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Abstract

Wireless Sensor Networks (WSN) are large networks of timssenodes that are usually randomly
distributed over a geographical region. The network togplmay vary in time in an unpredictable
manner due to many different causes. For example, in ordexdiace power consumption, battery
operated sensors undergo cyclesleeping - activeeriods; additionally, sensors may be located in
hostile environments increasing their likelihood of fadufurthermore, data might also be collected
from a range of sources at different times. For this reasolti4mop routing algorithms carrying mes-
sages from a sensor node to a sink should be rapidly adaptalie changing topology. Swarm
intelligence has been proposed for this purpose, sinclwsalthe emergence of a single global behav-
ior from the interaction of many simple local agents. Swantelligent routing has been traditionally
studied by resorting to simulation. The present paper ainshow that the recently proposed model-
ing technique, known allarkovian Agentsis suited for implementing swarm intelligent algorithms
for large networks of interacting sensors. Various expental results and quantitative performance
indices are evaluated to support this claim. The validityha$ approach is given further proof by
comparing the results with those obtained using a WSN disewent simulator.

Keywords: Wireless Sensor Networks, Markovian Agents, Swarm irgetice, Gradient-based
routing, Performance evaluation.

1. Introduction

Wireless Sensor Networks (WSN) are application-speciftovoks composed of a multitude of
tiny sensor nodes with limited computational, communaratiand power capabilities [2]. Sensor
nodes collect measurements of physical parameters argihiitaimem to a sink node. Sensors may be
scattered randomly over a geographical region and, in aedesive battery energy, they may undergo
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cycles ofsleeping - activgeriods [3]. Nodes deployed in real fields might get damagejlist fail at
any time. The sink node might also change its location, ancerti@n one sink can be present at the
same time. As a result, the topology of the active nodes in AlWi8y vary in time in an unpredictable
manner. For this reason routing algorithms used to carrysages from a sensor node to a sink in a
multi-hop fashion should rapidly adapt to the changing togy. A survey of routing algorithms is in
[4].

Swarm intelligence (SI) techniques [5] are populationeoestochastic methods in which the col-
lective behavior of relatively simple individuals arisesrh their local interactions to produce global
patterns. Through the adoption of the swarm intelligenceept, it is possible to design distributed,
self-organizing, and fault tolerant routing protocolseatdl self-adapt to environmental changes. The
main properties of Sl-based routing protocols are thasingle nodes are assumed to be simple with
low computational and communication capabilitiEsnodes are not aware of their position and com-
municate indirectly, i.e., messages are not directed topantcular nodejii) the range of messages
may be very short, nevertheless a robust global behaviorgaaérom the interaction of the nodés),
global behavior adapts to topological and environmentahges.

Slin WSN is inspired by observing on how ant colonies foragefdod [5]. Ants release a sub-
stance callegpheromoneluring their passage, and tend to move along paths wherehgphgromone
trace is present, reinforcing that specific route. Howeuleeromone evaporates allowing the system to
remove existing information and randomly search for newtsmhs. In this way, large groups of sim-
ple agents, interacting only locally with neighboring aigemvork together to coordinate their actions
toward fulfilling a common goal. In such systems, modeling $kate space of the entire system as a
cross-product of the state spaces of individual nodesteesuthe well-known state explosion prob-
lem. In fact, the usual way to study these systems is throingblation [6, 7]. A few papers proposes
analytical approaches, as surveyed in Section 8.

This paper describes how the performance analysis of ldrf¢SN systems composed of inter-
acting agents can be modeled and analytically evaluateédnrting to a recently defined new entity
calledMarkovian Agents (MAB, 9]. A MA is a discrete-state continuous-time Markov ¢ch@CTMC)
governed by a transition rate matrix that contains locagand interaction-induced rates. MAs in-
teract by sending and receiving messages that modify tlekiawor. Furthermore, agents are located
in a geographical space, and their interaction dependsednrtiative positions and is governed by a
suitableperception function

In [10] the MA formalism was extended to include the cap&pitif exchanging several types of
messages. The present paper illustrates a further extetwsibis development, introducing a set of
classes, each of them describing a different agent beh&IiW/ SN systems are thus modeled by two
types of MAs: one for the sinks and one for the sensors. Therpdgscribes a stochastic model to
analyze a swarm-based routing protocol that is inspiredhbyhe presented in [6]. According to [6],
pheromone information is stored at each node, and the #igostarts with the sink agent(s) emitting
a message with the highest pheromone level; sensor agahtsteive the pheromone message update
their pheromone level and transmit it to their neighborghatsame time sensor nodes are subject to an
evaporation process that reduces their stored pheromteresity. The assumption is made in this pa-
per that the nodes (either sinks or sensors) are scatteeeéogctangular mesh, with at most one node
in each cell. Even if the transmission range of each nodédithe activity of the pheromone messages
to the closest neighboring nodes, the pheromone gradigialydorms over the entire region. Conse-
guently, the main aim of this paper is to show that a largeesyif interacting MAs can be analytically
solved to generate a pheromone intensity distributionraatdbe sink(s) that can be successively used



to create the routing table along the steepest gradientdier@o minimize the number of hops from
each node to the sink(s).

A formal analytical model for the SI-WSN system is preserard the related analytical solution
is illustrated. It can be proven that the implemented nuca¢technique is very efficient and scalable
and can cope with scenarios composed of thousands of seodes-and tens of sinks in conditions in
which a state-space based analysis is unusable. It is ngted that a stable pheromone gradient is
established by letting each MA interact only with its firsigieors. This limits as much as possible
the transmission range and reduces the number of excharegshges as well as energy consumption.
Several examples illustrate the sensitivity of the solutio characteristic parameters, such as emis-
sion and evaporation rates, transmission range, andetifféopological configurations. By increasing
the transmission range, the system reaches a stable phesaraofiguration faster but at the cost of
increased energy consumption. Finally, the analytical ehizdvalidated via simulation.

The paper is organized as follows. Section 2 briefly revisesimg protocols for WSN and de-
scribes the swarm-based routing algorithm. Section 3 ptegshe Markovian Agent technique and
illustrates its analytical and numerical solution. The goathm is modeled in Section 4. Section 5
computes some performance indices that characterize gtensy Section 6 is devoted to validating
the model and Section 7 provides an extensive set of expetanginally, an overview of the related
works is presented in Section 8, while Section 9 presentsvbgall conclusions.

2. Gradient-based routing protocolsin WSN

WSN's specific characteristics make routing different froaditional wireless ad-hoc networks
[2, 11, 4]. Various routing metrics can be exploited withpest to different goals: hop count, energy
consumption, Quality of Service, throughput, networktiifee [12, 13, 14]. However, the main phi-
losophy is that the information the nodes contains is momoitant than the nodes themselves. Such
assumption leads routing in WSN to become data-centric pssgal to node-centric [11]. In this con-
text, gradient-based routings [15, 12] allow to establ@htes to the sinks following such paths that
respect criteria related to data typologies, network toggland nodes’ status.

From an autonomic perspective, routing algorithms easyanage and able to react to the envi-
ronmental changes are required to set-up flexible, adaincscalable networks. In the last years, SI
has been applied to autonomic networking systems [16, I#ipdstrating its feasibility and efficiency
in adapting to highly dynamic distributed systems. In agwlto the biological process of pheromone
emission, in [6] each node sends a signalling routing paagietaining its pheromone level and updates
its value based on the level of its neighbors, thus creatiplgeromone gradient toward the sink. The
routing task is driven by the pheromone level of the netwatkta packets are forwarded toward the
highest pheromone density zone and reach the sink follotiagpheromone gradient. Any change
on the network condition will be reflected by an update of therpmone level of the involved nodes;
changes on the pheromone gradient will automatically dheerouting decisions toward the new op-
timal solution. In this way, the network can self-organie topology and adapt to environmental
changes. Moreover, when link failures occur, the netwookganization task is accomplished by those
nodes near the broken links. This results in a robust anebsgifnized architecture.

In the following, we describe a Sl based algorithm derivedf{6]. Since our purpose is to study
the gradient construction process, we will focus on thealgg component of the routing protocol
avoiding details about data forwarding. We assume to haeetyypes of nodesinksand sensors
and that the pheromone intensity is discretized iRtalifferent levels, ranging front) to P — 1.



Routing paths toward the sink are established through tbleagge of pheromone packets containing
the pheromone level (0 < p < P — 1) of each node. The gradient construction is triggered byssink
that maintain the highest level of pheromote-¢ 1). The gradient construction protocol is described
by Algorithms 1 and 2, differentiated with respect to the @dgbe: sink or sensor.

Sink nodes, once activated, set their internal pheromore te the highest valup = P — 1,
(Algorithm 1: line 1). Then, they periodically broadcast lleppmone message to their neighbors,
encoding the intensity valye(Algorithm 1: lines 5-7). The time period is defined by thedfi'1.

The pheromone level of a sensor node is initially set to 0 géitgm 2: line 1) and then it is up-
dated following arexcitation - evaporatioprocess. Sensor nodes periodically broadcast a pheromone
message containing their internal pheromone level. Thigigds scheduled at fixed time intervals by
appropriately setting the timé&r1 (Algorithm 2: line 2). When the timer expires, a packet istterall
the neighbors (Algorithm 2: line 12-14).

Excitation is triggered by the reception of the pheromonellérom a neighbor (Algorithm 2:
lines 6-10). As a consequence, the node updates its ownignegl a greater value is received; the new
value is computed as a function of the current and the redgitieromone levelpdate(p, p,,). In this
paper, we usepdate(p, pn) = round((p + pn)/2) (Algorithm 2: line 9).

The evaporation mechanism is triggered at the expiratiotheftimerZ'2 (Algorithm 2: lines
15), and it simply decreases the current valug b/ one unit (Algorithm 2: lines 15-16), assuring it
maintains a value greater or equalto

Algorithm 1 Sink nodes

L.p+—P—-1

2: setTimer(T1)

3: loop

4: e+ waitForEvent()
5 ife=TIMEREXPIRED then
6
7
8

sendBroadcast(p)
end if
. end loop

3. The Markovian Agent model

Markovian Agents Models (MAMSs) [8] represent systems asliction of agents scattered over a
geographical space. Each agent is described by a dis¢agecsntinuous-time homogeneous Markov
chain where two types of transitions may ocdocal transitionsandinduced transitionsLocal transi-
tions are determined by internal features of the MA, wheir@isced transitions occur as a consequence
of the interactions with other MAs. Interactions are pokesthroughmessage exchanginghen a lo-
cal transition occurs, an MA can send a message that can égedwr ignored by other MAs. The
propagation and reception of messages is regulatedgsraeption function(-), a function of the
agent position in the space, of the message routing policy,0é the transmittance properties of the
medium. The definition of the perception function is quitegl, and allows several message routing
strategies. In particular, the receiving agent can be awhtiee state in which the agent that issued
the message was, and uses this information to choose anpajapecaction. The MA accepting an
incoming message changes its state performing an induaesition.



Algorithm 2 Sensor nodes

1:p+0
2: setTimer(T1)
3: setTimer(T2)
4: loop
5. e« waitForEvent()
6: ife=DATA_RECEIVED then
7: Dn < getDataReceived()
8: if pn, > pthen
9: p + update(p, pn)
10: end if
11: edseife=TIMER.EXPIRED then
12: t < getTimer()
13: if ¢ = T'1 then
14: sendBroadcast(p)
15: else {t = T2}
16: p < maxz(0,p—1)
17: end if
18: endif
19: end loop

MAs are scattered over a finite geographical avethat can be either continuous or discrete. In
case of a continuous space we have t#att IR¢, whered is an integer number representing the
dimension of the space. We denote/iy) : V — IR™ the spatial density function of the agents. In
particular,p(v) is defined such that for everitdimensional volumed in V (with A C V) the number
of agents inA is distributed according to a Poisson distribution with m¢q p(v)dv. In this paper
we focus on th&-dimensional case, only, and consider 2.

To model an heterogeneous system such as a WSN with sevecalrgl sensor nodes, we extend
the MAM [8] by adding the capability to represent, in additio several types of messages [10], also
several classes of agents. FormallMaltiple Agent Class, Multiple Message Tyidarkovian Agents
Model (M4 M) is defined by the tuple:

MM = {C, M,V,U,R}, 1)

where:

C ={1...C}isthe set of agent classes. We denote Wiftd® an agent of class € C.

M = {1... M} is the set of message types. Each agent (independentlyatéits) can send or
receive messages of type € M.

V is the finite space over which Markovian Agents are spread.

U ={ui(:)...up(-)} is a set ofM perception functions (one for each message type).

R = {p*(-)...p%(-)} is a set ofC agent density functions (one for each agent class).

Each agenfi/ A€ of classc is characterized by a state space withstates, and it is defined by the
tuple:

MA® ={Q¢ A%, G(m), A°(m), 7§} 2)



Q¢ = [gf;] is then, x n. infinitesimal generator matrix of the CTMC that describes litcal
behavior of a class agent. Its entry;;;, with 7 # j, represents the transition rate from state state
Jand we defingg; = —> ., q5;.

A = [X{], is a vector of sizer. whose components represent the ratsesf-jumpsor a classc
agent. It corresponds to the rate at which the Markov chantess the same state. Self-jumps allows
an agent to send messages with an assigned rate while sopina state.

G°(m) = [g5;(m)] is an. x n. matrix describing the probability that an agent of clagenerates
a message of typer during a jump from statéto statej,. The elements o&“(m) must respect the
restrictionZﬁL1 gfj(m) < 1, Ve, 1, 7 to ensure that during a transition an agent can generatesit mo
one message.

A¢(m) = [af;(m)] is an. x n. matrix, that describes the acceptance probability of type
messages for an agent of classA message is dropped with probability;(m), and it is accepted
with probability 1 — a§;(m). In the latter case, the agent immediately jumps to stgte# ¢) with
probability af; (m), and}_; , af;(m) = 1 — af;(m), Ye,i,m. This implies that rows of matrix
A°(m) sum tol.

7§, is a probability vector of size. which represents the initial state distribution of an agent
classc.

The perception functionz,, : V x C x IN x V x C x IN — IR is defined such that the values
of um,(v,c,i,v',c,i") represent the probability that an agent of clasis positionv, and in state,
perceives a message generated by an agent of clagsn positionv’ in state:’.

3.1. Analysis

An M?32AM model can be analyzed solving a set of coupled differentjahéions.

Let us denote the total density of agents of classcell v with £°(v) andp$ (¢, v) the density of
agents in statéin cell v at time¢. We collect the state densities into a veqi6(t, v) = [pS(t, v)]

We assume that the total density of classgents{®(v) remains constant over time, however it
dynamically varies its distribution over the set of statethe agents. We have that:

Zcpf(t, v) =¢&%(v), Vt>0,Vv,c (3)
i=1

We are interested in computing the transient evolutiop@t, v). We start by definings$(m) as
the total rate at which messages of typere generated by an agent of class state;:

B(m) = X5 g5;(m) + > 5, g5 (m) . @)
Py

®

In (4), the term@ gives the rate at which messages are emitted when the MA merrathe state
(A;), taking into account the probabilitgg-’j(m); similarly the term(®) is introduced to accumulate
the rates of messages generated during state transitionsidering the transition ratg, and the
generation probability, (m).

The rates$(m) can be used to computg; (¢, v, m), the total rate of messages of typereceived
by an agent of clasg, in statei, at positionv, at timet. Let us consider an infinitesimal arda’. In
that point of the space there aog/ (t,v')dv’ classc’ agents in the statg; all together they send



messages of type: at rateﬁ;-" (m)p;f/ (t,v')dv’'. A classc agent in positionv and in state receives
just a portion of messages generated from a alasgents in statg located inv’. The fraction of
messages received is determined by the perception funetjohe total rate of received messages is
then:

Um (v, ¢, 1, V', c',j)ﬁ;f/ (m)p;’/ (t,v')dv'.

Summing all the contributions coming from all the states alhthe agent classes, and integrating over

the entire ared, the total rate of received message is obtained:

C nyg

IYZCZ (t’ Vs m) = /V Z Z um(v, Gy Zl, V,a C,, ])ﬁ]cl (m)pj/ (t, V,)dV,~ (5)

=1 j=1

We collect the rates (5) in a diagonal matfiX(¢, v, m) = diag(y5; (¢, v, m)). This matrix can
be used to computK*(t, v), the infinitesimal generator of a clasagent at positiow at timet:

K(t,v) =Q°+ Z re(t,v,m)[A°(m) —1]. (6)

The first term in the r.h.s. is the local transition rate nxatmd the second term contains the rates
induced by the interactions.

The evolution of the entire model can be studied by solvifngc the following differential equa-
tions:

p°(0,v) = &(v)m§ @)
dp© , ,
% — (L V)KE( V). ®)

From the density of agents in each state, we can compute thalpility of finding a class agent at
timet in positionv in state: as:
: ps(t,v)
C(¢ = . 9
mi (V) = el ©)
We collect all the terms in a vecter®(t,v) = [7f(¢,v)]. Note that the definition of Equation (9)
together with Equation (3) ensures that 7¢ (¢, v) = 1, V¢, Vv.

3.2. Solution technique

Equation (8) can be solved using conventional discretnaichniques for both time and space.
Volume V is discretized with a rectangular grid af, x n,, square cells of sizel;. From now
on, the node locatior = (h,w) identifies a discrete cell in positioh € {1, ..., ny} andw €
{1, ..., nyw}. Time is limited to an interval0, T;..] and it is discretized with a uniform stefst,
yielding Ta = [Taraz/At] discrete time pointst € {0, At,...,TaAt}. The solution is then
computed using an implicit method [18]. In particular we Bpgmate Equation (8) with:

pc(t + Ata V) B pc(tv V)
At

2 pC(t+ At v)KC(t + At,v). (10)



Multiplying by At and reordering terms we obtain:
p(t+ At,v) [I - K(t + At, v)At] = p°(t, v). (11)

Assuming at = 0 the initial condition (7), the solution vect@“ (¢ + At, v) is computed from (11)
starting fromp© (¢, v). The method is implicit since matri (¢ + At, v) depends op®(t + At, v)
itself. Thus Equation (11) is solved at every time step apply fixed-point iteration algorithm. The
number of required iteration is however very limited sipcét + At, v) =~ p(t,v).

Equation (10) is solved for every cell, and the continuousgral in (5) is replaced by a sum-
mation over all then;, x n, cells. If we denote byn.. = Max{n.} the largest state space
dimension of thec classes of MAs, the time complexity of the solution algaritiurns out to be
O(Ta(np, x ny)?C?Mn?,) since: equation (8) iteraté C(ny, x n,,) times the computation of the
K¢(t, v) matrix which in turns required/ computations of th&<(¢, v, m) matrix whose complexity
is O((nn, x nyw)Cn2,). The computation oK¢(¢,v) has a complexity o (M (ny, x n,)Cn2,)
and represents the most expensive step in the proceduraydeeit considers all the possible inter-
actions among agents, messages, in every possible poditawever, in most practical applications,
the definition of the perception function confines the intéom of each MA to a limited number of
neighboring MAs, significantly reducing the complexity big step.

The storage complexity is limited by virtue of the iterativemerical technique in (11) that allows
to compute all the needed quantities (vectors and matratesch iteration step. The size of the final
computed vectop®(t, v) that must be stored at each iteration step (old and new veEu@j(n; x
nw)Cnes ). Inany case the complexity of the solution algorithm is tibmind with respect to memory-
bound.

4. Description of the WSN model

We model the Sl protocol described in Section 2 with two MAsskes: the classink nodedenoted
by a superscript and depicted in Fig. 1(a) and the clasnsor nodelenoted by a superscriptand
depicted in Fig. 1(b). The pheromone intensity is disceetinto P levels (ranging front) to P — 1)
that also identify the number of message typks & P). We use a different message type for each
possible pheromone level, and defidd = {0,1,..., P — 1}. The following pictorial rules are
adopted to represent MAs. MA states are drawn as circlesallteansitions, including self-jumps,
are represented by solid arrows and are labeled with thesmonding transition rate. A dashed arrow
starting from a transition arc identifies the generationhef inassage defined by the associate label.
Induced transitions are represented with dotted arcs anlkhbeled with the message type that forces
the transition to occur. In this work we allow onlyf; (m) = 0 or ag;(m) = 1 (that is messages can
only be always accepted, or always ignored), gfjdm) = 0 or gf;(m) = 1 (that is, if messages are
generated during a transition, this happens with prokgHi)i

Thesinkclass (Fig. 1(a)) has a very simple structure, charactébyea single state. At a constant
rate)\, a sink node emits a message of type- 1 representing the maximum pheromone intensity. The
rate\ = % reflects the duration of timék'1 of the algorithms presented in Section 2.

Thesensorclass (Fig. 1(b)) ha® states identifying the pheromone levels. The label insahe
state indicates the corresponding pheromone intensityath staté (i = 0,..., P — 1) a self-loop
of rate A\ = % models the firing of timef'1. Message types model the current pheromone intensity
of a node: we have a different message for each possibleploaelevel. At each self loop transition



A \‘
P-1
(a) Agent class = sink.

(b) Agent class = sensor.

Figure 1: Markovian agent models.

in a statei, a message of the corresponding typeemitted. The evaporation phenomenon is modeled
by the solid arcs (local transitions) connecting stateth state: — 1, with 0 < ¢ < P — 1. The
transition rate is set tp = %: this models the firing of timef'2 as described in Section 2. The key
part of the algorithm is implemented in the dotted arcs (wetabels are explained in (12)) that model
the transitions induced by the reception of a message. btpkar, when a node in statereceives a
message of type, it immediately jumps to statgif m € M (i, 7), with:

M(i,j)={me[0---P—1]:round((m +1i)/2) = j} 15
Vi, jel0---P—1]:j > . (12)

In other words, an MA in statéjumps to the statg that represents the pheromone level equal to the

mean between the current levend the levein encoded in the perceived message.

The N nodes (either sinks or sensors) are positioned over a umifpid that matches the dis-
cretization structure defined in Section 3.2. Sensors cinbanlocated in the center of each cell and
we allow at most one node per cell: i.e., some cell might betgrapd N < nj, x n,,. However, sink
nodes are very few with respect to sensor nodes. Messagesysenode are characterized by a trans-
mission range,. that defines the radius of the area in which an MA can perceimessage produced
by another MA. This property is reflected in the perceptionctionu,,(-) that,Vm € [1--- M], is

defined as:
0 dist(v,v') >t,

PR A Y AN
um(V,C,’L,V y €yl ) - { 1 diSt(V,VI) S ﬁ?v (13)
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where distv, v') represents the distance between two nodes in positandv’. We calln) the max-
imum number of neighbors, inside the transmission rangérom which an MA can perceive mes-
sages, notwithstanding border effects or node failureshémumerical experimentation we consider
two cases:

ds < tn4 <+/2d, correspondingto n =4

14
V2d, <t.g <2ds correspondingto i = 8. (14)

5. Performance evaluation

In this section, we illustrate the measures evaluated ierdi@ investigate the capability of the
protocol to correctly build the routing table. The valuef(¢, v) provides the probability distribution
of the pheromone level of the sensor node for each cell. Fhismaw measure, we can compute the
average pheromone intensity which evaluates the forwgmlititude of the node. Since in a multi-hop
gradient-based routing algorithm a node forwards its pctethe neighbor with higher forwarding
attitude, we define an estimator of the gradient quality asithximum gain in the average pheromone
level. In such way, maximizing the gain corresponds to reduthe number of hops needed to reach
the sink. Finally, in order to evaluate the degree of cornmecg of the protocol, we introduce a temporal
index which defines when the average pheromone level disibbcan be considered established.

The main measure of interest is the evolutionrdf¢, v), the distribution of the pheromone inten-
sity of a sensor node as a function of the time, over the eatga)’. 7' (¢, v) can be computed from
(9) and allows us to obtain several performance indiceglikeaverage pheromone intensitft, v) at
timet for each cellv € V:

P—1
ot v) =Y i-m(t,v). (15)
1=0

The shape of the average pheromone intengityv) depends on both the pheromone emission rate
A and the pheromone evaporation ratefurthermore, the excitation-evaporation process depend
the transmission range that determines the number of neighboring celiserceived by an MA in a
given position. To take into account this physical mechanise define the following quantity:

A-n
r=—,

I

(16)

that gives the ratio between the global emission and evéiporarocess.

5.1. A measure for the gradient quality

We need to define an estimator of the gradient quality to ev@lwhether the swarm-based routing
algorithm correctly operates in creating a well formed pheone distribution ovel’. Our estimator
is based on the fact that a multi-hop gradient-based rowaiggrithm forwards the packets of a node
toward the neighbor with the greatest pheromone level, kdiat exists, until the sink is reached.
Hence, we estimate the gradient quality by maximizing treraye gain in pheromone level at each
hop.

To formalize this concept, we denote By(v) C V the set of the positions of the neighboring
cells that can be perceived by an MA in cell Let (v,t) be the MA in positionv sending a data
packet toward the sink at tinte To do the next hop, the MAv, ¢) selects the neighboring MAv’, )
in the direction of the maximum gradient, i.e., in a positidne N (v) with the greatest pheromone

10



increment, whether it exists. If such node does not existdita packet is not forwarded. We point
out that these rules are the same used from the swarm basedynorotocol in [6] to build the routing
tables of sensor nodes. More formally, i, v/, t) = ¢(v',t) — ¢(v,t) be the gradient value
measured as the increment in the pheromone3esfehgent(v’, t) with respect to ageniv, t); we
define:
/ /
697-(V, ﬁ) _ maXy/e N (v) K(V, v, t) ¢(V ; t) .> QZ/)(V, t)
0 otherwise,
as the maximum gradient seen by a node in posiiamtimet. The average over the space of all these
values is the considered gradient quality estimator, ancdbeacomputed as:

_ 1
Cor(t) = ~ > (v t), 17)

veV

whereNN is the number of nodes in the area of interest. A high valu@,qft) means an high average
pheromone gradient, which corresponds to a reduced nurfibeps.

As previously introduced, the indé,.(¢) directly arises from the routing mechanism to the pur-
pose of finding the optimal values for the characteristicapaaters of the protocol; thanks to this
metrics, we will able to give a general method to set the patars either optimizing the sensor nodes
routing tables construction and the mean routing path ketayvards the sink node.

5.2. A measure for the time to gradient stabilization

Another practical performance index in a real WSN is the tahehich the pheromone intensity
distribution¢(¢, v) can be considered established. As before, let us considergbnt(v, t); we say
that it is in astable statevhen its level of pheromoné(t, v) does not vary any more; singgt, v)
depends omr™ (¢, v), we estimate thetable states the first time where:

on"(t,v)
> < 18
| =5 = @
We approximate Equation (18) with the discrete derivative:
on"(t,v) 7 (t,v) — 7" (t — At, V)
R 19
e e e | @
whereAt is the discretization step, and we evaluate
"t,v) —7w"(t — At
ts(v):inf{te[(),—i-oo]: ‘ﬂ- t.v) Zt( V) ‘ SE}, (20)

that ists(v) correspond to the first time instant at which the inequatitgatisfied. Since the overall
network reaches the stability when all the nodes are intatalesstate, the time for stability is taken as:

t= ts(V). 21
ma ts(V) @D

2¢(v,v',t) could be a negative quantity, meaning thet ¢) has a lower level thatw, t).
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6. Model validation

We built a discrete event simulator of a WSN implementinggheromone gradient construction
algorithm, and we compared the results with the one obtaisedy the MAs model. A set of experi-
ments has been conducted to compare the pheromone distnibiit, v) in the stable state conditions
at timet, with respect to different values of theparameter.

The discrete event simulator has been implemented usingMigeT++ [19] simulative environ-
ment. We conducted the experiments using a simple compgugu@ed with an Intel Core 2 Duo CPU
at 2.33 GHz, 4MB L2 Cache, and 3GB RAM. Both sets of experiméaie been performed consid-
ering NV sensor nodes uniformly distributed over a grid of sige= 31 andn,, = 31, with a spatial
density("(v) = 1.0 node/cell Vv € V; the discrete levels of pheromone have been assumed equal
to P = 25. The emission time (Algorithms 1 and 2) has been fixed'to= 4.0s, whereas we have
assumed a transmission range suchthat4. Moreover, the simulation runs have been initialized by
activating each sensor node after an exponentially diggtbrandom delay, with mean equallt® s.
The random activation of sensors reflects the asynchroretusenof the WSN. All the measures have
been computed executif@0 simulation runs, using 80% confidence level. To simplify the presen-
tation, we have not shown the confidence interval in the falig pictures. This choice was motivated
by the fact that intervals were very tight, and visually nistidguishable from their mean.

The set of experiments has been conducted assuming theval2.0, and4.0 for the parameter
r; the value of evaporation tin&, has been set 10.0625 s, 0.125 s and0.25 s, respectively. As will
be explained later, such values produce different behswaithe algorithm and they have been chosen
in order to validate the model under different conditionise imet to perform the transient simulation
has been fixed td0 s. Fig. 2 shows the pheromone distribution valmég, v) obtained in the three
experiments for each cell, numbered according to the fatigiormula:

z(V) = i*ny + J, (22)

wherev = (i, j), withi,j =0, -- -, 30.

It can be noticed that the maximum value of pheromone inteissieached at the center of the grid
where the sink is located. Since the sink coordinates atej = 15, this corresponds position =
15%31+15 = 480. Departing from this location the pheromone intensity dases. The characteristic
spike-shape trend is due to the way the cells are numberedd®2p. Each spike represents a horizontal
slice of the grid. When the evaporation rate is smal 1.0), the lines in Fig. 2(a) are overlapped,
meaning that the analytical and simulative results agreébdrwhole grid; increasing the evaporation
rate (Fig. 2(b)) some discrepancies between the resultbeaoticed near the border of the grid, as
well as in the case of saturation (Fig. 2(c)). We also degiatenagnified region of the graphs in Fig. 2
to emphasize the differences between the two results, simyewere too small to be noticed in the
complete plots. The differences in the final results seerbg tue to the fact that the MA model uses
stochastic timers, while the simulator uses determingdticks. However, as can be seen, discrepancies
are minimal and the MA model is able to capture the overalblvair of the system.

Finally, as can be seen in Fig. 3, the computation of the &@icalysolution is always faster, despite
the restricted number of simulation run; the results of Bipas been executed by computing a transi-
tory to time20 s. We are currently trying to exploit the possibility of aggating the number of MAs
in each cell " (v) > 1.0 node/cell) to further reduce the model computational time.
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Figure 2: Comparison between simulative and analyticat@hene intensity distribution over
in the stable state.

7. Numerical experiments

The indices defined in Equation (17) and (21) have been cardputder different conditions to
test the Sl algorithm and to provide insights into the sg#inf the algorithm parameters. As a first
experiment we consider the dependency of the pheromongsitite (¢, v) onr. We show the results
obtained by solving a model defined on a square @tidf sizen;, = n,, = 31 with N = 961
cells. We position one single sink in the center of the aresifonv = (15,15)) and one sensor
node per cell{"(v) = 1.0 node/cell, ¥v € V) corresponding to 961 sensors. We fix= 4.0s7 1,

P = 25,andt, = t,4 (i.e.,n = 4 in (14)). The numerical solution is computed wittt = 0.01s and
e = 0.005.

7.1. Gradient evolution

Fig. 4 shows the pheromone distribution o¥emeasured in the stable statéf, v), for different
values ofr. To improve the graph readability, each map is plotted botBD and 2D views. It
can be noticed that the parametehas a direct impact on the shape of the pheromone intensity. |
particular, ifr is too small ¢ = 1.0) or too high ¢ = 4.0), the quality of the gradient is poor. In fact,
smallr corresponds to a high value of the evaporation rate (Fig)) #at prevents diffusion of the
pheromone signals, thus reducing the area covered by tkeG®inthe other hand, largecorresponds
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Figure 4: Distribution of the pheromone intensitgt, v) in V for different values of-.

to a low value of the evaporation rate (Fig. 4(c)) giving risea saturation of the pheromone level,
thus hindering the formation of a useful gradient. Interraggvalues, although giving rise to different
density shapes, generate well formed pheromone gradieletscacover the whole area.

To provide a formal validation of the pheromone gradientstarction process, we compute the
gradient quality estimato?rg,. (t) as a function ot for different values of-. Fig. 5 shows that, for low
values ofr (curver = 1.0), Zgr (t) exhibits a monotonic behavior while for high valuesrofcurve
r = 4.0) the value o, (t) exhibits a maximum and then decreases due to the saturdtmomenon.

Another parameter that influences the pheromone gradi¢he imessage transmission rarige
Figure 6 reports the value 0?9(,. (f)) as a function of-, varying from1.0 to 2.4, for botht,. = t,., and
t, = t,g. While in the first case we have at magst= 4 neighbors, in the second we haye= 8. In
both cases we are interested in finding the vaiuef r that optimize the gradient qualify, (t) when
the stabilization time is reached. Observing the curye= 4, it is possible to identify the maximum
value of (t) atr* = 1.8. Curven = 8 shows a similar qualitative trend but with an overall higher
value of?g,. (t~) and with the maximum at* = 1.7. The better gradient quality can be explained by
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pointing out that a greater value f implies a reduced number of hops needed to reach the sink with
a corresponding greater value of the pheromone incremesicathop.
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Figure 6: Gradient quality estimator in the stable conditig. (t) with respect ta- varying,.

7.2. The influence of the emission rate

Once the parameterhas been set, the pheromone gradient quality is not infladmecthe absolute
values of pheromone emission and evaporation rates. Howavanging) influences other system
properties, such as the gradient time to stabilignd the energy spent in setting a stable gradient. To
set the proper value Fig. 7(a) plotss a function of\ at = r*, with bothn = 4 andn = 8.

It can be observed that increasing eitbeor 1, shorter values of are obtained due to a faster and
more efficient propagation of the pheromone signals in theor&. In particular:i) An increase of

A results in higher frequency at which pheromone messagesrawated in the network, allowing to
reach a stable pheromone distribution fasii¢rAn increase of the transmission range increments the
number of neighbor nodes that are able to receive a mes$agepitoducing a more pervasive signal
dissemination. Note that the decrease in the stabilizaitoa is not simply inversely proportional to
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the message rate (as it could be argued) because as theissinsmate increases the convergence
criterion starts playing a significative role in the detemation of the stopping condition.

An important aspect related to the time to reach the stabte & the average number of sig-
nalling messages sent by each node. We can define such paraset function of the pheromone
emission rate as:

m=\-t. (23)
Fig. 7(b) shows an increasing trendrafas a function of for both values of the considered neighbor
number. Increasing from 4 to 8, the average number of signals decreases due to the lartiy@r ac
range of each message.

Both results in Figs. 7(a) and 7(b) tend to show that enlartie transmission range provides bet-
ter results. However, to complete the analysis, we needk#itao account also energy consumptions
aspects, in the computation of the cost needed to reachahke stondition. As described in [20], the
energy cost per bif’(¢,-) required to exchange a message between a node andéighbors can be
computed as:

E(tr) _ Cd . t?c + E(ele) + E(proc) +T](E(6le) + Ev(proc))7 (24)

@ ®
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where E(°!¢) and E(P7°°) are the consumptions due to the transceiver electronicshanprocessing
functions,C; is a constant factor,. is the transmission range needed to cover the distance &etwe
the sender and the receivers, as defined in Section 3.1y @the exponential power decay factor. In
Equation (24) the tern®) refers to the energy required to send a message, while tme(@ecorre-
sponds to the energy consumed by the nodes receiving theageesAssuming to have a regular grid
where nodes are uniformly distributed, the dependencgeasfa function ot,. andd, is given in (14).
The average energy cost per node needed to reach the stibleast then be expressed as:

g = E(t,) *m. (25)

In agreement with [21], we use the following values for seftthe parameters in (24)E(¢l¢) =
E®ree) = 0.15m.J/bit, Cy = 0.018m.J/(bit - m®), andar = 2.5. Moreover, assuming to have a
square area &f00 x 900m? we setd, = 30m, t,4 = 32m, andt,.s = 45m. In Fig. 7(c) we observe
that, as expected, the average energy consumption needeslcto the stable state increases with
However, a comparison between Figs. 7(b) and 7(c) showsribawithstanding the lower value of
messages needed, wher 8 we obtain a greater energy cost than the egsel. Using the proposed
model, itis then possible to estimate the cost associatietttme needed to reach the stable state and,
in order to respond to particular application-specific iegments, a trade-off betweérande can be
appropriately found during the setting phase of the network

In order to test the model in more complex scenarios, in Fige8onsider a larger network where
N = 10,000 sensors are uniformly distributed on a grid3sf00 x 3000m? (that under the above
conditions corresponds tg, = 100 andn,,, = 100) with 50 sinks placed in random locations. Using the
proposed methodology, we are able to calculate the valuad  that maximizes the gradient quality
estimaton?g,. (f), that for the network topology shown in Fig. 8 is equal to A2 can assess, with the
results obtained, that the pheromone gradient is reaclsedwdien no symmetries are present in the
network. Such scenario also demonstrates the scalabfilttyegoroposed analytical technique, which
can be easily adopted for the analysis of extremely largsorés.

7.3. Irregular topologies

Next experiments aim at analyzing the pheromone gradigrgtoaction process in the presence of
irregular network topologies. When not otherwise exprésse always refer to a value gfequal to 4.
First of all, the robustness of the algorithm for the forroatof the pheromone gradient is analyzed in
scenarios where some sensor nodes are removed from therkégitber because dormant or failed),
as shown in Fig. 9.

We consider two different situations. In the first one (Fi¢a)P blocks of contiguous nodes are
removed from the network, reproducing scenarios wheresfadliedue to conditions strictly related to
the geographic position. In the second one (Figs. 9(b) aod,9(odes are removed randomly with an
assigned percentage. Vacant cells are represented asspbitein the graphs.

From the inspection of Fig. 9(a), we observe that the algoriis able to recognize and isolate the
vacant blocks and build up a pheromone gradient that cireumts\vthe taboo zones by creating useful
paths to the sink along increasing gradient lines also fosaes that are not in direct view of the sink.
The same happens for the irregular topologies of Figs. 3(8)%c). However, increasing the number
of removed nodes from the network (Fig. 9(c)), the gradierdlity deteriorates, since some active
sensors may become masked by the failed sensors and ardentit edreive the pheromone messages
emitted by the sink. This phenomenon is highlighted in Fi@.where the same topologies of Figs.
9(b) and 9(c) are considered. The failed nodes are markedygyecircle.
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Figure 8: Distribution of the pheromone intensity ovein the stable condition when the network
is composed by a grid of 10,000 sensor nodes with 50 sinks 4, r*=1.2).

When nodes are removed from the network (gray circles) ratesors happen to be isolated due
to the absence of any path to the sink. Such unreachable moddeed in the graphs with the symbol
degrade the gradient quality and their number increasésegsercentage of non-active node increases.
The appearance of unreachable nodes may be mitigated l@asicg the transmission range As an
example, compare Fig. 10(b) obtained with= ¢,.4 (i.e., = 4 in (14)) with Fig. 10(c) obtained with
t, = t.s (n = 8): the number of unreachable sensors is drastically red(indeig. 10(c) only the
sensor in positiorf0, 30) remains isolated). Increasing the transmission rangedwesrthe network
connectivity and efficiency but at the cost of higher powerszonption and reduced network lifetime.

8. Related Work

In the literature, simulation is the first choice for the stuat mobile and ad hoc networks [7].
In [22] and [23] the authors survey conference papers andd@number of common simulation
study pitfalls such as an incorrect use of pseudo random augemerators or an inadequate statistical
analysis of the simulation outputs. Moreover, such studiesmostly scenario and simulator specific,
therefore their results cannot be generalized to otherasmenand simulators. However, few works
propose analytical models for the performance of routigg@ihms. An attempt to tackle the problem
analytically is in [24], but the analysis is limited to theyagptotic behavior of a two-nodes two-links
system. In [25], Markov chains are used to compute the steadky routing probabilities given the rout-
ing parameters and network costs, [26] proposes a prostdpierformance evaluation framework that
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Figure 10: Removed nodes (circles), isolated nodes (X) tlamgheromone intensity distribution
overY in the stable condition.

can be used to model performance metrics such as routingeasgiand energy consumption. Markov
chains were used also for studying gossip protocols, in §@8kip-based membership protocols are
modeled as a Markov chain representing random membersaghdransformations; stationary dis-
tribution of such chain is thus analyzed to determine thesetqa properties of the protocol. Also
mean-field technique was proposed in [28] to approximatebetevior of a Gossiping Time Proto-
col implemented in a very large network and to investigatgérformance. All these models ignore
the spatial relationships among nodes of the network, hemswch characteristics are necessary, for
instance in wireless network, to consider the effects ofrtmge of the transmitter unit on the per-
formance of the protocols. The application of stochastiengetry to the performance evaluation of
communication networks [29] is a first attempt in this direct however such models lacks the expres-
siveness to represent complex behavior. Instead, MA madela modeling technique suitable to deal
with systems composed by a multitude of interacting esstitiéh complex behavior, whose spatial
location is also relevant in determining their interaction
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9. Conclusions

The analytical study of the gradient formation in large WSNlioed in this paper has been carried
out by resorting to an analytical model based on interadtlagkovian Agents. This has allowed testing
the effectiveness of the routing protocol even in contertapgosed of several thousands of nodes: a
size that, in general, cannot be handled with conventioisatete event simulation.

Swarm intelligence mechanisms in which the global behasibuilt up starting from very short
range interactions (each MA is able to interact only withdkssest neighbors) have proven to be
particularly suited to be analyzed using the MA techniquee @nalytical studies carried out on several
examples illustrated in this paper have shown the adajijedilthe routing algorithm to the changing
conditions of the WSN in terms of parameter values and tapoldhe proposed model could then
be exploited to effectively evaluate the parameter set deioto guarantee the convergence of the
algorithm toward a stable pheromone gradient and the effisiet up of the routing tables.

Although the results obtained are encouraging, a lot of vatilk needs to be done to further
explore both the routing algorithm and the modeling powethef MA. Future research will move
towards investigating the behavior of WSN in operationalditions, assuming the routing algorithm
presented in this paper, and evaluating the forwardingga®with respect to the settings of the routing
protocol. In particular, it is intended to develop a spediiiedel to study the network traffic generated
by an application.

To this end we need to add new types of messages represemtimpctkets transmitted by the
sensors, and to add new states to the sensor nodes to chiaesitte transmission, the reception, and
the possible queueing of the message packets.

Modeling the transmission of messages from the sensorstsiti(s), using the paths defined
by the routing algorithm presented in this paper, will allog to study the WSN in different load
conditions, with different application level strategiegls as message aggregation and on-off behavior
for energy saving. In this way, we should be able to providevagk designers with a tool for tuning
the system parameters.
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