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ABSTRACT
This paper discusses the data mining approach followed in
a project called TRAQUASwine, aimed at the definition of
methods for data analytical assessment of the authenticity
and protection, against fake versions, of some of the highest
value Nebbiolo-based wines from Piedmont region in Italy.
This is a big issue in the wine market, where commercial
frauds related to such a kind of products are estimated to
be worth millions of Euros. The objective is twofold: to
show that the problem can be addressed without expen-
sive and hyper-specialized wine analyses, and to demon-
strate the actual usefulness of classification algorithms for
data mining on the resulting chemical profiles. Following
Wagstaff’s proposal for practical exploitation of machine
learning (and data mining) approaches, we describe how
data have been collected and prepared for the production
of different datasets, how suitable classification models have
been identified and how the interpretation of the results sug-
gests the emergence of an active role of classification tech-
niques, based on standard chemical profiling, for the asses-
ment of the authenticity of the wines target of the study.
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1. INTRODUCTION
The quality and safety profiles of quality wines represent

a peculiar case of the notion of food integrity, because of the
very high value of a single bottle, and because of the com-
plex chemical profile, requiring therefore specific and robust
methods for their univocal profiling/authentication. Vitis
vinifera is the unique grape allowed for the winemaking,
but many different genetic varieties (e.g. Pinot, Nebbiolo,
Merlot, Sangiovese, Sirah and many others) lead to wines
with different character and chemical profiles. The indus-
trial processing largely build the wine specificity.

Moreover, the “terroir” (the set of special characteristics
that the geography, the geology and the microclimate of a
certain region or peculiar location, interacting with grape
genetics, express in wine), while bringing to the diversifica-
tion of the product, complicates significantly the wine chem-
ical profiling under the metabolomics profile and, thus, the
process of traceability and identification.

Although specific regulations exist in this matter, and
some analytical approaches and protocols are well estab-
lished for wine tracking and authentication, quality wines
are highly subjected to adulteration. Problems with con-
sumption fraud go back a very long time; more or less re-
cently, numerous cases of wine adulteration were worldwide
registered, including Austria, France and Italy. Wine fraud
is then a big issue worldwide, inducing significant problems
for consumers; it also triggers destabilization of the wine
market, particularly regarding the quality aspect, with an
estimated impact of about 7% of the whole market value.
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Although wine can suffer for different type of frauds and
different type of counterfeiting, the predominant problem in
wine sector is mislabeling, regarding both the used cultivar
of grape and the geographical area of origin; it causes an
economical impact estimated to be several million of Euros.

The detection of adulterations or declarations which do
not correspond to the labeling are actually official tasks of
wine quality control and consumer protection. During the
last years, analytical methods have been improved in this
field. Some of them (stable isotope ratio analysis by nu-
clear magnetic resonance, and isotope ratio mass spectrom-
etry) have been adopted as official methods by the European
Community (EC). In addition, the use of the corresponding
analytical devices is expensive and requires a lot of special-
ization. Moreover, these methods, while playing a key role
in detecting adulterations like addition of water and inad-
missible sweetening, represent a challenge also regarding the
identification of origin, requiring in this case a very large
data base.

Non analytical approaches like olograms, trasponder sys-
tems or QR codes only partially address the problem of wine
authenticity. Finally, regulations, good manufacturing prac-
tices and traceability procedures are not always sufficient to
guarantee the wine authenticity, considering the falsification
of both varietal and geographic origin. For these reasons, a
challenge for wine authenticity is to obtain standard analyt-
ical procedures to describe a wine proof-of-identity, which
could defend consumers from illegal adulteration practices,
as well as from unintentional mislabeling due to mistakes
during wine production.

There are then two analytical levels: the chemical one,
concerning the identification of the most relevant standard
chemical analyses to perform, and the data one, concern-
ing the determination of the relevant data mining and anal-
ysis techniques exploiting the features obtained from the
chemical level. From the data mining perspective, the main
goal of the work is to show that well-established methodolo-
gies of classification, from machine learning, can be suitably
adopted to fullfill the task of controlling specific wine adul-
terations, and consequently be capable of generating added
value to the quality control process of such high-quality
wines.

In the paper we will discuss the experience gained in the
TRAQUASwine project, having as a major goal the as-
sessment of the authenticity and the protection against fake
versions of some of the highest quality (and often top priced)
Nebbiolo-based wines like Barolo, Barbaresco and Gattinara.
Following Wagstaff’s scheme [16], we discuss how data have
been collected, how they have been prepared, how suitable
classification models have been identified and how the inter-
pretation of the results suggests the emergence of an active
role of classification techniques, based on standard chem-
ical profiling, for the assesment of the authenticity of the
high-quality wines which were target of the study.

The remainder of the paper is organized as follows: sec-
tion 2 presents the main objectives and the data collection
and preparation steps of the study; section 3 discusses the
characterization of the data and of the classification algo-
rithms adopted, by presenting results on different datasets
with different sets of features; section 4 compares the ap-
proach to related works finally, section 5 presents the con-
clusions, by pointing out to some future evolutions.

2. THE TRAQUASWINE STUDY

2.1 Main Objectives
The TRAQUASwine project involved both industrial and

academic partners in the creation of a network operating in
the wine sector, with the aim to trace and authenticate the
origin, quality and safety of Piedmont (Italy) wines, with
particular interest to high-value and high-quality Nebbiolo-
based wines. In this context, the principal goals of the
project were:

• to define the major characteristics (chemotype, with
particular interest on bioactive compounds) of Neb-
biolo grape and derived wines, identifying molecular
markers useful for quality control and wine traceabil-
ity;

• to establish a comprehensive analytical approach, based
on the exploitation of data mining techniques for mul-
tivariate analysis to chemotype datasets, useful to the
traceability and authentication of high-quality Nebbiolo-
based wines, produced in different area of Piedmont,
by diverse wineries.

The selection of chemical parameters and methods was
performed by taking into account two main criteria:

• economical cost of the analyses (particularly regarding
the required instrumentation);

• the capacity to work also with common chemical pa-
rameters, avoiding the need of pluriannual consolidated
databases, as often required by classical isotopic meth-
ods.

Important feature has been the use of data of different ori-
gin, by considering different producers, different areas of pro-
duction, different typology of wine (i.e., commercial wines
on the market, as well as “model” wines explicitily produced
for the study) and different aging of the product. A peculiar
approach (use of some Nebbiolo wines spiked with different
percentages of different wines) was finally exploited in order
to check the possibility to highlight the illegal adding of a
foreign grape cultivar, so detecting potential frauds.

2.2 Data Collection
Commercial samples of Piedmont Nebbiolo-based wines

were provided by nine local wineries; producers themselves
certified wine’s origin and identity. Eight different types of
wines at different aging degree (selected on the basis of the
mean aging of each type of wine and depending on their com-
mercial availability) were considered. Among them, Bar-
baresco (BRB), Barolo (BRL), Langhe (LAN), Nebbiolo d’Alba
(NEB) and Roero (ROE) are typical wine productions of
the Alba district in Southern Piedmont, while Gattinara
(GAT), Ghemme (GHE) and Sizzano (SIZ) are produced
in Northern Piedmont (Novara province). The distribution
of samples (spanning a period of 10 wine years) resulted
in 18 samples of BRB, 18 samples of BRL, 12 samples of
LAN, 18 samples of NEB, 6 samples of ROE, 6 samples of
GAT, 18 samples of GHE and 6 sample of SIZ. BRL, BRB,
GAT, NEB and ROE were certified as produced from 100%
Nebbiolo grape, while the other wines contained percentages
of different grape varieties (having however Nebbiolo as the
primary grape variety).
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Beside such commercial wines, a set of experimental wines
(model wines) has been specifically prepared, resulting in 56
additional samples. Among them, 12 samples correspond to
wines produced without Nebbiolo grape, and in particular
with 100% of some grape varieties partially present in some
of LAN commercial wines; we labeled them as NON (NO
Nebbiolo); 26 samples were prepared as more LAN and NEB
wines, for a final count (commercial and experimental) of 22
samples of LAN and 34 samples of NEB; 8 samples were
prepared as a correct mix for GHE, resulting in a total of 26
samples of GHE. Finally, the remaining experimental wines
were produced to model incorrect (i.e., not allowed by the
disciplinary of production) blends for GAT wine, resulting
in 10 more samples that we labeled as BLE (Blend).

As mentioned earlier, the main goal of the study was to
develop and assess analytical techniques (both at the chemi-
cal and data levels) to effectively support the authenticity of
high-value Nebbiolo-based wines. To this end, we organized
the study as follows: we selected some of the most valued
100%-nebbiolo wines as the high quality class to be pro-
tected from fakes, and in particular BRL, BRB and GAT;
we also selected LAN and BLE as control wines, the former
to simulate not allowed blend for BRL and BRB, and the
latter for GAT. We obtained a total of 146 samples with 9
types of wines (i.e., the classes) that we have used to train
and test our models. We reserved the 12 samples of NON
wines as additional control wines, to test the response of the
learned models with respect to simulated fake wines with the
absence of Nebbiolo grape, and with the additional compli-
cation that no such a kind of wines have been used in the
training of the models.

2.3 Data Preparation
Wine samples were mainly characterized for their phenolic

composition. The phenolic component of wine is very com-
plex and heterogeneous, and is strongly influenced by several
factors related to grape polyphenol composition winemak-
ing procedures, wine aging, and storage conditions. In the
present study, we decided to employ common and relatively
economic analytical techniques, as well as methods easily
reproducible. The adopted analytical (chemical) procedures
can be categorized as follows:

• spectrophotometric methods, which include not specific
and low-cost assays, useful to quantify general class of
compounds (total polyphenols, total anthocyans and
total tannins) and antioxidant activity;

• chromatographic methods, which are more advanced
and specific , but are time-consuming and require more
expensive instrumentations, which are however gener-
ally available in the standardly equipped laboratories
for quality control. The chromatographic techniques
were employed for the identification and quantification
of individual polyphenol compounds in wines.

Considering spectrophotometric methods, the total phenol
content is an unspecific parameter; however, due to the com-
plexity of wine’s phenolic component, it can be considered
an interesting general information. Total anthocyans and
total tannins are other peculiar characteristics of wines, re-
lated to their organoleptic properties. Antioxidant activity,
for which do not exist official methods recommended by in-
ternational organization for wine analysis , was measured

using a rapid chemical model system for the determination
of antiradical properties (DPPH assay).

The chromatographic techniques are useful tools to finger-
print wine polyphenols, identifying individual molecules. In
this study, different class of compounds were considered: an-
thocyanins, phenolic acids, hydroxycinnamates and flavonoids.
Some of them have been calculated not only as absolute con-
centrations, but also as relative percentages.

Finally, wine samples were analyzed for the content of
resveratrol (both trans and cis form), important molecule
for its beneficial effects on human health, and considered as
one of the major compounds responsible for the well-known
French Paradox (the fact that French people, having red
wines in their dietary habits, have a relatively low incidence
of coronary heart disease, while having a diet relatively rich
in saturated fats).

3. THE DATA MINING FRAMEWORK

3.1 Data Characterization
From the chemical analyses described in section 2.3, a to-

tal of 40 continuous features have been extracted. Besides
those described in section 2.3, also wine acidity (the pH)
and information about the percentage of some grape vari-
eties have been added. Missing values were present in about
1/3 of the dataset, essentially in association with the latter
set of attributes (percentage of grape varieties). As reported
in section 2.2, we have then obtained a dataset of 146 in-
stances, each one corresponding to a particular class (i.e. the
wine type) out of 9 possible classes, and having 40 numerical
(continuous) attributes.

We have organized the evaluation of the data mining ex-
perimental study as follows. First of all, we have searched
for regularities in the profiles of the available wine chemical
analyses by means of some clustering algorithms. In par-
ticular, we tested EM clustering (both with a free number
of clusters and with a number of required clusters equal to
the number of classes) and a K-mean algorithm (K = 9).
As expected, no definite interpretation of the results have
emerged from unsupervised data analysis, suggesting that
regularities associated to wines should be better captured
through supervised methods.

We then considered classification approaches, by having in
mind that the goal of the data mining process was mainly to
characterize the misclassification of the target wines, that is
high-quality wines (BRL, BRB and GAT) and control wines
(LAN and BLE). Thus general classification accuracy has
been considered of secondary importance. To test classifi-
cation approaches, we considered three different data sets:
dataset D1 containing all the 146 instances with the whole
set of 40 features; dataset D2 containing the 146 instances
with a reduced set of 15 features, obtained by automatic fea-
ture selection; dataset D3 containing the 146 instances with
the set of features of D2 manually reduced to 13 attributes,
and in particular by removing all the attributes concerning
the percentage of grape varieties which survived automatic
feature selection.

We have experimented the learning of the following type
of classifiers:

1. A Bayesian Network classifier (BN), with learning per-
formed with standard Cooper/Herskovits algorithm [3],
allowing a maximum of 3 parents per node, identifying
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Accuracy Kappa
BN 87% 0.85

MLP 94% 0.93
SMO 92% 0.91

Table 1: Accuracy and Kappa statistic for dataset
D1.

dependencies among the attributes and thus avoiding
the Naive Bayes assumption.

2. A Support Vector Machine (SVM) based on Sequen-
tial Minimal Optimization algorithm (SMO) [10] with
a Pearson Universal Kernel (PUK) having Lorentzian
peak shape [14], and with Platt scaling in such a way
to get a probability distribution over the classes [11]1.

3. A Multi-Layer Perceptron (MLP) with one hidden layer
of n = f+c

2
hidden units (being f the number of fea-

tures and c the number of classes)

We also experimented with a lazy learner based on 1-NN
classification, and with a Decision Tree learner based on the
C4.5 algorithm; since this two types of classifier did not
perform well for our task, we do not report the corresponding
results in the paper.

The BN, SMO and MLP classifier have been learned using
the 146 samples and evaluated by means of a 10-fold cross
validation. As mentioned before, the main focus was not on
general accuracy (even if definitely an important measure),
but rather to check the performance of the classifiers with
respect to the classes of high-quality wines (BRL, BRB and
GAT) and control wines (LAN and BL), by looking at their
possible misclassifications.

We have exploited WEKA’s algorithms to perform our
experimentation[7], and multi-class classification has been
perfomed as a one-agaist-all approach. In the following sub-
sections we will discuss the results obtained on each of the
above datasets.

3.2 Complete Feature Set
In this part we discuss the results obtained by using the

whole set of features obtained after the chemical analyses
performed on the available wine samples (dataset D1). Ta-
ble 1 reports the general accuracy and Kappa statistic of
the three classifiers. It can be noticed that the general accu-
racy (and its significance as measured by Kappa statistics)
is rather high, with the MLP classifier being the most ac-
curate and slightly better than SMO. Figure 1, figure 2 and
Figure 3 report the prediction statistics with respect to the
classes of interest for BN, MLP and SMO classifier respec-
tively. We also report Matthews Correlation Coefficient
(MCC) and F1-measure, with MCC being more significant
in our case, since the number of“positive” instances (those of
the target class) are much less that the number of “negative”
instances (those of all the other classes). Concerning control
wines (LAN and BLE), we can notice that classification ac-
curacy is very good, but more importantly, no control wine
is misclassified as a high-quality one; on the other hand,

1The regularization parameter (a.k.a complexity) has been
set to 10, since we are dealing with a multi-class problem
with 9 different classes, and it is a good practice to set the
parameter close to the number of classes [9].

Figure 1: Predictions BN classifier, dataset D1

Figure 2: Predictions MLP classifier, dataset D1

high-quality wines (BRL, BRB and GAT) are also recog-
nized very well, with no misclassification predicting control
wines. From the diagrams, we can also notice that each
misclassification is also not really surprising: for instance in
every classifier, BRB is misclassified either as BRL (a very
similar wine from the point of view of origin, production
and grape composition) or as ROE, which is another 100%
Nebbiolo wine. MLP has a perfect performance on control
wines (no misclassification). SMO has a misclassification on
BLE (but with the other control class LAN) and a perfect
classification on BRL (definitely the most valued wine of the
set).

Figure 3: Predictions SMO classifier, dataset D1
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Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE
LAN 0 0 0.02 0.914 0 0.056 0.024 0.002 0.002

BLE 0.893 0 0 0 0 0 0 0 0.107

GAT 0 0.055 0 0.001 0.944 0 0 0 0

BRL

0 0.827 0 0.015 0.158 0 0 0 0
0 0.019 0 0.918 0.015 0.048 0 0 0
0 0.001 0 0.976 0.006 0.017 0 0 0
0 0 0 0.002 0.351 0 0.647 0 0
0 0 0 0 0.299 0 0.701 0 0

BRB
0 0 0 0.001 0 0.898 0.101 0 0
0 0 0 0 0.971 0 0.029 0 0
0 0 0 0.192 0.736 0 0.072 0 0

Table 2: Probability distribution of misclassifications, dataset D1: BN classifier.

Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE
GAT 0.003 0.277 0 0.266 0.449 0.001 0.003 0 0

BRL
0 0 0 0.585 0.408 0.007 0 0 0
0 0 0 0.559 0.437 0.003 0 0 0

0.089 0.600 0 0.008 0.302 0.001 0 0 0

BRB 0 0.003 0 0.001 0.933 0.003 0.059 0 0

Table 3: Probability distribution of misclassifications, dataset D1: MLP classifier.

Considering the classes of interest, we also computed, for
each classifier, the probability distribution on the predictions
that are misclassified. Table 2, table 3 and table 4 show the
results for classifiers BN, MLP and SMO respectively. The
prediction performed by the classifier corresponds to the en-
try shown in boldface (the largest probability of prediction).
By inspecting such distributions, we confirm the good per-
formance of the classifiers, with MLP and SMO being almost
equivalent and sligthly better than BN. All classifiers agree
with a very high confidence that a high-quality wine cannot
be confused with a control wine (see last two columns of the
tables in the rows of high-quality wines). We can also notice
that distributions obtained from MLP and SMO are in gen-
eral less skewed than those of BN, showing more “caution”
in the actual prediction, but also very good performance
on predicting control wines. For instance SMO, having two
misclassification on BLE, predicts BLE as the second most
probable class and estimates a probability close to 0 to high-
quality wines (exactly 0 for GAT).

As a final investigation on D1, we tested the classifiers
using a test set TS composed by the 12 instances of NON
wines resulting as discussed in section 2.2. Differently from
the wine samples used for training the classifiers, the wine
samples in TS do not contain any part of Nebbiolo grape;
this implies that acceptable predictions can be those select-
ing our control wines (LAN and BLE) which are the ones
containing parts of the grape varieties contained in the wine
samples of TS; in particular, LAN is also a preferred pre-
dictions than BLE, because of the way NON wine samples
have been prepared. The results are shown in figure 4. SMO
shows very reasonable predictions, by identifying very pre-
cisely the only class (LAN) containing percentages of the
grapes present in the test cases of TS. By considering all the
results, we can conclude that, on dataset D1, SMO appears
to be the best globally performing classifier.

Figure 4: Predictions of NON wines, dataset D1

3.3 Automatic Feature Selection
The second round of experiments we have perfomed takes

into account the relevance of the available features of the
wine samples, with respect to our target classification task.
To this extent, we constructed and evaluated the same set
of classifiers considered in section 3.2, but on a dataset with
a reduced set of features. In particular, we have perfomed a
correlation-based feature selection with sequential forward-
backward selection on the original feature space [12, 8], re-
sulting in the selection of 15 analytical attributes out of
402. In particular, all the features representing grape vari-
ety percentage, but those of Nebbiolo and Uva Rara were
removed by feasture selection, together with a set of re-
dundant information about polyphenols that were initially
provided both as absolute concentrations and relative per-
centages. As already mentioned, the resulting dataset will
be refferred as D2. Table 5 reports the general accuracy
and Kappa statistic of the three classifiers for dataset D2.
Results show again a good and significant global accuracy,
this time with SMO slightly better than MLP. Figure 5,
figure 6 and Figure 7 report the prediction statistics with

2An approach based on a PCA transformation of the feature
space has also been investigated in the study, with results
and considerations similar to those reported in the present
papers for the other alternatives.
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Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE

BLE
0.004 0 0 0.117 0.016 0 0.013 0.599 0.251
0.005 0 0 0.154 0.018 0 0.027 0.620 0.176

GAT
0.036 0.254 0 0.010 0.624 0 0.073 0.002 0.001
0.014 0.342 0 0.021 0.187 0 0.433 0.002 0.001

BRB 0 0 0 0 0.989 0 0.011 0 0

Table 4: Probability distribution of misclassifications, dataset D1: SMO classifier.

Accuracy Kappa
BN 83% 0.80

MLP 89% 0.87
SMO 90% 0.88

Table 5: Accuracy and Kappa statistic for dataset
D2.

respect to the classes of interest for BN, MLP and SMO
classifier respectively. Concerning control wines, we can

Figure 5: Predictions BN classifier, dataset D2

Figure 6: Predictions MLP classifier, dataset D2

notice again a very good classification with high accuracy
and no control wine misclassified as a high-quality one; on
the other side, high-quality wines are also recognized well
(SMO has a perfect prediction on GAT), with no misclas-
sification predicting control wines. As in the previous case,
misclassifications can in general be suitably justified: the
most interesting result is provided by SMO, where BRL and
BRB are each other confused in the corresponding misclas-
sification (which is something definitely acceptable).

Figure 7: Predictions SMO classifier, dataset D2

As in the case of dataset D1, we also computed, for each
classifier, the probability distribution on the predictions that
are misclassified, by focusing on the classes of interest. Ta-
ble 6, table 7 and table 8 show the results for classifiers
BN, MLP and SMO respectively. Again, the prediction per-
formed by the classifier corresponds to the entry shown in
boldface.

A problem can be noticed in the BN classifier, where the
first misclassification of BRB has a a prediction on BLE with
a 29% probability, even if the most probable predicted class
is NEB. MLP is showing no misclassifications for control
wines, even if there are 6 misclassifications of BRB; how-
ever, three of them have exactly BRB as the second most
probable prediction (with a 48% probability in one case and
more than 30% in the others), while the predictions of con-
trol wines are either 0 or very close to 0. Concerning SMO,
the confusion of BLE with GHE is justified by the fact that
samples corresponding to such instances represented mix-
tures very close to the blend allowed for GHE, while confu-
sion of BRL with BRB and vice versa are justified by the
very high similarity of the two wines (as already mentioned).

Finally, we tested the classifiers learned using D2 using
the test set TS of NON wines, resulting in the predictions
graphically reported in figure 8. BN’s prediction appears

Figure 8: Predictions of NON wines, dataset D2
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Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE
LAN 0 0.002 0.017 0.917 0 0.001 0.058 0 0.004

BLE
0.704 0 0 0 0 0 0 0 0.295
0.620 0 0 0 0 0 0 0 0.380
0.061 0 0 0.613 0 0 0 0 0.326

GAT 0 0.017 0 0.101 0.873 0.001 0.008 0 0

BRL

0.006 0.580 0 0.007 0.406 0 0 0 0
0 0 0 0.727 0.272 0 0 0 0
0 0.006 0.001 0.066 0.270 0.467 0.188 0 0
0 0 0 0 0.442 0 0.558 0 0
0 0 0 0 0.227 0 0.772 0 0

BRB

0 0.007 0 0.515 0.056 0 0.128 0.006 0.287
0.002 0.001 0 0.080 0.649 0 0.254 0 0.013

0 0 0 0 0.968 0 0.032 0 0
0 0 0 0.009 0 0.991 0 0 0

Table 6: Probability distribution of misclassifications, dataset D2: BN classifier.

Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE
GAT 0.002 0.270 0 0.711 0.002 0 0.014 0.001 0

BRL 0.068 0.475 0 0.008 0.422 0 0.026 0 0

BRB

0 0.012 0 0.637 0.001 0 0.349 0 0
0 0 0 0.575 0.003 0.41 0 0 0.011
0 0.003 0 0.516 0 0.001 0.48 0 0

0.007 0 0 0 0.691 0 0.302 0 0
0 0.015 0 0.001 0.952 0.023 0.009 0 0
0 0 0 0.195 0.007 0.773 0 0 0.025

Table 7: Probability distribution of misclassifications, dataset D2: MLP classifier.

Accuracy Kappa
BN 79% 0.75

MLP 82% 0.79
SMO 89% 0.87

Table 9: Accuracy and Kappa statistic for dataset
D3.

more reasonable than in the case of D1 (no high-quality
wine prediction, even if NEB predictions are not very well
justified); MLP’s predictions have a problem in the two cases
where the sample is recognized as a BRB (in both cases with
a rather high probability); SMO’s predictions are quite good,
even if NEB predictions shows an identification problem on
the corresponding samples.

To summarize, also in this situation (i.e., using D2 for
training), SMO resulted to be perfoming in general better
than the other classifiers.

3.4 Automatic and Manual Feature Selection
A third round of experiments concerned the manual elim-

ination, from the dataset D2, of the information concerning
the percentage of grape variety. This resulted in another
dataset (D3) with a total of 13 attributes. Table 9 reports
the general accuracy and Kappa statistic of the three classi-
fiers for dataset D3. The accuracy of each classifier slightly
reduces again with respect to the previous cases, and SMO
results better than MLP, with the lowest accuracy obtained

by BN (as in the use of D2). Figure 9, figure 10 and Fig-
ure 11 report the prediction statistics with respect to the
classes of interest for BN, MLP and SMO classifier respec-
tively. As in the previous cases, no control wine is predicted

Figure 9: Predictions BN classifier, dataset D3

as a high-quality wine and vice versa. SMO has exactly the
same (good) performance as in the case of D2, and also BN
produce almost the same results. MLP slightly augment the
number of misclassifications, but is still performing better
than BN. Thus, the complete elimination of the grape per-
centages from the dataset does not seem to influence too
much the cross validation performance of the classifiers we
considered (it is worth noting that in 1/3 of the samples
such data were already missing).
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Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE

BLE
0.990 0 0 0 0 0 0 0 0.009
0.962 0 0 0 0 0 0 0 0.037

BRL
0 0 0 0.002 0.199 0 0.799 0 0
0 0 0 0.004 0.358 0 0.638 0 0

BRB
0 0 0 0 0.936 0 0.063 0 0.013
0 0 0 0.001 0.936 0 0.063 0 0

Table 8: Probability distribution of misclassifications, dataset D2: SMO classifier.

Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE

LAN
0 0 0 0.566 0 0.002 0.002 0.43 0
0 0 0.005 0.955 0 0.001 0.032 0.001 0.005

BLE
0.611 0 0 0.002 0 0 0 0 0.387
0.037 0 0 0.632 0.001 0 0 0.015 0.314

GAT 0 0.017 0.001 0.08 0.893 0 0.008 0 0

BRL

0.209 0.419 0.013 0.004 0.354 0 0 0 0
0 0 0.001 0.718 0.281 0. 0 0 0

0.011 0 0 0 0.481 0 0.508 0 0
0 0 0 0 0.237 0 0.763 0 0
0 0.037 0.051 0.151 0.313 0.324 0.119 0.005 0

BRB

0 0 0 0.009 0 0.991 0 0 0
0.072 0 0 0.035 0.846 0 0.044 0 0.004

0 0 0 0 0.979 0 0.021 0 0
0.01 0.012 0.002 0.611 0.086 0 0.186 0.009 0.084

Table 10: Probability distribution of misclassifications, dataset D3: BN classifier.

Figure 10: Predictions MLP classifier, dataset D3

Again, as in the case of other datasets, we computed, for
each classifier, the probability distribution on the predictions
that are misclassified, by focusing on the classes of interest.
Table 10, table 11 and table 12 show the results for classi-
fiers BN, MLP and SMO respectively (prediction performed
by the classifier corresponding to the boldface entry). It can
be noticed the very good performance of SMO, that in case
of BRB and BRL (the only high-quality wines having mis-
classifications) shows a null probability of predicting control
wines and in one prediction of BRB (the second misclassifi-
cation of BRB) has a 31% probability of predicting the cor-
rect wine (against a 64% probability of confusing it with the
similar BRB). Finally, predictions on BLE (the only misclas-

Figure 11: Predictions SMO classifier, dataset D3

sified control wine) shows a null or close to null probability
of predicting high-quality wines.

Also in this case we finally tested the classifiers learned
with D3, using the test set TS of NON wines; results are
summurized in figure 12. These results shows that SMO is
definitely more robust and stable with respect to the others
in presence of control wines on which the classifier was not
trained; this proposes, together with the previous results,
SMO as the best performing approach on D3 as well.

To conclude, the results of the experiments suggest that
standard chemical profiling of Piedmont Nebbiolo-based wines,
coupled with data mining classification techniques, can be
a powerful tool to authenticate high-quality and high-value
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Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE
BLE 0.471 0 0.076 0 0.005 0 0 0 0.447

BRL

0.862 0.095 0.001 0.001 0.039 0 0 0.002 0
0.383 0.012 0 0 0.014 0 0.518 0 0.072

0 0 0.21 0 0.064 0.69 0.036 0.001 0
0 0 0.118 0 0.278 0.59 0.014 0 0

BRB

0 0 0.025 0.641 0.233 0.095 0 0.001 0.004
0 0 0.014 0.748 0 0.233 0 0.001 0.005

0.004 0.109 0 0.008 0.543 0 0.335 0 0
0 0.041 0.001 0 0.591 0.002 0.365 0 0
0 0.004 0 0.009 0.878 0.002 0.107 0 0
0 0 0.035 0.327 0 0.626 0 0.002 0.01

Table 11: Probability distribution of misclassifications, dataset D3: MLP classifier.

Probability distribution of misclassified predictions
True Ground GHE GAT SIZ NEB BRL ROE BRB LAN BLE

BLE
0.99 0 0 0 0 0 0 0 0.01
0.747 0 0.059 0.01 0 0 0.002 0 0.182

BRL
0.001 0 0.043 0 0.16 0 0.795 0 0
0.002 0 0.052 0.001 0.309 0 0.636 0 0

BRB
0.001 0 0 0 0.936 0 0.063 0 0

0 0 0 0.001 0.937 0 0.063 0 0

Table 12: Probability distribution of misclassifications, dataset D3: SMO classifier.

Figure 12: Predictions of NON wines, dataset D3

wines. All the tested classifiers perfomed rather well with
respect to the objectives of the work, with BN being the
more problematic in some situations, and MLP compara-
ble in performance with SMO, the latter showing a better
robustness with respect to possible fake wines.

4. RELATED WORKS
Wine classification and identification through data min-

ing and pattern recognition using chemical descriptors have
been approached several times in different settings. Several
paper are reported in literature, focused on different analyt-
ical targets and techniques, where however the complexity
of the data mining task is often proportional to the complex-
ity of the chemical or sensory analyses. Moreover, employed
data mining techniques cover essentially all the possible clas-
sification or discriminant analysis methods, showing that no
“silver bullet” is available in general [2, 15].

Authors in [5] investigate aroma compounds of Galician
white wines using a dataset of 42 samples; they show that
PCA was not able to accurately separate all the wine va-
rieties, thus different machine learning techniques (SVM,
Random Forest, MLP, k-NN and Naive Bayes) were eval-
uated, obtaining a perfect classification accuracy using the
Random Forest algorithm. Differently from our study, the

target was maximizing general classification accuracy, and
no commercial wine was analyzed.

PCA and Extreme Learning Machine (ELM) were also
applied to detect grape varieties: the PCA algorithm was
adopted to process chemical components of publicly avail-
able wine datasets and classification was performed using
the ELM. The experimental results show that the proposed
model was useful for general wine classification [17].

Sophisticated analytical methods (even coupled with spe-
cific sensory devices such as electronic nose or tongue) have
been often used to obtain wine characterization; however, as
in our case, [1] shows that simple and nonselective techniques
(as UV-visible spectrophotometric methods), in combina-
tion with classification approaches, can be demonstrated
successful. Here the emphasis is again in improving gen-
eral classificational accuracy (in this case of several Spanish
wines).

Finally, another recent work proposing support vector ma-
chine as very promising in this context is presented in [4];
the task here is however completely different, since the goal
is to predict (with a suitable score) human wine tasting pref-
erences (that are however closely related to the wine type
characteristics).

5. DISCUSSION AND FUTURE WORKS
In this paper we have reported of the results of a study ex-

ploiting classification for the assessment of the authenticity
of some high-value Italian wines. The problem has been ad-
dressed without expensive and hyper-specialized wine chem-
ical analyses, and by learning and suitably evaluating dif-
ferent standard classifiers on the resulting chemical profiles.
The proposed approach can be regarded as an instance of the
3-phases Wagstaff’s scheme [16]: Necessary Preparation has
involved the definition of the analyses for data collection and
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preparation, Machine Learning Contribution has regarded
the selection of a supervised strategy and of a suitable set
of classifiers, while Impact has concerned the evaluation of
the classification results with respect to the study’s objec-
tives. The conclusion is that an SVM classifier like SMO
emerges as very promising in this context, both for detect-
ing wrong or illecit blends (not necessarily of low quality, but
not compliant with regulations as in the case of LAN and
BLE), as well as for avoiding incorrect introductions of un-
related cultivars (as in the case of NON). Moreover, feature
selection has pointed out that the number of chemical pa-
rameters, needed to get good performances with respect to
the authentication objective, can be significantly less than
the whole set of parameters initially tought as necessary:
performances on datasets D2 and D3 of SMO are in fact
comparable, and in some sense even better than those on
dataset D1. For instance, in D1, GAT has been misclassified
by SMO as BRL and BRB, which are wines similar to GAT,
but from different location (Northern vs Southern Piedmont
area). Therefore, we can conclude that even a reduced num-
ber of chemical analyses (and so a less expensive strategy),
together with a suitable classification methodology can be
really effective in the considered task.

A weak point of the study could be the not very large
number of available samples; however, compared with simi-
lar studies, the sample size used in the work is definitely ade-
quate and larger than the usual ones. The practical problem
is that obtaining such samples is rather demanding, even if
stardard analytical techniques are used. We plan to exploit
approaches for generating syntethic data (from the real ones
available), in such a way to extend the evaluation of the clas-
sifiers to a larger set of data. We have already obtained some
interesting preliminary results by learning, using PC algo-
rithm [13], class-specific Linear Gaussian Bayesian Networks
[6] as generative models for such synthetic data. The exper-
imental evidence suggests that a data mining classification
tool, on wine chemical profiles, can be suitably proposed to
address the wine quality control issue.
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