {α} and c. Therefore, from Lemma 3, we get that ∅; c{α 7→ N} ` t′′{α 7→ N} OK.
Therefore, rule (Name-App) is applicable and t −→ t′′{α 7→ N}.
If the last applied rule is (T-Over), then

` t1 : 〈∆ | ∆1,∆′1〉
ν1 ` t2 : 〈∆ | ∆2〉ν2 ∅; ∅ ` ∆1,∆2 OK

` t1 C t2 : 〈∆ | ∆1,∆2〉ν1tν2

If t1 is not a value, then, by induction hypothesis, t1 −→ t′1. So t1 C t2 = E [t1] with
E = [ ]C t2, and by rule (Cont), t1 C t2 −→ t′1 C t2. It t1 is a value v, and t2 is not a value,
then, by induction hypothesis, t2 −→ t′2. So t1 C t2 = E [t2] with E = v C [ ], and by rule
(Cont), v C t2 −→ v C t′2.
If both t1 and t2 are values, then from Lemma 12.5, t1 = 〈u1 | r1〉, and t2 = 〈u2 | r2〉. We
can assume (renaming bound variables) that dom(u1) ∩ dom(u2) = ∅. Therefore, t −→ t′
with rule (Over).
If the last applied rule is (T-Reb-App), then

` t1 : 〈∆′,∆1 | ∆,∆2〉
ν ` t2 : 〈∆,∆1 | T 〉 ∅; ∅ ` ∆1,∆2 OK

` t1 � t2 : 〈∆′,∆1 | T 〉

If t1 is not a value, then, by induction hypothesis, t1 −→ t′1. So t1 � t2 = E [t1] with
E = [ ] � t2, and by rule (Cont), t1 � t2 −→ t′1 � t2. If t1 is a value v, and t2 is not a value,
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then, by induction hypothesis, t2 −→ t′2. So t1 � t2 = E [t2] with E = v � [ ], and by rule
(Cont), v � t2 −→ v � t′2.
If t1 is a value, then from Lemma 12.5, t1 = 〈u | r〉. Since t2 is a value, from Lemma
12.3, t2 = 〈u′ | t′′〉.
Let u′ = u1, u2 be such that rng(u1) ⊆ dom(r), and rng(u2) ∩ dom(r) = ∅, t −→ t′ with
rule (RebApp).
If the last applied rule is (T-Run), then

` t1 : 〈 | T 〉
` !t1 : T

If t1 is not a value, then, by induction hypothesis, t1 −→ t′1. So !t1 = E [t1] with E = ![ ],
and by rule (Cont), !t1 −→ !t′1. If t1 is a value, from Lemma 12.3, t1 = 〈 | t′〉, so t1 −→ t′
with rule (Run).
If the last applied rule is (T-Rename), then

` t1 : 〈∆1 | ∆2〉ν ∅; ∅ ` σ1 OK ∅; ∅ ` σ2 OK ∅; ∅ ` σ1 ◦∆1 OK

` σ1nt1oσ2 : 〈σ1 ◦∆1 | ∆2 ◦ σ2〉◦

If t1 is not a value, then, by induction hypothesis, t1 −→ t′1. So σ1nt1oσ2 = E [t1] with
E = σ1n[ ]oσ2, and by rule (Cont), σ1nt1oσ2 −→ σ1nt′1oσ2. If t1 is a value, from Lemma
12.5, t1 = 〈u | r〉, and rng(u) ⊆ dom(∆), and dom(∆2) ⊆ dom(r). Therefore, both σ1 ◦ u
and r ◦ σ2 are defined, and t −→ 〈σ1 ◦ u | r ◦ σ2〉 with rule (Rename). J

6 Towards a Typing Algorithm

Because of rule (T-Sub), the type system defined in Section 3 is not deterministic, and, hence,
no typechecking algorithm can be directly derived from it.

In this section we show how the type system of Section 3 can be turned into a deterministic
one from which a typechecking algorithm can be directly derived; more in details, if a term t
can be typed in the non deterministic type system, then it can be typed in the new type
system with a type which is the most specific (that is, the principal one) among all types
that can be assigned to t by the non deterministic type system. Furthermore, thanks to the
introduction of judgments to compute the greatest lower and least upper bound of two types,
the deterministic type system is able to type more terms.

For space limitation, we only sketch the main typing rules and provide the most important
definitions, and omit formal proofs.

To get a deterministic type system rule (T-Sub) has to be removed, and typing rules (T-App),
(T-Over), (T-Reb-App), and (T-Rename) need to be modified.

Rule (T-App) is adapted in the standard way:

(NT-App)
A; c; Γ ` t1 : T1 → T2 A; c; Γ ` t2 : T ′1 ` T ′1 ≤ T1

A; c; Γ ` t1 t2 : T2

The remaining rules rely on two new judgments for computing the greatest lower and the
least upper bound of two types, respectively.

The judgment c |= glb(T1; T2) = T is derivable if types T1 and T2 admit the greatest
lower bound T under c; by duality, the judgment c |= lub(T1; T2) = T for least upper bounds
is defined, as well. Both judgments are defined in Figure 12; we also use the operator u
which is the dual of t: + u ν = ν u+ = ν, and ◦ u ◦ = ◦.
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(gwf-base)
c |= Xi

?=Xj ⇒ Ti = Tj (1 ≤ i, j ≤ m)
c |= gwf (X1:T1, . . . ,Xn:Tm) = X1:T1, . . . ,Xn:Tm

(gwf-step)
c |= X1

?=X2 c |= glb(T1; T2) = T c |= gwf (X1:T ,X2:T ,∆) = ∆′

c |= gwf (X1:T1,X2:T2,∆) = ∆′ T1 6= T2

(lwf-base)
c |= Xi

?=Xj ⇒ Ti = Tj (1 ≤ i, j ≤ m)
c |= lwf (X1:T1, . . . ,Xn:Tm) = X1:T1, . . . ,Xn:Tm

(lwf-step)
c |= X1

?=X2 c |= lub(T1; T2) = T c |= lwf (X1:T ,X2:T ,∆) = ∆′

c |= lwf (X1:T1,X2:T2,∆) = ∆′ T1 6= T2

(glb-context)
c |= gwf (∆1,∆2) = ∆
c |= glb(∆1; ∆2) = ∆

(lub-context)
c |= lub(∆1(X); ∆2(X)) = TX ∀X ∈ dom(∆)

c |= lub(∆1; ∆2) = ∆
dom(∆) = dom(∆1) ∩ dom(∆2)
∀X ∈ dom(∆) ∆(X) = TX

(glb-arr)
c |= lub(T1; T ′1) = T c |= glb(T2; T ′2) = T ′

c |= glb(T1 → T2; T ′1 → T ′2) = T → T ′

(lub-arr)
c |= glb(T1; T ′1) = T c |= lub(T2; T ′2) = T ′

c |= lub(T1 → T2; T ′1 → T ′2) = T → T ′

(glb-unb)
c |= lub(∆1; ∆2) = ∆ c |= glb(T1; T2) = T

c |= glb(〈∆1 | T1〉; 〈∆2 | T2〉) = 〈∆ | T〉

(lub-unb)
c |= glb(∆1; ∆2) = ∆ c |= lub(T1; T2) = T

c |= lub(〈∆1 | T1〉; 〈∆2 | T2〉) = 〈∆ | T〉

(glb-reb)
c |= lub(∆1; ∆2) = ∆ c |= glb(∆′1; ∆′2) = ∆′

c |= glb(〈∆1 | ∆′1〉
ν1 ; 〈∆2 | ∆′2〉

ν2 ) = 〈∆ | ∆′〉ν1uν2

ν1 = ◦ ⇒ dom(∆′2) ⊆ dom(∆′1)
ν2 = ◦ ⇒ dom(∆′1) ⊆ dom(∆′2)

(lub-reb)
c |= glb(∆1; ∆2) = ∆ c |= lub(∆′1; ∆′2) = ∆′

c |= lub(〈∆1 | ∆′1〉
ν1 ; 〈∆2 | ∆′2〉

ν2 ) = 〈∆ | ∆′〉ν ν =
{

ν1 t ν2 if dom(∆′1) = dom(∆′2)
+ otherwise

Figure 12 Rules for glb and lub

Rule (glb-context) defines the greatest lower bound of two name contexts ∆1 and ∆2; it
considers the union ∆1,∆2 and then derives from it a well-formed name context with the
auxiliary judgment c |= gwf (∆1,∆2) = ∆; indeed, ∆1,∆2 may not be well-formed. For
instance, if ∆1 = N :T1 and ∆2 = N :T2, with T1 6= T2, then ∆1,∆2 is not well-formed;
however, if c |= glb(T1; T2) = T , then N :T ,N :T is well-formed, and is the greatest lower
bound of ∆1 and ∆2 under c.

The judgment c |= gwf (∆) = ∆′ is defined by the two rules (gwf-base) and (gwf-step). The
former rule is applied when the name context is well-formed; for instance, if N1 and N2 are
distinct names, then c |= gwf (N1:T1,N2:T2) = N1:T1,N2:T2 is derivable for all c, even when
T1 6= T2; other examples of application of the rule are given by the derivation of judgments
X1 6= X2 |= gwf (X1:T1,X2:T2) = X1:T1,X2:T2, and c |= gwf (N :T ,N :T ) = N :T ,N :T . Rule
(gwf-step) is applied when there exist two names that might be equal, but are associated
with different types T1 and T2; in such a case, the greatest lower bound of T1 and T2 has
to be computed. For instance, if T1 6= T2, and c |= glb(T1; T2) = T , then the judgment
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c |= gwf (N :T1,N :T2) = N :T ,N :T can be derived.
Rules (lwf-base) and (lwf-step) defines the judgment c |= lwf (∆) = ∆′, which is the dual of

c |= gwf (∆) = ∆′, and is directly used in the typing rules.
Rule (lub-context) defines the least upper bound ∆ of two name contexts ∆1 and ∆2;

∆ defines all names that are defined in both ∆1 and ∆2, and each of these names is
associated in ∆ with the least upper bound of the two corresponding types associated in
∆1 and ∆2; for instance, if c |= lub(T1; T ′1) = T and X1, X2, and X3 are distinct, then
c |= lub(X1:T1,X2:T2; X1:T ′1,X3:T3) = X1:T .

Since subtyping between arrow types is contravariant in the argument types and covariant
in the return types, the definition of glb and lub for arrow types is straightforward. An
analogous consideration applies also for unbound types, and rebinding types; however, for
this latter kind of types, annotations +/◦ make the definition a bit more involved.

In rule (glb-reb), the resulting type must be closed if at least one of the types is closed (as
specified by the u operator); for this reason, if one type T is closed, then the other type cannot
specify a rebinding map whose domain contains names that are not defined in T . This means
that the greatest lower bound of two rebinding types may be undefined; for instance, if N1 and
N2 are distinct, then for all c, there is no type T s.t. c |= glb(〈 | N1:T1〉◦; 〈 | N2:T2〉+) = T
(actually, the two rebinding types do not even admit any lower bound).

In rule (lub-reb) there is no side condition that prevents the existence of the least upper
bound of two rebinding types; however, the least upper bound can be closed only if both
types are closed, and specify rebinding maps having the same domain.

Rules (T-Over), (T-Reb-App), and (T-Rename), can be modified as follows to get a deterministic
type system:

(NT-Over)

A; c; Γ ` t1 : 〈∆′ | ∆1,∆′1〉
ν1 A; c; Γ ` t2 : 〈∆′′ | ∆2〉ν2

c |= glb(∆′; ∆′′) = ∆ c |= lwf (∆1,∆2) = ∆′′′

A; c; Γ ` t1 C t2 : 〈∆ | ∆′′′〉ν1tν2

∆1 = ∅ or ν2 = ◦
dom(∆′1) ⊆ dom(∆2)
dom(∆1)∩dom(∆2)=∅

If t1 and t2 have type 〈∆′ | ∆′′1〉
ν1 , and 〈∆′′ | ∆2〉ν2 , respectively, then ∆′′1 can be always

uniquely split in ∆1 and ∆′1, s.t. dom(∆′1) ⊆ dom(∆2), and dom(∆1) ∩ dom(∆2) = ∅. The
result of the overriding has type 〈∆ | ∆′′′〉ν1tν2 , where ∆ (which is in contravariant position)
must be subtype of both ∆′, and ∆′′, hence c |= glb(∆′; ∆′′) = ∆, and ∆′′′ is the most
specific well-formed name context compatible with ∆1,∆2, that is, c |= lwf (∆1,∆2) = ∆′′′;
indeed, ∆1,∆2 might not be well-formed. This implies that rule (NT-Over) is more liberal
than (T-Over).

(NT-Reb-App)

A; c; Γ ` t1 : 〈∆ | ∆′,∆2〉ν A; c; Γ ` t2 : 〈∆′′,∆1 | T〉
c |= glb(∆; ∆1) = ∆′′′ ` ∆′ ≤ ∆′′ c |= ∆2 ≺? ∆1

A; c; Γ ` t1 � t2 : 〈∆′′′ | T〉

∆1 = ∅ or ν = ◦
dom(∆1)∩dom(∆2)=∅
dom(∆′) = dom(∆′′)

If t1 and t2 have type 〈∆ | ∆3〉ν , and 〈∆′′,∆1 | T 〉, respectively, then ∆3 can be always
uniquely split in ∆′ and ∆2, s.t. dom(∆1) ∩ dom(∆2) = ∅, and dom(∆′) = dom(∆′′).

The rule is applicable only if ` ∆′ ≤ ∆′′ holds, to ensure that the names in t2 are bound
to type compatible values; furthermore, the judgment c |= ∆2 ≺? ∆1 ensures compatibility
in case some name X in ∆1 is bound to a type with a name Y in ∆2 after name application.
The judgment c |= ∆2 ≺? ∆1 holds if and only if for all X ∈ dom(∆2) and Y ∈ dom(∆1),
c |= X ?=Y implies ` ∆2(X) ≤ ∆1(Y ).

The final type of the rebinding is 〈∆′′′ | T 〉, where ∆′′′ has to be a subtype of both ∆,
and ∆1, hence c |= glb(∆; ∆1) = ∆′′′.

(NT-Rename)
A; c ` σ1 OK A; c ` σ2 OK c |= gwf (σ1 ◦∆1) = ∆′1 A; c; Γ ` t : 〈∆1 | ∆2〉ν

A; c; Γ ` σ1ntoσ2 : 〈∆′1 | ∆2 ◦ σ2〉◦
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The typing rule is almost the same as rule (T-Rename) of Figure 7; however, in this
case the typing succeeds even when σ1 ◦ ∆1 is not well-formed, if there exists ∆′1 s.t.
c |= gwf (σ1 ◦∆1) = ∆′1 is derivable (that is, ∆′1 is the greatest well-formed subtype of
σ1 ◦∆1).

7 Conclusion

We have proposed a calculus which integrates standard static binding with incremental
rebinding of code based on a parametric nominal interface. That is, names, which can be
either constants or variables, are used as interface of fragments of code with free variables,
which can be passed around and rebound. The type system is based on constrained name-
polymorphic types, where simple inequality constraints prevent conflicts when instantiating
name variables. The calculus can express type-safe dynamic adaptation of code, as illustrated
by the example of mixins. Similar results can be achieved in dynamically typed languages,
such as JavaScript or through the use of reflection. However, in these settings we loose
the possibility of expressing type constraints that can be statically checked. In C++ with
multiple inheritance and templates we can define mixins, but we have to know the names of
the methods that will be mixed in.

This work continues a stream of research on foundations of binding mechanisms, started
with [9, 8]. The goal was to provide a unifying foundation for dynamic scoping, rebinding
of marshalled computations, meta-programming features, and operators present in calculi
for modules. Classical (ad-hoc) models for dynamic scoping are [11] and [7], whereas the
λmarsh calculus of [6] supports rebinding w.r.t. named contexts (not individual variables).
The meta-programming features of our calculus are orthogonal to the one of MetaML [16],
since, on one side, we do not have an analog of the escape annotation of MetaML forcing
evaluation inside boxed code, but on the other, our rebinding construct avoids the problem
of unwanted variable capturing. Module calculi are described, e.g., in [3].

In future work we will formalize and prove the relation between the non deterministic
and algorithmic variants of the type system. Exploring the possibility of inferring constraints
on name variables, rather than explicitly annotating name abstractions, is another possible
direction of work. However, as the example at the end of Section 4 shows, this is difficult
due to the lack of a suitable notion of “principal typing” with respect to name constraints.

Another possible direction is to add polymorphic types, so that name polymorphism
can be more effectively used. Finally, we plan to study the relations between our name
abstraction and the one provided by languages of the family of FreshML [14, 13], where it is
possible to compute with syntactical data structures involving names and name binding in a
statically typed setting.

Acknowledgements We thank the referees for their helpful comments, the paper improved
due to their suggestions.
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