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Abstract

Wireless Sensor Networks (WSN) are distributed intergctiystems formed by many similar tiny sensors commu-
nicating to gather information from the environment andi$rait it to a base station. The present paper presents an
analytical modeling and analysis technique based on Maakovgents (MAs) and discusses a very complex scenario
in which a WSN is deployed in a wide open area to monitor thédmatk of a fire and send a warning signal to a
base station. The model is composed by four classes of MA limgdehe fire propagation, the high temperature
front propagation, the sensor nodes and the sink; and tJypes bf messages. It is shown that, even if the overall state
space of the models is huge, nevertheless an analyticaiwvis feasible, by exploiting the locality of the interimets
among MAs, based on a message passing mechanism combihetipétception function.
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1. Introduction for low data transmission applications and the reliabil-
ity level of the sensor node and of the message transmis-
Wireless Sensor Network (WSN) technology is becorgion mechanisms mainly when multi-hop communication
ing increasingly popular, and has been applied to a vas-required, due to internal failures or the exhaustion of
ety of monitoring and tracking applications [1]. A WSNhe power source. WSNs devoted to environmental moni-
consists of a number of sensor nodes working togethetasing and protection are usually formed by several sensor
monitor the region over which they are deployed to gatheedes deployed in, possibly, wide geographical areas with
data about the environment and transmit them to a centrak or more sink nodes to collect the messages transmit-
base station. In particular, WSN have witnessed a numket by the sensing nodes. From a modeling and analysis
of applications in long-duration large-scale environnagénperspective WSNs are highly distributed systems, sensi-
protection systems in harsh terrain, wilderness areas &M@ to the geographical location, to the local conditions
location that are diicult to access [2]. Experimented apand to the mutual positions of the nodes. Due to these
plication fields include environmental monitoring [2, 3]¢characteristics, simulation has been the prevalent aisalys
early fire detection [4, 5, 6], disaster management [7, 8chnique as surveyed in [13].
ambient air and pollution monitoring [9, 10], earthquake In recent years, a new versatile analytical technique has
[11] and other vibrational phenomena [12, 11]. Amongmerged whose main idea is to model a distributed system
the advantages WSNSs require a low micro power levely means of interacting agents, so that each agent main-
thus can last for long periods of time and have, usualtgins its local properties but at the same time modifies
little or no infrastructure. To further save energy, nodés behaviour according to the influence of the interaction
may undergo cycles of dormdattive periods. The mainwith the other agents. In this way, the analysis of each
limitation is low data rate (narrower bandwidth) suitablagent alone incorporates th&ext of the interdependen-
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cies. In the present model each agent selects its actionShe paper is organized as follows. Section 2 defines
based on the current state and is represented by a contihae-Markovian Agent Model, the message emission and
ous time Markov chain (CTMC). We refer to this kind operception mechanism and how to construct an analytical
agents as Markovian Agents (MA) [14, 15, 16] for whickolution. Section 3 introduces the case study and the per-
the infinitesimal generator has a fixed local componefdrmance measures that are computed to characterize its
that may depend on the geographical position of the MBghaviour. Section 4 illustrates the experiments and re-
and a component that depends on the interactions wptbrts the numerical results. Section 5 discusses the com-
other MAs. In this paper, the interaction among MAs jgutational complexity of the solution and the capability of
represented by a message passing model combined witheaMAM to represent environmental protection systems.
perception function. Dierent interaction mechanism ar&ection 6 concludes the paper.
possible depending on the specific application [17].

Messages may represent either real physical message§heory
(as in WSNs) or the mutual influences of a MA over the
other MAs. The perception function regulates the prop-The Markovian Agent Model (MAM) represents a sys-
agation of messages and takes into account the MA pem as a collection ofMarkovian Agent{MAs) spread
sition, the routing policy and the transmittance of thever a geographical spadé The essence of the MAM is
medium. Markovian Agent Models (MAMs) have provethat each MA is described by a continuous time Markov
to be suited to model and analyze very large stochastlain (CTMC), whose infinitesimal generator contains a
systems of interacting heterogeneous objects, for whiited component that depends on the MA structure and
the dimension of the state space exceeds the capabilifiesition in spaces € V, and a component that depends
of any state-space model. In the context of WSNs [14]n the interaction with the other MAs.
sensor and sink nodes are represented by MAsTg#rgint ~ More formally, let us callV = {vi,vo,...vy} the dis-
classes. Nodes exchange messages whose transmigsite set of locations amdt, v) the probability vector rep-
range may be very limited and may be dependent on #egenting the state distribution of a MA at tirha posi-
properties of the transmission medium; further, messagies v. Moreover, lefll(t) be the ensemble of the proba-
may be blocked by obstacles interposed on their passagjtity distribution of all the agents at timte The dynamics

In the present paper we describe a MAM modelingaf the probability distribution of an agent in positieris
WSN devoted to monitoring and protecting an outdodescribed by the following abstract equation:
environment from fire. The MAM model is composed by d
two interacting sub-models. The first one is inspired by a dn(t.v) = 7(t, v)(Q(V) + I (v, II4(1))), (1)
preliminary study [6] and is composed by two classes of t
MAs: the "fire” MA and the "Critical Temperature” MA, Matrix Q(v) in Equation (1) defines only the rate of local
and models the propagation of the fire and of the front whnsitions, as in traditional CTMC, according to the agent
a critical temperature. The second one is composedpmsitionv. The influence matrix (v, IT/(t)) accounts for
two classes of MAs: the "sensor” node MA and the "certhe rate of induced transitions due to the influence of other
tral base station MA” and models the monitoring WSNagents. The entries of matrik(v, I1¢,(t)) depend on the
in which sensor nodes react when reached by the critiate probabilities of other agents and must satisfy peecis
cal temperature front and send a warning message to streictural restrictions so that the mat@Xv) + 7 (v, I1(t))
central base station, until they are eventually destroyedib still an infinitesimal generator matrix. Equation (1)
the arrival of the fire. We discuss the layout of the systeprovides an abstract description of the agents’ behaviour,
how the system is sensitive to the local properties of temce the rates of induced transitions composing the influ-
medium and to the presence of a non-homogeneous wamte matrix are not fully specified. The way in which the
field in the area, and we study the system performance influence matrix is defined and evaluated depends on the
der various scenarios. We discuss the complexity of tbensidered problem. In the present paper the interaction
model solution showing how the MAM model can cop@mong MAs is based on a message passing mechanism
with exceptionally large state spaces. combined with a perception function.



2.1. Message passing based Model AC(v) is a vector of sizé. whose components represent

the rates ofelf-jumpdor a classc agent in positior, i.e.

The influence among MAs is represented by the e rates at which the CTMC reenters the same state.
change of relational ent|t|e_s, calledessagesthat are GS(v, m) is ang x ne matrix describing the probability
.e”.““ed b_y a MA an_d percelyed by th? other ones mof?fat an agent of clagsin positionv generates a message
ifying their stochastic dynamics. The interaction amo typem during a jump from statéto statej

agents is ruled by perception functiorthat captures the AS(v, m) is an x n matrix, that describes the action ac-
sending and receiving aptitude of the involved MAs and ’ e ;
. ; . : . Ivated upon acceptance of a typamessage for an agent
is a function of their geographical location and of the fea- . o
) .~ of classc in positionv.
tures of the traversed media. MAs may belong tibeati c(v) is the initial stat babilit tor of si f
ent classes with élierent local behaviors and interaction 75(V) Its fe| initia sta 'Et}' probability vector ot sie o
capabilities, and messages may belong féedént types anagentotrc a§5|n p03|_ lonv. L,
where each type induces aferent éfect on the interac- | "€ Perception functiotin(v, ¢,i,v’,¢’,i") € [0, +c0)
tion mechanism. The perception function describes h&@Presents the aptitude with which an agent of ciass
a message of a given type emitted by an MA of a givé}ﬁ)snmnv, and in state, perceives a message of type
X Lo >
class in a given position in the space is perceived by 9fnerated by an agent of classn positionv” in statei’.
MA of a given class in a dierent position. Note that the message-based interaction paradigm, that
Formally aMultiple Agent Class, Multiple Messagéequ”es the definition of a perception function, is not the

TypeMarkovian Agents ModelNIAM) is defined as: only way to define Markovian Agents Models. For in-
stance, in [17] an induction based interaction, where each

MAM = {C, M.V, U}, (2) agent simply "sees” the states of the neighbor agents to
decide its behavior, is used to model technology switch-
where: ing in heterogeneous wireless communication networks
C is the set of agent classes. We denote WItAS an (the ability to either connect to the Internet via WiFi or
agent of class € C. cellular 4G LTE).

M is the set of message types. Each agent (indepenin [18], the well known ACO (Ant Colony Optimiza-

dently of its class) can send or receive messages of tj{98) model [19] is represented via MAMs by considering
me M. an extended perception function, which allows a message

V is the finite (two-dimensional) space over Whicﬁpodeling an ant) to be directed towards the path with the
Markovian Agents are spread. Spageis discretized Nighest mean pheromone level.
with a rectangular grid df = ¢,x¢£,, square cells of size.
From now on, the node locatian= (h, w) identifies a dis- 5 5 Analysis

crete cell in positiom € {1, ..., ¢y} andw e {1, ..., ).
U = {u()...um()} is aset oM perception functions,  Analyzing aM®M consists in solving, for each MA,
one for each message type. the diferential equation for the state probability vector

Each agenMAC of classc is characterized by a stater(t, v) = [7S(t, v)], whose entries denote the probability

space withn. states, and it is defined by a tuple that def finding a class agent at timet in positionv in statei.
pends on the particular positianin which the MA is lo-  Sincer®(t, v) is a probability vector:

cated:

Z ai(tv) =1, Vi, ¥v, Ve
MA® = {Q°(v), A°(v), G"(v, m), A%(v, m), x5(V)}.  (3) i

where: The construction of the fferential equation forr®(t, v)
Q°¢(v) is then. x n¢ infinitesimal generator matrix of therequires the preliminary computation of the interactions

CTMC that describes the local behavior of a clasgent terms. We start by definin,@‘l?(v, m) as the total rate at

in positionv. which messages of typm are generated by an agent of



classc in statej and in positionv: 3. Model Construction

A5, m) = W) &M+ > Mg (v.m.  (4)  We define aMAM to model and analyze a complex
T k#] scenario of a WSN deployed to monitor the environment
® from the propagation of a fire and to timely report an
alarm signal to a base station. The model considers the
where the first term (a) in the r.h.s is the contribution of thgopagation of a fire in a non-homogeneous environment,
messages of type emitted during a self-loop from statesubject to a varying wind field. The front of the fire
j and the second term (b) is the contribution of messadegreceded by a faster front of a high critical tempera-
of type m emitted during a transition from stafeto any ture. When the sensors scattered in the environment are
statek (# j). reached by the temperature front they react by sending
The next step is to computé (t, v, m) the total rate at an alarm message to a base station. As the sensors are
which messages of type coming from the whole vol- reached by the fire front they are destroyed. ThaM
umeV are perceived by an agent of classn statei, in - conists of four classes of MAs denoted by the superscript
positionv, at imet. C = {f, h, s, b}and of three types of messages denoted by
c nv (m¢, my, my). MAs of classed andh model the propaga-
YEvm = > > (v, iV, ¢, )TV, M (V) tion of the fire and of the critical temperature, respecivel
vev e=lj= through the emission and perception of messages of type
(5) m¢ andmy,. MAs of classs are the sensors that react to
The termup(v, c,i, V', C/, j),B?’(v’, m) nj?'(t, v’)in (5) is the the perception of messages of type andm, and send
rate of messages received by clasgjent in statéin po- warning messages of typa, to the base stations MAs of
sition v, coming from ac’ agent in position/’ in state classb.
j, at timet. The total ratey;(t,v,m) is obtained sum- In the present scenario, we assume that the geograph-
ming up the contributions coming from all the states arnchl area of the model defined in Section 2.1 can be ob-
all the agent classes, and over the entire &ta We tained from a satellite image like the one presented in Fig-
collect the rates (5) in a diagonal mati¥(t,v,m) = ure 1(a). The area is divided In= ¢? equal square cells
diag@;(t,v,m)). This matrix can be used to computas in Figure 1(b) (solid line) where the dimensidrof
K°(t,v), the infinitesimal generator of a classagent at each cell is chosen in such a way that the properties of the
positionv at timet: burning material can be considered homogeneous in each
cell. For the study of the fire and temperature propagation
K(t,v) = Q%(v) + Z re(t,v,m) (A°(v,m) ~1)  (6) phenomenonwe locate oA’ and oneM A" per cell, so
m that there aré. MAs of classf andL MAs of classh. In
Comparing (6) with (1), we can recogniz&¢(v) the presentexperiment, the sensor nodes of dfessare
as the local transition rate matrix and the tengistributed regularly on the areH at a distance compati-
3 TE(t, v, m) (AS(v, m) — 1) as the definition of the influ- ble with the transmission range of each sensor. We locate
ence matrixZ (v, Ily(t)), in this case. one sensor node evewy cells of the grid, so that there

The evolution of the entire model is studied by sohare in totallL,, = ¢?/w? sensor nodeMA® in the area, as
ing, separately for each MA, the following Chapmarfhown in the dashed grid %f Figure 1(b). Finally, we lo-
Kolmogorov equation that incorporates the interdepefate only one base statidfA” at one corner of the arel

dency in the influence dependent component of mattixigure 1(b)). In the pictorial representation of a MA, the
KE(t, v). local transitions (pertaining to matri@°(v)) are depicted

in solid line and are labeled with the corresponding entry
7°0,v) = mg of matrix Q°(v), while induced transitions (pertaining to
@) matrix I'°(t, v, m)) are depicted in dashed line and are la-
beled with the type of message whose perception induces
the transition.

dn(t, v)

C Cc
Ot nc(t, v) KE(t,v)
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Figure 1: A aerial view of the area of the experiment: a) the@nig the fire and temperature grid (solid line @0 cells) and the sensor grid

(dashed line 1& 10 cells); c) the superimposed routing table.

3.1. MA for fire and temperature propagation front

line) makes the MA jump to the burning stdBe

The fire and temperature propagation dynamics in ouB - is the burning state: the cell is reached by the fire
door environments depends on several factors such as the front. 'When resident in statB two local transi-

density and type of materials being incinerated, the wind
direction, etc. In a homogeneous environment and in the
absence of wind, the flame front spreads circularly, while
in the presence of wind it spreads following an ellipse
with main axis in the direction of the wind [6]. The prop-
agation model should account for the flame front and the

critical temperature front. The class of the fiA" has

three statesl( B, E) and can emit two types of messages
(m¢, my) and is reported in Figure 2a). The meaning of

the states is the following:

(b)

Figure 2: Fire AgenMA (a) and Temperature AgeMA" (b)

| - is the idle state: the cell is not burning. When a fire
messagam; arrives, an induced transition (dashed

tions are possible (solid line). With ratg(v) the

MA broadcasts two types of messagas and m,,

with probability 1. The value ol (v) determines the
frequency at which messages are emitted and hence,
the speed at which the fire front propagates; further,
since its value depends an we can assign a dif-
ferent propagation rate to each cell thus modeling a
non-homogeneous terrain. The ratgv) is instead
the extinguishing rate. When the corresponding tran-
sition fires, the MA jumps to the extinguished state
E which acts as an absorbing state. Also in this case
the parameter value depends wiso that the time

to extinction of the fire may be related to the local
properties of the terrain in the cell.

E - is the extinguished state: the fire is extinguished and

the activity of theMA' terminates.

The class of th#MA" temperature agents has two states (
H) and can emit one type of messaga,), as shown in
Figure 2b). The meaning of the states is the following:

| -is the idle state: the cell is below the critical temper-

ature. When a temperature messagés perceived,
the agent jumps to staté.

H - is the critical temperature state: the cell is reached

by the critical temperature front. When residenkin
two local transitions are possible (solid line). With
rate 1,(v) the MA broadcasts a message of type
and the value oft,(v) determines the speed at which



the temperature front propagates. With ratév) the sense and transmit messages only when active. Sensors
agent becomes idle again. are destroyed when reached by the fire front. The WSN is
o ) _ ) modeled by two MA classes: theensor nodelassMAS
The elliptic propagation model of either fire or temperagyg thesink nodeclassMAP. They interact with the fire
ture front, is determined by two perception functiaRs 5ng temperature agertA’ and MA" by means of mes-

andum,,. A MAT in positionv perceives fire messagegagesny, m,. The agent of clasMAS is characterized by
from MAfs in positionv’, only if the distance between

the two agents is inside the propagation ellipse centered
on the positionv’ of the sender agent. Moreover, it re-
ceives such messages at a rate proportional to the distance
R; from the originating focus. In this way, the front prop-
agation is governed by the interaction among cells inside
the propagation ellipse.

Rt if (V' —=v) < min(Ry¢, 1))
Um, (v, 0,V 7, ) = A@=1)A(j=B) m, m,

0 otherwise - @ @ ®)

where Rs is the equation in polar coordinatd® ¢) of an

ellipse with semi-major axis of length, eccentricitye; Figure 3: Sensor AgetAS(a) and Base Station AgeMAP (b) . The
and rotation anglef, andis given by: dangling arrows directed to fail stakerepresent that from any state the
reception ofms messages induce a transitionRo

ar(1-¢€) .
f = 7 (9) 4 states and can perceive 3 types of messagess, my)
1-€ Cod6-a) but can emit only messages of typg. MAS is depicted

The eccentricite; depends on the wind speid and the in Figure 3(a). The meaning of the states is the following:
rotation anglexs on the wind direction [6]. The percep- | - is the idle state: the sensor is qui(_at until it perceives
tion functionum, (v, t,i,v’,t’, j) for the temperature mes- atemperature messageg or a warning messagay.
sagem, is constructed in a similar way, by defining the ~ The idle state alternates with the sleeping stte
corresponding propagation ellip&g as in Equation (9), where the sensor is inactive.

with parametersy, and e, and replacing this value in D - is the detection state: the node has detected either a
Equation (8). In this case, messages are emitted by ei- messagen, or m, and propagates the warning mes-

ther aMA; in stateB or aMA,, is stateH and perceived sagem,, at a ratels according to a given routing ta-
by aMA, in statel. ble.

S - is the sleeping state: the radio device and sensing
3.2. MA for the sensor network equipment are switchedfp the wake up transition

The WSN in charge of fire monitoring is composed by ~ Of rateu is always to staté.
regularly spaced sensor nodes of cld$4® as shown in  F - is the fail (absorbing) state and is reached when the
Figure 1b). When one sensor is reached by the tempera- sensor is stricken by the fire front.
ture front it starts sending warning messages of type
toward the sink. To preserve the battery, messages haie behavior of th&1As agent at the reception of the mes-
a limited transmission range and are sent to neighborsages is the following:
sensors according to a predefined routing protocol so that the reception ofn, in statel induces a transition to
the warning messages reach the base station through a stateD with probability 1.
multi-hop mechanism. To further preserve energy, nodes

. : the reception ofn; in stated, D or S induces a tran-
undergo cycles of dormafarctive periods, so that they can P f

sition to state~ with probability 1.



- the reception of a warning messaug in statel ac- stateB. Similarly for the propagation of the temperature

tivates the sensor to staewith probability 1 where front.

the warning messags,, is replicated with rates. Mean Fire Propagation Time -The Mean Fire Propaga-
tion Timen'(v,Vv’) is the mean time needed by the fire to
reach a cell in positiow” starting from a cell in position.
nf(v, V') is computed by taking the expectation of the ran-
dom variableQ(v, V') representing the first passage time
fromv to Vv’ thatin turn is computed starting the fire in the
'MAT in positionv and by making absorbing thdA' in
positionv’. To compute;f (v, v') we perform the transient

A sensor node can go to sleep (in st&eeither froml
or D with rateo and wakes up at rage When a sensor
goes to sleep from staf@ it forgets any previous incom-
ing signal and returns active always in sthte

The base station ageMAP has a simple structure
characterized by an idle stdtand a detection stai2 and

. - . . . b . .
is depicted in Figure 3bJIA° is not destroyed by the f'reanalysis by assuming as initial conditions that KA in

and the transition fronh to D occurs at the reception Ofpositionv is in stateB (burning) with probability 1 and all

the temperature messagg or the warning messags,. thg otheMA's are in staté (idle):

In our experiments there is only one base station locate

in one corner of the grid (Figure 1). 1 if(¢=Vv)Ai=B)v
To speed up the alert and save energy, each sensor sends ”if (0, ) { (d£V)Ai=1)

the warning messages to its first neighbor in the direction 0 otherwise

of the sink according to a predefined routing table whose

visual representation is reported in Figure 1c). The flowhere¢ is a generic position that spans ov&randi a

of messages is indicated by arrows. We define the routigeneric state. Further the burning st&ef the MA' in

table functionR7 (v,v’) = 1, when aMAS in positionv positionv’ is changed to aabsorbing state From stan-

is directly connected to a first neighbbtfAS in position dard probability theory results (see [20]) we have that the

v’ by an arrow in the routing flow diagram of Figure 1c)Cumulative Distribution Function d2(v, V') is given by:

RT (v,v) = 0, otherwise. Given the routing table, the

perception function for the warning messaug is de- Pr(Q(v, V') < 1) = mg(t,V')
fined as: .
L HRTW.) = 1A P’ =Elow vl = [ @-altvnd @)
. . . . 0
Um, (V, 1,1,V U, ]) = i=lAj=D (10) | Ti i
0 otherwise Mean Message Travel Timeln an similar way, we can

compute the mean travel timg(v, v’) needed by a mes-
The interactions between amAf and anMAS by means Sagem, originated from aVIA® in positionv to reach in

of messagesn; and between amMAM and anMAS (Or a multi-hop path aVAS in positionv'. In particular we
MAP) by means of messages, are defined accordinginvestigate;"(v, vp), the mean travel time taken by a mes-
to the perception functionsy, (-) andum, (-) described by sagemy to reach the sink. This measure provides an in-

Equations (8). dex of the "responsiveness” of the WSN in terms of how
quickly the network can deliver early warning messages
3.3. Performance indexes to the sink, before fire arrives.

Solving aMAM means computing the probability vec-
tor z°(t, v) as a function of time for every MA present 4 Experiments and Results
in the areal by means of an equation of type (7). The
knowledge of ther’(t, v) provides a complete description All the experiments were performed in the geograph-
of the model and allows us to compute various perfdcal area shown in Figure 1a) with a square grid_o£
mance measures of interest. 50 x 50 cells numbered in the standard Cartesian way.
Fire and temperature propagation front -The spatial Cell (0,0) is at the left bottom corner and cell (5D) at
propagation of the fire front is given by the spatial prolthe right top corner. We locate oA’ and oneM A" per
ability n;(t, v) of the agentsVA" of being in the burning cell. The parameters of the agents can be automatically



extracted from the RGB coding of the aerial image of tremrner of the image is just visible; at minute 10 the tem-
map through an Adobe Flash application as reportedparature front reaches the lake, and the fire becomes vis-
[6]. Attimet = O all the agents are in their idle stdte ible in the upper left corner. Proceeding with time, the
with probability 1 er,f(o, V) = nP(O, v) =1 Vv). To start a lake divides the temperature front in two parts and the fire
fire in locationg att = O we assign an initial probability grows covering a larger zone as clearly visible at minute
equal to 1 to the burning staRof the MAT in the given 15. Finally at minute 20, the temperature front exits from
location: n;(o, ¢) = 1. The analysis is ccarried out bythe map and the fire propagation is hindered by the lake.
solving the diferential Equations (7) using the TR-BDF2 With a strong wind the propagation is significantly
technique [21]. The computations time ranges from fiepiicker and with a dferent dynamic as shown in Figures
to ten minutes on a notebook equipped with an Intel Cotée-h). At minute 5 the temperature front reaches the west

i5 CPU at 2.5 GHz.x 4 and 5.8GB RAM. side and surpasses the east side of the lake, while the fire
_ _ is still in the corner. At minute 10 the fire reaches the
4.1. Fire and Temperature Propagation Front lake and the temperature front is already beyond the map.

This Section analyses the dynamic behaviour of the fiédso in this case the fire is hindered by the lake, but the
and temperature propagation frontin an open environmarind is strong enough to let the fire circumvent the lake
in the presence of obstacles. In the area of Figure 1a) aseshown at minute 15. From now on the fire is free to
have located a lake that acts as a barrier preventing the $ipeead beyond the lake and to cover a significant part of
to propagate (Figure 4). To model the obstacle, the agethts whole area (minute 20). Finally, we have supposed
in the cells covered by the lake are removed. The mélat there is a critical structure (a house, a village) in the
sage emission rates of boMA" and MA" are constant left lower corner of the map at the cely; = (0,0) and
with A¢(v) = 0.1 mint andAp(v) = 0.2 min™t Vv, re- we have measured the mean tivnfeévf,vcrit) needed by
spectively. The extinguishing rates are the same for balie fire to reach the critical location. With a light wind
agents in each cell;(v) = un(v) but vary from cell to 5 (vs, veric) is about 39min, whereas with a strong south
cell in the range (0- 0.05) since they are automaticallydirected wind it is reduced to about in.
extracted from the map.

We focus on the spatial distribution of the probabi#.2. WSN analysis
ity né(t, v) of the MAT in the burning statd and of the  This Section is dedicated to analyse the WSN in isola-
probabilityz! (t, v) of the MA" in the critical temperaturetion, i.e. without considering its interaction with the tem
stateH. We plot such values in a colored map: darkgrerature and fire agents. This analysis is intended to be
points in the grid correspond to low probability valuesiseful in a preliminary design phase to tune the structure
while lighter points indicate higher values. To providand the parameters of the WSN. The parameters that in-
a better visual distinction between the fire and the teffiuence the performance of the WSN are, primarily, the
perature front, we have plotted for the former only prollistancev (measured in number of cells), the sending rate
ability values in the range.® < n;(t,v) < 0.9 (cor- of warning messages; and the duration of the sleeping
responding to yellow color) and for the latter values igycle « of active-sleeping periods determined by the val-
the range ® < nﬂ(t,v) < 0.8 (corresponding to pink ues of the rates andu:
color). We study the propagation in twofidirent envi-
ronmental conditions: a wind blowing with a constant a =100
low speed in a fixed direction from west to east (Figures
4(a-d)) and a wind at high speed with a constant diréEhe experiments have been performed considering the ge-
tion from north to south (Figures 4(e-h)). In both condbgraphical area of Figure 1b) in which tM¢AS sensor
tions, the fire originates at position = (0,49), and the agents are located at the intersection of the dashed grid
dynamic of the front propagation is plotted at the time inwith stepw and one single sink ageMA?P is always lo-
stants =5, 10, 15, 20 min. cated in a fixed positiony, = (48 ,48). The analysis is

Figures 4(a-d) show the propagation with light wincconcentrated to find the average travel time of the warn-
at minute 5 the initial temperature front in the upper lefitg messagg”(va, vp) from a given positioiv, to the sink

(o

— (12)
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Figure 4: Fire and temperature propagation front in thegmes of an obstacle

Vp, as a function of the positiown,, of the sleeping cycle ever, such an increment depends on the network charac-
« and of the distance. To generate the warning signalteristics. With a high transmission rate (= 1.667 sec?)
at timet = 0 the single sensor in position is made ac- this gfect becomes significant only for very high sleeping
tive in the detection stat® by settingr? (0,vs) = 1, and percentages (of the order @f= 90%) as shown in Figure
remains active so that for the duration of the entire exp&(a-b). A stronger #ect appears with a lower transmis-
iment it emits warning messages, at rateds. All the sion rate ofls = 0.2 sec! as shown in Figure 5(c-d)
othersMAS agents follow the same sleeping-active cycleghere a significant increment in the mean travel time ap-
with sleeping cycler and are assigned an initial probabilpears for lower values af particularly in the case = 6.
ity 77(0,v) = 1 - @ andng(0,v) = a forall v # v,.

In the experiments we have considered a set of po‘}si—a' WSN detecting incoming fire
tions vy = {(0,0), (24, 24), (36,36)}, two values of the In this Section we combine the fire and temperature
sending ratels = {1.667,0.2} sec? (corresponding to a propagation model of Section 3.1 with the WSN detec-
mean time between message emissions®B0d 5se¢ tion and warning model of Section 3.2. The model lo-
respectively) and two sizes of the grid topology withates oneMA™ and oneMA" in each cell, and on&AS
(w = 6) and v = 12) (to change the number of hopsveryw = 8 cells. The fire propagation ratg and the
to reach the sink). Further, the sleeping cyelearies in temperature propagation ratg are constant over all the
the range [0- 95]. The results are shown in Figure 5. Iells with A = 2.0 mint and Ay, = 4.0 min™!, respec-
all the experiments twofkects are always visible. Firsttively. For each cell the wind intensity is low and the di-
the travel time of the warning messagg¥va, V) is di- rection constant. To show that the model can handle non-
rectly proportional to the distance between the locatipn homogeneous and location-dependent phenomena 7], the
generating the message and the sigiksecond, an incre- extinction rate of both fire and temperature are automati-
ment of the sleeping percentage increases the travel ticaly extracted from the colored map in Figure 1(a) so that
since it increases the probability that at each hop a senaoy cell may have a fferent rate value. In the present set
wastes time sending messages to a sleeping sensor. Hafiexperiments those values range from 0.2 tori9.
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Figure 5: Travel time of warning messages varying the stegfime percentage and forftirent always active sensor positions.

The fire starts in the left lower corner in position= ability 73 (t, v) for the sensordMAS?, only, and with a dif-
(0,0), while the sink is located at the opposite corner fierent color scale (from whitgellow for low probabilities
positionvy, = (48,48). Each sensor is tuned with a lovto dark blue for high probabilities).
sleeping percentage = 20%. The sending rate of the _ _ ) i
warning messages i& = 100min-%, about two orders of The.f|re _spreads_ s!owly in an approximately circular
magnitude greater than the rate of the fire propagation WY With slight variations due to the non-homogeneous

the figures the sensors are spotted as small squares. extinction rates and the light wind. Due to the high cov-
erage of monitored area, the WSN can detect the fire al-

Figures 6(a-d) show the spatial and time evolution afost immediately: even at= 2 min, when the fire is just
the probabilities of havindMAf in the burning stateB, started at the lower-left corner, the path of colored scaiare
MA" in the critical temperature staté and MAS? in the along the diagonal of the area indicates a flow of warning
detection statd. The figures capture the dynamics ofnessages towards the sink. tAt 5 min the probability
the model at the time instants= 2, 5, 20, 30 min. that such sensors have detected the fire is almost one. At
As in previous experiments, to distinguish the fire and the= 20 min, other sensor routes, leading from the fire to
temperature front, all the values of né(t, v) < 1.0 sink, starts to appear: this can be used by the base station
are plotted whereas for the temperature only the valuesmonitor the extension of the fire. At= 30 min, al-
04 < n*;'(t,v) < 0.8 are plotted in purpjblue (dark) mostall the sensors have detected the fire, that has already
color. For the sensors, all the values ofGr3(t,v) < 1.0 reached half-way to the sink. From the sensor messages,
are drawn on the figures. To improve the visibility of ththe base station can estimate the speed and extension of
sensors dynamics, Figures 6(e-h) isolate the spatial prtite fire front, and properly direct the actions of the fire-
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Figure 6: The WSN detects the incoming fire and alerts the siasien.

n, entries that account for all the interactions with all the
MAs in the whole ared’ during sojourn in staté (see
Equation (5)). LelN, be the number of such possible in-
teractions; in the worst-case each MA interacts with all
5.1. Complexity the other ones and hen¢¢ = Cn.f2. In the worst-

The state space of the example discussed in SectioffA° the complexity of the computation of matfi(t, v)

has the following size. There afé = 2500MA" (with 3 'S (n. \i) = O(C n’g?;z)_ In the described scenario the
states) andVIA" (with 2 states ). There aré/n)? = 64 worst-case complexity would b®(4 x 4% x 2500) =

MAS (with 4 states) and there is oMAP (with 2 states). O(160000).
The total number of states of the model is therefore:

fighters.

5. Discussion

However, and this is the main point of the technique,
the worst-case complexity is greatly reduced since the in-
teraction of each MA is often limited to a subset of mes-
which is a number that is hardly explored even by simaage types and is confined to a restricted region around the
lation. Our analytical technique is feasible since we solpesition of the MA by means of the perception function
separately 2500 Equations of the form (7) AT, 2500 u(-). In our scenario eadl A’ perceives messages only of
for MA", 64 for MAS and 1 forMAP. An exponential typem; from MA's that are inside the propagation ellipse
complexity is reduced to a linear complexity. Howevefas described by the perception function in (8)) that cov-
to arrive to solve one Chapman-Kolmogorov equation efs on the average 24 celllA" perceives messages only
type (7) for a given agent of class we need to com- of typem, from MAfs or MA"s that are inside the same
pute first the influence matriK °(t,v). If we denote by propagation ellipse. EacMAS perceives messages of
n. = Max{n.} the largest dimension of the state space tfpesm;, m, andm, from MAfs orMA"s orMAS accord-
MA of any class, the computation of mati€(t, v) re- ing to the routing table indicated with arrows in Figure
quiresM computations of the diagonal matdiX(t,v,m), 1. As can be inferred from Figure 1 eabhAS perceives
one for each message type. MaffiXt, v, m) has at most messages only from one or two first neighboriigs. Fi-

NT — 32500>< 22500>< 464 x 2 (13)
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nally, the sinkMAP perceives messages of typms and model, even with the simplified fire propagation model in
my, from the 3 first neighboring locations only (Figure 1)Section 3.1, can provide useful insight about the iGaDs
For such reasons, in our scenario the real number of gystem performance.
teractions to be taken into account in the computation of
matrix K¢(t, v) is approximatelyN,, < 200, with an enor-
mous reduction in comparison with the worst-case. 6. Conclusions

The Equations (7) are solved by resorting to numerical
iterative techniques over a discretized time interval. Theln this work we presented a modeling technique to
0 — Tw mission time is uniformly discretized with stegstudy, within a single unified framework, the propaga-
At yielding Tpo = Tw/At time points. Thus, in the worst-tion of an environmental hazard (a forest fire) together
case the time complexity of the solution algorithm turngith the performance of a WSNs deployed to timely de-
out to beO(T,M£4C2n2). In our scenario the complexitytect the hazard by sending warning messages to a base
is reduced tadD(N;, TA2CMn,) since, as outlined earlier,station. Despite the huge complexity of the state space
the possible interactions of each MA with its neighbotsf the overall model, the MAM formalism has been able
are limited (that isN;, << N; = £2Cn,). The capability to build up a set of analytical equations that are numeri-
of the MAM to confine and localize the interactions isally tractable. The main feature of the MAM models is
one of its main peculiar properties that is exploited in arg ability to confine the interaction of each entity of the

practical application. distributed system to a delimited environment as it is of-
_ _ ten observed in many real large-scale distributed applica-
5.2. Environmental protection systems tions. Further, the MAM model is sensitive to the position

Environmental protection systems are usually implef each entity and to their relative distances so that highly
mented with a network of Intelligent Guards against Disron-homogeneous phenomena can be naturally captured.
asters(iGaDs) devices [3] which locally maintain locatioflong the line presented in this paper, the methodology
information and behave according to their own positionan be refined to improve the WSN alarm protocols, to
Such feature can be naturally included in MAM modelsptimize the sensor placement, and to optimize the model
For instance, the perception function can be used to mogatameters, to increase the sensor lifetime and reduce the
power decay of a message transmission depending ontthie to detect the hazard.
relative distance between source and destination. MoreHowever, various new directions can be envisaged to
over, the work in [16] shows that MAM can also repreexpand and improve the MAM modeling technique. In-
sent and evaluate distributed gradient-based routing algestigate more abstract interaction mechanisms not based
rithms for WSN with time-varying topology. on the message passing paradigm combined with a per-

The ability of iGaDs network to deliver early warningeption function. Include the mobility of the entities. De-
depends on network parameters, such as the frequenciiref a high level language to facilitate the description of
forwarding, the transmission range and the network topette model.
ogy. But it is also &ected by the physical characteristics
of the considered environmental threat, such as its prop-
agation speed and its direction. Thus, a proper modRdferences
should take into account both the monitoring system and
the disaster dynamic to capture their interdependencigg] J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor
To the best of our knowledge, such holistic approach is  network survey, Computer Networks 52 (12) (2008)
rarely applied. On the one hand, iGaDs are evaluated by 2292 — 2330.
analytic or simulative models in which the disaster event
is represented by just a probability of occurrence or arat¢2] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia,
on the other hand, disaster dynamics are evaluated by sim- D. Moore, Environmental wireless sensor networks,
ulation of complex model without considering the iGaDs.  Proceedings of the IEEE 98 (11) (2010) 1903-1917.
Instead, in this work we have shown that a unified MAM  URL http://eprints.qut.edu.au/42703/
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