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Abstract

Four layered hybrid perovskites, based on tin iodide sheets intercalated

by divalent organic cations (ethylenediammonium, 2,2’-biaziridinium, 2,2’-

biimidazolium, 4,4’-bipyridinium), have been modeled with ab initio tech-

niques. The crystal structures have been optimized at the DFT level, thus

not including thermal effects, finding and characterizing three minima for each

cation: with respect to the analogues with monovalent cations, the structures

are more distorted and mostly in a staggered arrangement. The interlayer dis-

tances are quite small for all the systems, due to the single layer of strongly

charged cations between the inorganic sheets. The band profiles and the band

gaps, computed with an additive approach including the effects of spin orbit

coupling and post-DFT correlation corrections, show an unexpected and in-

teresting feature: with two of the cations some nearly degenerate low energy

levels appear at the bottom of the conduction band. As a consequence, these

systems present unusually low band gaps (the minimum value being 1.34 eV)

suggesting the possibility of light adsorption in the visible or near-IR regions.

The existence of these low lying levels has been correlated to the charge and

the aromatic nature of the organic ions, and a simple molecular descriptor,

based on the LUMO energy of the isolated cations, is proposed to design other

tin iodide perovskites with this characteristic.

Introduction

Hybrid perovskites, formed by metal halide networks neutralized by organic cations,

have been intensely studied in the last years1–11 due to their extremely good per-

formances in optoelectronics and photovoltaics (PV).9,12–15 The perovskite solar cell

conversion efficiency has exceeded 22%,16 and even better results are expected in

the next future: the best strategy proposed to date to attain high efficiencies is to
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mix methylammonium and formamidinium cations with lead iodide and bromide;17

another promising approach is the combination of perovskite cells with wideband IR

organic absorbers.18 Furthermore, many hybrid perovskites based on lead and tin

halides show strong photoluminescence emissions,19,20 with important applications

in the production of light emitting diodes (LED)21–23 and in general for optoelec-

tronics.2,24–27

The correlation between chemical composition, geometrical structure and elec-

tronic properties is fundamental to design new perovskites for PV and optoelectronic

applications: there is an enormous interest in tuning the band gap, the exciton

binding energy and the charge transport properties by changing the metal,6–8 the

halide9–11 and specially the organic cation.28–32

The best PV results are provided by perovskites with 3D structure, which can

be achieved only for small cations, namely methylammonium and formamidinium

(except some examples of perovskites including Cs+ or ethylammonium):33–35 steric

limitations prevent the use of larger organic counterparts. On the other hand, lay-

ered perovskites can accomodate in the interlayer space a much greater variety of

cations: these systems can have either a true 2D structure, in which metal tetra-

halides (MX2−
4 ) form layers of corner-sharing octahedra intercalated by mono- or

divalent organic ions,36–40 or a mixed-dimension structure, sometimes referred to as

quasi-2D.22,41–45 In the latter case, slabs of various thickness of 3D perovskites (com-

prising the small cations mentioned above) are intercalated by larger ions, giving

rise to Ruddledsen-Popper phases which are being widely studied also for improving

the stability and the efficiency of PV devices.46–48

The understanding of hybrid perovskites has been greatly improved by high level

theoretical calculations, which described the properties of 3D49–59 and 2D1,30,59–64

systems with a variety of approaches. Most calculations were based on Density

Functional Theory (DFT), sometimes including semiempirical corrections for van

der Waals interactions: a number of studies have pointed out the great importance

of spin orbit coupling (SOC) effects,1,49,61,64 and many authors have demonstrated

that also post-DFT correlation energy has to be included to obtain reliable band

gap estimates.49,54,65–69

We have recently modeled with ab initio techniques70,71 some homologue series
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of 2D perovskites based on (PbI4)
2−, (SnI4)

2− and (SnBr4)
2− layers intercalated

by a variety of monovalent cations, describing the correlation between structures,

electronic band profiles and band gaps. In every series, the band gaps were found to

depend on the organic cations mainly through the geometrical parameters (interlayer

distance and distortion of the inorganic octahedra); substituting Pb with Sn caused

a substantial reduction of the band gap, which increased again when iodide was

substituted with bromide. In all the systems, however, the computed band gap

remained well above 2 eV, too large to allow the absorption of visible light and thus

a direct PV application.

In this paper we extend the analysis to 2D hybrid perovskites formed by (SnI4)
2−

layers intercalated by divalent cations: tin iodide systems provided the lowest band

gaps with monovalent cations, and we expected that when the positive charge is

concentrated in a single layer of divalent cations between the halide sheets, the

interlayer distance could be reduced, possibly lowering the band gap further. Indeed,

the not numerous members of this family whose structure has been resolved confirm

this expectation: for SnI4 perovskites with organic dications the cystallographic

interlayer distances vary from 9.5 to 10.3 Å;72–74 in PbI4 analogues the range of

interlayer distances is 10.3− 13.7 Å.75–77 Furthermore, Mao and coworkers recently

reported on a SnI4 2D perovskite with the doubly charged histammonium cation,

exhibiting optical absorption in the visible region.78

Four organic ions were considered, namely ethylenediammonium (EDA), 2,2’-

biaziridinium (AZI), 2,2’-biimidazolium (IMI), 4,4’-bipyridinium (PYR), illustrated

in Figure 1. EDA and AZI are among the smallest organic dications of this kind,

thus allowing very short interlayer distances, while IMI and PYR include aromatic

rings whose effects on the material electronic properties are worth studying.

Figure 1.

Methods

The geometry optimizations were performed with CRYSTAL0979,80 at the DFT

level, using the PBESOL-D281 functional and including the dispersion energy contri-
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butions through the semiempirical procedure proposed by Grimme with the so-called

D2 set of parameters;82 note that in this procedure the dispersion terms affect the

optimized geometries and the stability energies, but they do not enter the calculation

of electronic properties. Both atomic positions and cell parameters were optimized

and the nature of the stationary points was verified by computing numerically the

second derivatives and diagonalizing the Hessian matrix. Dunning’s correlation con-

sistent cc-pVDZ basis set83 was used, along with small core Stuttgart-Köln effective

core potentials for Sn, Br and I.84,85

Some calculations on isolated cations were performed with Gaussian09,86 using

either pure (PBE, BLYP) or hybrid (B3LYP) density functionals, and Dunning’s

aug-cc-pVTZ triple-ζ basis set supplemented by polarization and diffuse functions.87

Electronic band structures and band gaps were computed with QUANTUM

ESPRESSO code, based on plane waves expansion of the electronic density, with

the PBE functional; electronic bands were computed on a 32 k-point path defined in

the primitive Brillouin zone (illustrated in the Supporting Information). To evaluate

SOC effects, the calculation of band structures and band gaps were repeated with

scalar relativistic (SR) and full relativistic (FR) potentials (in the following FR-

DFT indicates a calculation including SOC): the energy cutoffs were 70 Ryd with

SR and 45 Ryd with FR potentials, respectively; a cutoff of 280 Ryd was also used

for charge density expansions in FR-DFT. The contribution of the various atomic

orbitals to the electronic bands was estimated with the projected density of states

(PDOS), obtained using the atomic basis set provided by QUANTUM ESPRESSO.

The correlation energy was included at the GW level with the same functional,

expanding the polarizability on a basis set with 3 Ryd cutoff and 2000 basis vectors.

Since the available version of QUANTUM ESPRESSO allows for GW calculations

on the Γ point and with SR potentials only, in the previous works we have adopted

an additive scheme to compute the band gap (Eg) with both SOC and correlation

effects:70,71

Eg = ESR−DFT
g +

[

EFR−DFT
g − ESR−DFT

g

]

+
[

ESR−GW
g (Γ)− ESR−DFT

g (Γ)
]

(1)

5



where ESR−DFT
g and EFR−DFT

g are the band gaps obtained with scalar and full rel-

ativistic potentials, respectively, on the complete 32 k-point path, while ESR−GW
g (Γ)

and ESR−DFT
g (Γ) are computed with and without GW correlation, respectively, on

Γ point; the notation in eq. 1 is somehow redundant to highlight the SOC and GW

additive corrections to the SR-DFT value.

Eq. 1 has been validated in refs. 70,71 by reproducing the structure and the band

gap of the 3D perovskites (CH3NH3)PbI3 and (CH3NH3)SnI3, for which accurate

experimental measures are available;6,54,65,88,89 in the same works some methodolog-

ical issues have been discussed, including the effect of the density functional and of

the k-point path.

Results and discussion

Geometry optimizations

In previous papers70,71 the optimization procedure was validated by reproducing the

structure of (MA)PbI3 and (MA)SnI3 tri-dimensional perovskites (MA standing for

methylammonium ion), and comparing the optimized and experimental structures

of layered perovskites intercalated with phenylethylammonium.

Also in this case we check the method by comparing the optimized geometries

with some of the few crystal structures of SnI4 perovskites with divalent cations

which have been resolved experimentally. Among the systems considered here, only

one structure of (IMI)SnI4 has been described, as a monoclinic crystal in C2/c

group (at 293 K);72 the already cited perovskite intercalated with histammonium

was assigned a monoclinic lattice in P21/n group (298 K).78 Another structure of

this family, with N-ethylammonium-piperidinium (AEPi) dication, was reported in

ref. 74 as a monoclinic lattice in P21/c group (273 K).

Then the geometries of (IMI)SnI4 and (AEPi)SnI4 were optimized in the same

crystal groups as in the original references, and the resulting cell parameters are

compared to the experimental data in Table S1 in the Supporting Information (SI).
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The agreement between the computed and experimental structures is very good,

confirming the reliability of the procedure; the geometrical parameters of the inor-

ganic layers are further discussed below.

In our models, however, we decided to explore the potential energy surfaces in

greater detail, looking for minimum energy structures that can be hidden by high

symmetry constraints. Then a larger freedom was given to cell parameters and

atomic positions, optimizing all the structures as triclinic lattices, with P 1̄ group for

(EDA)SnI4 and (IMI)SnI4, and P1 group for (AZI)SnI4 and (PYR)SnI4. It is worth

to remind that the present calculations do not include any thermal contributions,

so they are intended to reproduce “zero Kelvin” crystals; moreover, as a general

remark about QM geometry optimizations, it should be remenbered that they allow

to explore only some portions of the potential energy surface.

The procedure used to look for the potential energy minima is detailed in the SI:

eventually three structures were optimized for all the systems, starting from three

different guesses. The optimized structures are designated in the following as x-

A (shorthand for x-(A)SnI4), where A = EDA,AZI, IMI,PYR indicates the cation

and x = 1,2,3 specifies the initial system from which the minimization started (see

the SI for more information). All the stationary points were confirmed to be true

minima by diagonalizing the Hessian matrix: the eigenvalues resulted all positive

except for 3-IMI, where one negative value was obtained, so that this system was

re-optimized with symmetry lowered to P1, until a true minimum was found.

The relative stability of the different structures was evaluated by computing at

the same level the energy of the reaction:

SnI2(s) + 2I− +A2+
−→ (A)SnI4(s) (2)

where (s) indicates periodic solids, while ions are considered isolated species;

SnI2(s) structure (resolved at 273 K) was taken from ref. 90. Clearly, eq. 2 is

not intended to reproduce the actual perovskites formation reaction, but only to

provide a common energy scale; note that the “formation energies” from eq. 2 are

not corrected for the BSSE (basis set superposition error), due to the presence of

periodic systems with charged fragments.
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All the optimized perovskites are depicted in Figure 2, and the corresponding

Crystal Information Files (CIF) are provided in the SI; the cell parameters, the unit

cell densities and the relative energies are reported in Table 1. Another view of the

optimized structures, along the [001] direction, is also shown in the SI (Figure S2).

Figure 2.

Table 1.

The very similar density and energy data for 2- and 3-PYR suggest that the

optimizations could have led to the same structure, though the definition of the

cell parameters differs, as discussed below. For all the systems, the trend of the

cell density with the structures is 1 < 2 < 3, corresponding to closer packings of

the successive layers (see below). Due to the nature essentially electrostatic of the

interlayer interactions, the more closely packed structures also have lower energies:

in all the cases, 3-(A)SnI4 systems are the most stable.

Layer stacking

It is well known that inorganic layered perovskites crystallize either in eclipsed or

in staggered arrangements, depending on the stacking of metal atoms in adjacent

layers (viewed normal to the layers),91,92 and the same classification is often used

for hybrid organic-inorganic perovskites too.37,93 In this case it has been observed

that mono/divalent cations tend to favor the staggered/eclipsed conformation, re-

spectively,93 and that eclipsed structures are facilitated in general by bulkier or

longer chain cations;36,39 several phase transitions have been described, noting that

at higher temperatures the eclipsed arrangement tends to be more stable.36,39,40,94

Staggered structures are often resolved in the monoclinic system, while orthorhombic

cells are typically found for eclipsed systems.36,37,40

The stacking in 2D perovskites can be appreciated visually by projecting the

metal atoms from one layer onto the underlying layer: this is shown for our opti-

mized structures in the SI (Figure S3). All 2 and 3 structures can be considered

staggered, while 1 structures, which have been optimized starting from an eclipsed

arrangement, appear almost eclipsed for the larger cations, i.e. IMI and PYR, while

for EDA and AZI the upper layer positions are clearly displaced. Apparently, with
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small divalent ions the interlayer interactions are optimized by packing the octahe-

dra in a staggered arrangement, independently of the starting geometry: we recall

once again, however, that these results do not include thermal effects.

Layer geometry

The geometry of the inorganic layers is described through the equatorial (leq) and

polar (lp) Sn − I distances, the interlayer distance (d) and three angles measuring

the in-plane Sn-I-Sn deviation from linearity (β), the octahedra tilting with respect

to the inorganic layers (θ), and the I-Sn-I bending inside the octahedra (φ). These

quantities describe the distortion of the tin iodide layers with respect to an ideal

arrangement of perfectly aligned octahedra, with the polar bonds perpendicular to

the layer plane: some of them are illustrated in Figure 3(a-d), and their values are

listed in Table 2 for all the optimized structures.

Figure 3.

Table 2.

Since these systems have a single layer of organic cations, their interlayer distances

tend to be quite small, even with cations of large molecular size, compared to the

analogues with monovalent ions:71 for instance, in the structures with IMI and

PYR the interlayer distances (8.85− 11.33 Å) are much shorter than in (PEA)2SnI4

(14.6−17.5 Å in DFT optimizations71 or 16.3 Å in crystallographic measurement95),

where PEA = phenylethylammonium. On the other hand, the systems with small

monovalent (formamidinium and methylimidazolium) and divalent (EDA and AZI)

cations have similar d values, suggesting that 8 Å is about the minimum interlayer

distance for 2D tin iodide perovskites (the data presented in refs. 70 and 71 hint

that this observation holds for lead iodide and tin bromide, too).

The in-plane metal displacement is in general smaller than in the monovalent ion

analogues, with the exception of 2- and 3-EDA, as well as the octahedra deformation

(measured by angle φ); the octahedra tilting (angle θ), on the other hand, is large

and similar for all the systems, in the range 30 − 40
◦

. This feature is likely due

to the small interlayer distances of all the systems, which generate quite crowded

interlayer spaces and induce the octahedra tilting.
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Another measure of the deformation is the span of metal-iodide bond lengths,

which is larger for 2- and particularly for 3- structures, i.e. the arrangements with

shorter interlayer distances and closer packings.

As mentioned above, the reliability of the optimization method has been checked

by reproducing the structure of two systems recently characterized, (IMI)SnI4
72 and

(AEPi)SnI4:
74 in Table S2 (SI) the inorganic layer geometries are compared with

the crystallographic data, finding an excellent agreement between the optimized

and experimental parameters in C2/c group. In addition, Table S2 also reports the

parameters of 2-IMI optimized as a triclinic lattice with P 1̄ group, to allow a direct

comparison with the C2/c crystallographic and theoretical structures: one can see

that relasing the symmetry affects the layer structure only marginally, leaving the

interlayer distance also unchanged. The main difference in the P 1̄ optimization

is the shift of the layers with respect to each other, leading to a more staggered

structure, as noted above; furthermore, the cell density increases from 3.19 to 3.53

g/cm3 passing from C2/c to P 1̄ group. This feature, as well as the higher symmetry

of the experimental structure, can be ascribed to the thermal motions of the organic

layer; it remains to explore to what extent this reflects on the electronic properties,

as discussed in the following.

The possible formation of H-bonds between the protonated cations and the halide

ions is considered an important feature in hybrid perovskites,30,38 affecting the sta-

bility and the electronic properties: to evaluate the occurrence of H-bonding, the

shortest NH · · · I distance was selected for each optimized structure and the corre-

sponding bond distances and angles are reported in the SI (Table S3). For most

systems, a H-bond of medium strength is found on the basis of these geometri-

cal parameters: the strongest interactions are seen in 1-EDA, 3-AZI, 2- and 3-IMI,

whereas H-bonds seem almost negligible in all the (PYR)SnI4 structures. Note how-

ever that temperature dependent molecular disorder in the organic layer can question

the extent, or even the occurrence, of actual H-bonding in such systems: as pointed

out above, DFT calculations do not provide information about the thermal effects,

and describe better low temperature phases.

Finally, the geometrical parameters of 2- and 3-PYR are quite similar, but not

coincident: this point, along with the very alike densities, formation energies and

layer stacking seen above, suggest that the potential energy surface is quite flat.
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Band structures and PDOS

The energy profiles along the selected k-point path, computed at FR-DFT level, are

shown in Figure 4; the analogous SR-DFT results are reported in the SI (Figure

S4).

Figure 4.

SR- and FR-DFT profiles are very similar to each other qualitatively, though

the latter present systematically lower valence-conduction gaps as a consequence of

SOC effects. Either direct or indirect band gaps are found for the various systems,

without a clear trend: all the gaps are listed in the SI (Table S4). Note however that

in many cases the top valence and/or the bottom conduction bands are quite flat,

giving rise to several quasi-direct gaps: this is particularly evident in (IMI)SnI4 and

(PYR)SnI4. For comparison, eclipsed/staggered SnI4 perovskites with monovalent

ions presented direct/indirect gaps, respectively,71 while an opposite trend, with

significant exceptions, was reported for lead iodide 2D perovskites with a number of

different cations.70

The most remarkable feature in the band profiles emerge for all (IMI)SnI4 and

(PYR)SnI4 structures, where a family of nearly degenerate levels appears at the

bottom of the conduction band. These levels are almost independent of the k point,

and especially for (PYR)SnI4 they look like intra-gap states rather than actual

conduction bands; the same feature is present both in SR- and in FR-DFT profiles.

The chemical nature of these energy levels can be clarified by projecting the

electronic density on a set of localized gaussian-type atomic orbitals. The projected

densities of states (PDOS) computed at FR-DFT level around the Fermi level are

reported in Figure 5; the PDOS at the SR-DFT level are shown in the SI (Figure

S5), along with the FR-DFT results computed in a wider energy range (Figure S6).

Figure 5.

It is clear that with IMI and PYR cations there is a large contribution of the

organic layer to the low-energy empty levels, which is completely absent with EDA

and AZI. In fact, in the former case the bottom conduction band is largely dominated

by nitrogen and carbon orbitals, with a very limited contribution from iodine atoms;
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on the other hand, the top valence band is always due to inorganic layer atoms, as

already found for tin and lead 2D perovskites with monovalent cations. From Figures

S5 and S6 in the SI, it is clear that the same features are obtained with both SR

and FR potentials. This aspect is visually confirmed by the isodensity surface plot

of the lowest unoccupied level in 3-IMI, reported in the SI (Figure S7), computed

with Gaussian09 and periodic boundary conditions (PBC) with PBE functional and

the same basis set and effective core potentials used in the geometry optimizations

described above. The electronic density appears strongly confined in the interlayer

space, with onyl small contributions of the polar iodide ions, embedded in the organic

layer.

To our knowledge, this feature was reported previously once,96 for PbBr4 layered

perovskite intercalated by N-(3-aminopropyl)imidazolium dication: in this system,

the DFT calculations revealed a low lying conduction band formed principally by

nitrogen and carbon p orbitals, around 1 eV above the valence band composed

mainly by bromide orbitals.

Band gaps

All the computed band gaps, split into the various contributions described in Section

“Methods”, are listed in Table 3.

Table 3.

The SR-DFT values reflect the trend illustrated by the band profiles in Figure

4: ESR
g is much smaller in 1- and 3- (IMI)SnI4 and (PYR)SnI4 than in the other

systems; 2-IMI gap is slightly larger, close to the value of 2-EDA, which in turn is

smaller than in 1- and 3-EDA. On the other hand, all the values reported in Table

3 for 2- and 3-PYR are very similar, confirming that they can be considered as one

system.

At the FR-DFT level the band gaps are systematically smaller than with SR

potentials, meaning a negative SOC correction, while GW corrections (computed in

Γ point as explained in Section “Methods”) are always positive. As already observed

for lead and tin halide perovskites with monovalent ions, SOC and GW effects do not
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compensate and the latter prevails in all the cases, so that our best estimated band

gaps (Eg) are always larger than the SR-DFT values. These results confirm that

both SOC and GW effects are needed to obtain reliable gap estimates, as already

noted for other 3D and 2D hybrid perovskites.54,61,69,97,98

SOC corrections are very similar for all the systems (ranging from -0.22 to -0.29

eV), with the exception of 3-EDA and 3-IMI, where they are quite smaller: appar-

ently, SOC is not affected by the presence of the low lying levels due to the organic

layer in (IMI)SnI4 and (PYR)SnI4. The size of SOC effects is similar to that com-

puted at the same level for tin halide perovskites with monovalent cations in stag-

gered arrangement, while the effect for eclipsed structures was somehow smaller.71

A recent paper69 reviewed several studies in which SOC corrections for lead and

tin perovskites, both 3D and layered, were correlated to the structural parame-

ters.65,99,100 As discussed above, the structures optimized in this work show similar

values for the octahedra tilting, while a larger variation is found for M-X-M angles:

these changes, however, do not reflect on the computed SOC values. On the other

hand, comparing the present results with those obtained at the same level for PbI4

and SnI4 HOP,70,71 we find the expected trends with atomic energy levels, with in-

creasing corrections when the atomic number grows from Sn to Pb, and from Br to

I, in agreement with the analysis presented in ref. 59.

The values of the GW correction are much more scattered, the lowest being found

in 2-IMI (0.62 eV) and the highest in 1-AZI (1.69 eV): also in this case, no clear

correlation appears between the GW correction size and the presence of the low lying

levels. We remind that in the present procedure GW calculations are limited to Γ

point: possibly, the dispersion of GW values could be reduced if a more accurate

k-space sampling were available, and this is a point which deserves to be considered

in future work.

The most relevant results are listed in the last column of Table 3, reporting the

best estimates of the band gap, including SOC and GW corrections. The Eg’s for

(EDA)SnI4 and (AZI)SnI4 are in line with the values previously computed for SnI4

perovskites with monovalent cations (considering their small interlayer distances).

In contrast, 2-IMI, 2-PYR and 3-IMI present unusually low band gaps, well below

the values measured or predicted so far for 2D hybrid perovskites: the lowest value

(1.34 eV) is computed for 3-IMI, but also for the other systems the estimated gap
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falls in the visible spectral region.

As shown in Table 3, the minimum value for 3-IMI derives mainly from the very

small gap computed at the SR-DFT level (actually, the lowest among the studied

systems) and a quite small GW correction, which is not the smallest one, however.

The influence of SOC is clearly less important: besides varying little among all the

systems, the least favorable SOC correction (-0.13 eV only) is computed for 3-IMI,

i.e. the perovskite with the smallest estimated gap. In general, it appears that all

the small band gaps are related to the presence of the low lying electronic levels

concentrated in the organic layer, and that low SR-DFT values lead to low Eg’s too.

Clearly, such small band gaps are very interesting for optoelectronic and photo-

voltaic applications: if these results could be confirmed by experimental measures,

it would be possible to produce 2D hybrid perovskites absorbing in the visible, or

even in the near-IR regions. Due to the nature of the low lying levels discussed

above, the excited electrons could be localized in the organic layers, possibly giving

rise to hole conduction, though electron conduction cannot be excluded either, for

iodide ions also contribute to these levels.

As mentioned above, a 2D tin iodide perovskite with histammonium (HA) cations

was found to absorb in the visible region, with a band gap estimated from the

Kubelka-Munk (KM) function of 1.67 eV:78 in the same work, the band profiles

were computed at the SR-DFT level and the band gap was estimated at 1.34 eV.

We repeated the band gap calculation for this system using eq. 1 and keeping

the crystal structure reported in ref. 78: ESR
g resulted 1.02 eV, SOC and GW

corrections -0.21 eV and 1.28 eV, respectively, and the final value was Eg = 2.08

eV. The difference in ESR
g can be due to a higher energy cutoff and a denser mesh

of k-points in the present calculation: in both cases, however, the band structure

shows no low lying levels close to the Fermi level, and in our calculation the PDOS

of the bottom conduction band does not contain significant contributions from the

organic layer. In fact, the estimated Eg (2.08 eV) is similar to the values obtained

for (EDA)SnI4 and (AZI)SnI4: the lower energy transition measured by the KM

curve could be attributed to excitons, whose coupling energy has been estimated

around 0.300 eV for this kind of systems.2,63

It is also interesting to evaluate the effect of the symmetry constraints imposed

14



during the geometry optimization, especially for the systems with the smallest band

gaps. The electronic bands were computed for the C2/c structure of 2-IMI used

for the comparison with the experimental crystal data: in the SI file (Figure S8)

the band profile is compared to that of the same system optimized in P 1̄ group,

clearly showing the strict similarity of the bands in the two cases. The agreement

is confirmed by the calculation of the contributions to the band gap: in the C2/c

structure ESR
g resulted 1.16 eV (1.19 eV in P 1̄, Table 3), SOC and GW corrections

were -0.17 (-0.24) and 0.64 (0.62) eV, respectively, and the final estimate was 1.63

(1.57) eV. Increasing the symmetry, as in the crystallographic structure, has a lim-

ited effect on the gap values, and the interesting feature of such a small band gap is

maintained also in C2/c geometry.

The correlation between the inorganic layer structure and the band gaps computed

at the semiempirical and DFT levels has been discussed recently1,99 for homologue

series of PbI4 and SnI4 hybrid perovskites. As shown in Table 2, the geometrical

parameters with the largest effect on the band gap were found to be the in-plane

M-X-M angle and the octahedra tilting (angles β, Figure 3-a, and θ, Figure 3-b);

a strong dependence of the band gap on the M-X-M angle was predicted also in

3D (MA)PbI3 by DFT calculations.101 Among the systems studied here, such an

analysis is sensible only with EDA and AZI cations, since in the other perovskites

the band gaps are strongly influenced by the organic layers, as discussed above.

In all the optimized structures with EDA and AZI we find very similar values for

θ, quite larger than the angles reported in ref. 1 for lead iodide perovskites with

monovalent ions: apparently, the intercalated dications pull the inorganic layers so

close to distorce the octahedra orientation strongly and to a similar extent for all

the systems. Angles β, as well as the interlayer distances d, vary more significantly

in the various structures: comparing the data in Tables 2 and 3 we see that ESR
g

and EFR
g follow parallel trends but a scarse correlation can be found with β and

d. On the other hand, the best estimates of Eg, including GW contributions too,

follow clearer trends: with EDA Eg decreases as β and d decrease, and with AZI a

good linear correlation exists between Eg and d. The present data, however, are too

limited to draw clear conclusions: this point will deserve a further analysis.
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A molecular descriptor

The unexpected and intriguing electronic feature found for (IMI)SnI4 and

(PYR)SnI4 is highly dependent on the nature of the organic layer: indeed, the low

lying levels at the bottom conduction band are strongly localized and their PDOS

show a predominant contribution from nitrogen and carbon atoms, unlike the other

systems considered here. In order to design other 2D perovskites with the same

characteristic, it would be very useful to relate the presence of these levels to the

electronic structure of the isolated cations.

To verify this point, the geometry of the four cations under study was optimized

with G09 using B3LYP density functional and aug-cc-pVTZ basis set; then the en-

ergy of the highest occupied and lowest unoccupied orbitals was computed with

PBE functional and the same basis set. The same procedure was applied to histam-

monium, to check the results described above.

The results are illustrated in Figure 6: the energies of IMI and PYR lowest un-

occupied molecular orbital (LUMO) are very similar, and lower than in the other

cations. On this basis, the cation LUMO energy could be used as a test to predict

whether a hybrid SnI4 perovskite is likely to have low lying conduction bands local-

ized in the organic layer: for instance, this property would correctly exclude such

bands with HA.

Figure 6

Apparently, a cation needs a LUMO with particularly low energy to give rise

to conduction bands near the Fermi level of tin iodide perovskites: IMI and PYR

are divalent cations with both the nitrogen atoms involved in aromatic rings, two

conditions expected to lower the energy of empty orbitals. On the other hand, EDA

and AZI are non aromatic divalent cations, while in HA only one of the protonated

nitrogen atoms belongs to an aromatic ring.

The orbital energies were obtained with PBE to keep close to the plane waves

procedure: however, the same quantities have been computed also with BLYP and

B3LYP functionals, with the results reported in the SI (Figures S9, S10). BLYP and

PBE energies are very close to each other, while B3LYP provides a larger HOMO-

LUMO gap, as expected with a hybrid functional, with higher energies for all the
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empty orbitals: however, the same trend among the cations is reproduced by B3LYP

also, as IMI and PYR LUMO energy is clearly lower than the others. From the data

tabulated in the SI (Table S5), we conclude that cations with LUMO energy below

-11 eV (computed with pure functionals, PBE or BLYP) or below -10.50 eV (with

B3LYP) are likely candidates to produce low band gap SnI4 perovskites.

Conclusions

We have optimized the structure and described the electronic properties of four 2D

perovskites, formed by (SnI4)
2− layers intercalated by divalent organic cations. The

procedure had been previously applied to analogue series of tin and lead halide per-

ovskites with monovalent cations: in particular, the band gaps have been carefully

estimated with scalar relativistic potentials on a suitable k-point path, and then

corrected for SOC and GW effects through an additive scheme already applied and

verified.

For all the perovskites, the exploration of the potential energy surfaces led to three

minima (though in a case two minima were shown to correspond to one structure):

with respect to the analogues with monovalent cations, these systems are more

distorted and it is difficult to describe them as eclipsed or staggered, particularly

with the smallest cations.

The analysis of the band profiles and band gaps led to an unexpected interesting

feature: with two cations, 2,2’-biimidazolium (IMI) and 4,4’-bipyridinium (PYR),

some nearly degenerate levels appeared at the bottom of the conduction band, al-

most independent of the k-point and largely dominated by the nitrogen and carbon

orbitals. These levels are strongly localized in the interlayer space and they lead to

unusually low band gaps: one of the optimized structures of (IMI)SnI4 exhibits a

band gap as low as 1.34 eV and other structures of (IMI)SnI4 and (PYR)SnI4 have

values in the range 1.57-1.78 eV.

Such feature, reported previously only once for a hybrid perovskite, could allow

the adsorption of near-IR or visible light: this point deserves further investigations,

and we hope that the present results will prompt the synthesis and the experimental
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characterization of this kind of materials.

To support the design of other tin iodide perovskites with the same characteristic,

we propose a simple molecular descriptor, i.e. the LUMO energy of the isolated

cations: the present models indicate that cations with LUMO energies lower than

-11 eV (if computed with pure functionals) or -10.50 eV (with B3LYP) are likely

candidates for this kind of perovskites.
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Figure 1: Divalent organic cations intercalated in the hybrid perovskites.
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Figure 2: Optimized structures viewed along [100] direction.
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(a) (b)

(c) (d)

Figure 3: Structural parameters for inorganic layers: (a) metal atom displacement
angle, β; (b) octahedron tilting angle, θ; (c) octahedron deformation angle, φ; (d)
interlayer distance, d.
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Figure 4: Electronic energy band profiles at the FR-DFT level.
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Figure 5: Projected density of states around the Fermi level at the FR-DFT level.

36



Figure 6: Energy (eV) of the highest occupied (red) and lowest unoccupied (blue)
orbitals of the cations used in this work, along with histammonium (HA) cation.

37



Table 1: Cell parameters (Å and degrees), unit cell density (g/cm3) and
formation energies from eq. 2 (eV) for the optimized structures.

a b c α β γ ρcell Eform

Structure 1

(EDA)SnI4 8.85 8.93 10.27 85.4 76.6 89.3 2.91 -17.33

(AZI)SnI4 6.21 6.09 10.14 89.0 103.1 87.9 3.17 -17.37

(IMI)SnI4 8.73 8.92 10.19 90.3 81.6 90.0 3.23 -16.85

(PYR)SnI4 6.31 6.50 11.42 88.3 97.1 110.6 3.00 -16.10

Structure 2

(EDA)SnI4 7.19 9.44 9.16 75.7 99.0 87.4 3.75 -18.02

(AZI)SnI4 6.77 6.61 8.96 97.4 71.3 106.4 3.26 -17.62

(IMI)SnI4 8.90 8.51 10.20 88.8 68.1 90.4 3.53 -17.44

(PYR)SnI4 6.31 6.41 10.32 107.3 70.8 95.4 3.46 -16.62

Structure 3

(EDA)SnI4 8.17 8.28 9.18 81.0 97.5 89.7 3.76 -18.23

(AZI)SnI4 6.68 6.57 8.65 85.3 110.9 103.3 3.43 -17.66

(IMI)SnI4 8.20 9.24 9.49 81.4 108.9 87.9 3.79 -17.97

(PYR)SnI4 6.47 6.26 10.16 107.4 103.5 95.3 3.47 -16.66
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Table 2: Main structural parameters (degrees and Å) for inorganic layers:
intra-layer metal displacement (β, Figure 3-a), octahedra tilting (θ, Figure
3-b), octahedra deformation (φ, Figure 3-c), equatorial (leq) and polar (lp)
Sn− I bond lengths, and interlayer distance (d,Figure 3-d)

Group (180◦ − β) θ (180◦ − φ) leq lp d

Structure 1

(EDA)SnI4 P 1̄ 23.7/26.9 32.5 0.0 3.20/3.23 3.19 9.96

(AZI)SnI4 P1 11.8/14.1 32.8 4.9 3.01/3.24 3.07/3.27 9.88

(IMI)SnI4 P 1̄ 1.9/10.8 33.0 0.0 3.11/3.14 3.23 10.08

(PYR)SnI4 P1 25.3/25.7 31.3 6.7 2.92/3.71 3.13/3.16 11.33

Structure 2

(EDA)SnI4 P 1̄ 18.5/25.9 32.7 0.0 3.12/3.19 3.02 8.98

(AZI)SnI4 P1 18.6/23.1 30.5 4.6 2.91/3.77 3.14/3.21 8.48

(IMI)SnI4 P 1̄ 0.0/11.1 31.5 6.0 3.03/3.13 2.96/3.03 9.46

(PYR)SnI4 P1 10.6/26.3 31.2 10.9 2.95/3.52 3.05/3.12 9.35

Structure 3

(EDA)SnI4 P 1̄ 19.1/19.3 32.6 0.0 3.07/3.10 2.98 8.98

(AZI)SnI4 P1 4.2/10.5 30.0 9.13 2.96/3.71 3.07/3.08 8.08

(IMI)SnI4 P1 5.9/7.8 31.8 6.61 3.00/3.30 3.09/3.10 8.85

(PYR)SnI4 P1 10.3/17.0 32.9 11.86 2.95/3.41 3.06/3.13 9.33
.
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Table 3: Electronic band gaps (eV) computed for dicationic tin iodide
perovskites with scalar (SR) and full relativistic (FR) pseudopotentials,
at the DFT and GW level.

ESR
g EFR

g SOC correct. EGW
g (Γ) ESR

g (Γ) GW correct. Eg

(a) (b) (c)

Structure 1

(EDA)SnI4 1.33 1.10 -0.23 2.47 1.33 1.14 2.24

(AZI)SnI4 1.53 1.27 -0.26 4.19 2.51 1.69 2.96

(IMI)SnI4 0.96 0.74 -0.22 2.05 0.96 1.10 1.84

(PYR)SnI4 0.79 0.54 -0.25 2.23 0.99 1.24 1.78

Structure 2

(EDA)SnI4 1.14 0.92 -0.22 2.35 1.14 1.21 2.13

(AZI)SnI4 2.37 2.08 -0.29 3.41 2.67 0.74 2.82

(IMI)SnI4 1.19 0.95 -0.24 1.81 1.20 0.62 1.57

(PYR)SnI4 0.86 0.64 -0.22 2.18 1.09 1.09 1.73

Structure 3

(EDA)SnI4 1.49 1.33 -0.16 2.32 1.57 0.75 2.08

(AZI)SnI4 1.87 1.60 -0.27 3.41 2.23 1.18 2.78

(IMI)SnI4 0.62 0.49 -0.13 1.47 0.62 0.85 1.34

(PYR)SnI4 0.84 0.62 -0.22 2.40 1.31 1.09 1.71

(a) Difference between columns 3 and 2: EFR
g − ESR

g .

(b) Difference between columns 5 and 6: EGW
g (Γ)− ESR

g (Γ).

(c) Best estimate of the band gap from eq. 1, or equivalently EFR
g + GW correction

(column 3 + 7).
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