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Abstract
Resource-aware type systems statically approximate not only the expected result type of a program,
but also the way external resources are used, e.g., how many times the value of a variable is needed.
We extend the type system of Featherweight Java to be resource-aware, parametrically on an
arbitrary grade algebra modeling a specific usage of resources. We prove that this type system is
sound with respect to a resource-aware version of reduction, that is, a well-typed program has a
reduction sequence which does not get stuck due to resource consumption. Moreover, we show that
the available grades can be heterogeneous, that is, obtained by combining grades of different kinds,
via a minimal collection of homomorphisms from one kind to another. Finally, we show how grade
algebras and homomorphisms can be specified as Java classes, so that grade annotations in types
can be written in the language itself.
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1 Introduction

Recently, a considerable amount of research [25, 7, 2, 14, 15, 23, 8, 11] has been devoted to
type systems allowing reasoning about resource usage. In (type-and-)coeffect systems, the
typing judgment takes the shape x1 :r1 T1, . . . , xn :rn

Tn ⊢ e : T , where the coeffect (grade) ri

models how variable xi is used in e. For instance, coeffects of shape r ::= 0 | 1 | ω trace when
a variable is either not used, or used at most once, or used in an unrestricted way, respectively.
In this way, functions, e.g., λx:int.5, λx:int.x, and λx:int.x + x, which have the same type
in the simply-typed lambda calculus, can be distinguished by adding coeffect annotations:
λx:int[0].5, λx:int[1].x, and λx:int[ω].x + x. Other examples are exact usage (coeffects are
natural numbers), and privacy levels. Graded modal types go further, by decorating types
themselves with grades, in order to specify how the result of an expression should be used.
In the different proposals in literature, grades have a similar algebraic structure, basically a
semiring specifying sum +, multiplication ·, and 0 and 1 constants, and some kind of order
relation. Here, we will assume a variant of this notion called grade algebra.

Resource-aware typing has been exploited in a fully-fledged programming language in
Granule [23], a functional language equipped with graded modal types, hence allowing the
programmer to write function declarations similar to those above. In Granule, different
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3:2 Multi-Graded Featherweight Java

kinds of coeffects can be used at the same time, including naturals for exact usage, privacy
levels, intervals, infinity, and products of coeffects; however, available grades are fixed in the
language. The initial objective of the work presented here was to study a similar support
for Java-like languages, by introducing, in a variant of Featherweight Java (FJ) [19], types
decorated with grades. Moreover, we wanted these grades to be taken, parametrically, in
an arbitrary grade algebra; even more, we did not want this grade algebra to be fixed as in
Granule, but to be extendable by the programmer with user-defined grades, by relying on the
inheritance mechanism of OO languages. In the quest for such goals, we came up with several
ideas which are novel, to our knowledge, with respect to the literature on resource-aware
type systems, as detailed in the outline of contributions given below.

Resource-aware parametric FJ reduction. Given a resource-aware type system, we would
like to prove that typing overapproximates the use of resources. However, resource usage is
not modeled in standard operational semantics; for this reason, [8] proposed an instrumented
operational semantics1 and proved a soundness theorem showing correct accounting of resource
usage. Inspired by this work, we define a resource-aware semantics for FJ, parametric on an
arbitrary grade algebra, which tracks how much each available resource is consumed at each
step, and is stuck when the needed amount of a resource is not available. Differently from
[8], the semantics is given independently from the type system, as is the standard approach
in calculi. That is, the aim is also to provide a simple purely semantic model which takes
into account usage of resources. The resource-aware reduction is sound with respect to the
standard reduction, but clearly not complete, since a reduction step allowed in the standard
semantics could be impossible due to resource consumption.

Graded FJ. After defining the resource-aware calculus, we define the resource-aware type
system. That is, types are decorated with grades, allowing the programmer to specify how
a variable, a field or the result of a method should be used, e.g., how many times. Our
approach is novel with respect to that generally used in the literature on graded modal
types. Notably, in such works the production of types is T ::= . . . | T r , that is, grade
decorations can be arbitrarily nested. Correspondingly, the syntax includes an explicit box
construct, which transforms a term of type T into a term of type T r , through a promotion
rule which multiplies the context with r , and a corresponding unboxing mechanism. Here,
we prefer a much lighter approach, likely more convenient for Java-like languages, where
the syntax of terms is not affected. The production for types is T ::= C r , that is, all types
(here only class names) are (once) graded; in contexts, types are non-graded, and grades
are used as coeffects, leading to a judgment of shape x1 :r1 C1, . . . , xn :rn

Cn ⊢ e : C r .
Finally, since there is no boxing/unboxing, there is no explicit promotion rule, but different
grades can be assigned to an expression, assuming different coeffect contexts. We prove a
soundness theorem, stating that the graded type system overapproximates resource usage,
hence guaranteeing soundness, and, as a consequence, completeness with respect to standard
reduction for well-typed programs.

Combining grades. The next matter is how to make the language multi-graded, in the sense
that the programmer can use grades of different kinds, e.g., both natural numbers and privacy
levels. This poses the problem of defining the result when grades of different kinds should

1 Subsequently the model of [8] was used, in [21], to trace reference counting for uniqueness.
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be combined by the type system. This issue has been considered in the Granule language
[23], where, however, the available kinds of grades are fixed, hence can be combined in an
ad-hoc way. We would like to have much more flexibility, that is, to allow the programmer
to define grades to be added to those already available, very much in the same way a Java
programmer can define her/his own class of exceptions. To this end, we define a construction
which, given a family of grade algebras and a family of homomorphisms, leads to a unique
grade algebra of heterogeneous grades. This allows a modular approach, in the sense that the
developed meta-theory, including the proof of results, applies to this case as well.

Grades as Java expressions. Finally, we consider the issue of providing linguistic support
to specify the desired grade algebras and homomorphisms. Of course this could be done
by using an ad-hoc configuration language. However, we believe an interesting solution is
that the grade annotations could be written themselves in Java, again analogously to what
happens with exceptions. We describe how Java classes corresponding to grade algebras and
homomorphisms could be written, providing some examples.

A preliminary step towards the results described in the current paper is [3], which
proposes a first version of the type system with only coeffects (types are not graded), and
a rudimentary version of the construction described above where combining coeffects of
different kinds leads to the trivial coeffect.

In Section 2 we formally define grade algebras and related notions. In Section 3 we
define the parametric resource-aware reduction for FJ, and in Section 4 the parametric
resource-aware type system, proving its soundness. Section 5 defines the construction of
the grade algebra of heterogeneous grades, and Section 6 illustrates how to express grade
algebras and homomorphisms in Java. Finally, Section 7 surveys related work and Section 8
summarizes the contributions, and outlines future work. Omitted proofs can be found in [4].

2 Algebraic preliminaries

In this section we introduce the algebraic structures we will use throughout the paper. The
core of our work is grades, namely, annotations in the code expressing how or how much
resources are used by the program. As we will see, we need some operations to properly
combine grades in the resource-aware semantics and in the typing rules, hence we will assume
grades to form an algebraic structure called grade algebra defined below.

▶ Definition 1 (Grade algebra). A grade algebra is a tuple R = ⟨|R|, ⪯, +, ·, 0, 1⟩ such that:
⟨|R|, ⪯⟩ is a partially ordered set;
⟨|R|, +, 0⟩ is a commutative monoid;
⟨|R|, ·, 1⟩ is a monoid;

and the following axioms are satisfied:
r · (s + t) = r · s + r · t and (s + t) · r = s · r + t · r, for all r, s, t ∈ |R|;
r · 0 = 0 and 0 · r = 0, for all r ∈ |R|;
if r ⪯ r′ and s ⪯ s′ then r + s ⪯ r′ + s′ and r · s ⪯ r′ · s′, for all r, r′s, s′ ∈ |R|;
0 ⪯ r, for all r ∈ |R|.

Essentially, a grade algebra is an ordered semiring, that is, a semiring together with
a partial order relation on its carrier which makes addition and multiplication monotonic
with respect to it. We further require the zero of the semiring to be the least element
of the partial order. Our definition is a slight variant of others proposed in literature
[7, 15, 22, 2, 14, 1, 23, 8, 27]. In particular, the partial order models overapproximation in

ECOOP 2023
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the usage of resources, and allows flexibility, for instance we can have different usage in the
branches of an if-then-else construct. The fact that the zero is the least element means that,
in particular, overapproximation can add unused variables, making the calculus affine.

▶ Example 2.
1. The semiring Nat = ⟨N, ≤, +, ·, 0, 1⟩ of natural numbers with the natural order and usual

arithmetic operations is a grade algebra.
2. The affinity grade algebra ⟨{0, 1, ∞}, ≤, +, ·, 0, 1⟩} is obtained from the previous one by

identifying all natural numbers greater than 1.
3. The trivial semiring Triv, whose carrier is a singleton set |Triv| = {∞}, the partial

order is the equality, addition and multiplication are defined in the trivial way and
0Triv = 1Triv = ∞, is a grade algebra.

4. The semiring R∞
≥0 = ⟨[0, ∞], ≤, +, ·, 0, 1⟩ of extended non-negative real numbers with

usual order and operations, extended to ∞ in the expected way, is a grade algebra.
5. A distributive lattice L = ⟨|L|, ≤, ∨, ∧, ⊥, ⊤⟩, where ∨ and ∧ denote join and meet

operations and ⊥ and ⊤ the bottom and the top element, respectively, is a grade algebra.
6. Given grade algebras R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩ and S = ⟨|S |, ⪯S , +S , ·S , 0S , 1S⟩, the

product R ×S = ⟨{⟨r, s⟩ | r ∈ |R| ∧ s ∈ |S |}, ⪯, +, ·, ⟨0R, 0S⟩, ⟨1R, 1S⟩⟩, where operations
are the pairwise application of the operations for R and S , is a grade algebra.

7. Given a grade algebra R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩, as in [23] we define Ext R = ⟨|R| +
{∞}, ⪯, +, ·, 0R, 1R⟩ where ⪯ extends ⪯R by adding r ⪯ ∞ for all r ∈ |Ext R| and + and
· extend +R and ·R by r + ∞ = ∞ + r = ∞, for all r ∈ |Ext R|, and r ·∞ = ∞· r = ∞, for
all r ∈ |Ext R| with r ̸= 0R, and 0R · ∞ = ∞ · 0R = 0R. Then, Ext R is a grade algebra.

A homomorphism of grade algebras f : R → S is a monotone function f : ⟨|R|, ⪯R⟩ →
⟨|S |, ⪯S⟩ between the underlying partial orders, which preserves the semiring structure, that
is, satisfies the following equations:

f(0R) = 0S and f(r +R s) = f(r) +S f(s), for all r, s ∈ |R|;
f(1R) = 1S and f(r ·R s) = f(r) ·S f(s), for all r, s ∈ |R|.

Grade algebras and their homomorphisms form a category denoted by GrAlg .
Consider a grade algebra R. Then, we can define functions ζR : |R| → |Triv| and

ιR : |Nat| → |R| as follows:

ζR(r) = ∞ ιR(m) =
{

0R if m = 0
ιR(n) +R 1R if m = n + 1

Roughly, ζR maps every element of R to ∞, while ιR maps a natural number n to the
sum in R of n copies of 1R. We can easily check that both these functions give rise to
homomorphisms ζR : R → Triv and ιR : Nat → R. This is straightforward for ζR, while for ιR
follows by arithmetic induction. Then, we can prove the following result.

▶ Proposition 3. The following facts hold:
1. Nat is the initial object in GrAlg ;
2. Triv is the terminal object in GrAlg .

Another kind of objects we will work with are maps assigning grades to variables. These
inherit a nice algebraic structure from the one of the underlying grade algebra.

Assume a grade algebra R = ⟨|R|, ⪯, +, ·, 0, 1⟩ and a set X. The set of functions from
X to |R| carries a partially ordered commutative monoid structure given by the pointwise
extension of the additive structure of R. That is, given γ, γ′ : X → |R|, we define γ ⪯ γ′



R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:5

iff, for all x ∈ X, γ(x) ⪯ γ′(x), and (γ + γ′)(x) = γ(x) + γ′(x) and 0̂(x) = 0, for all x ∈ X.
Moreover, we can define a scalar multiplication, combining elements of |R| and a function
γ : X → |R|; indeed, we set (r · γ)(x) = r · γ(x), for all r ∈ |R| and x ∈ X. It is easy to see
that this operation turns the partially ordered commutative monoid of functions from X to
|R| into a partially ordered R-module.

The support of a function γ : X → |R| is the set S(γ) = {x ∈ X | γ(x) ̸= 0}. Denote by
RX the set of functions γ : X → |R| with finite support. The partial order and operations
defined above can be safely restricted to RX , noting that S(0̂) = ∅, S(γ + γ′) ⊆ S(γ) ∪ S(γ′)
and S(r · γ) ⊆ S(γ). Therefore, RX carries a partially ordered R-module structure as well.

As we will see in Section 4, coeffect contexts are (representations of) functions in RX ,
with X set of variables. The fact that coeffect contexts form a module has been firstly noted
in [22, 27], and fully formalized in [5], which also shows a non-structural example. That is,
a module different from RX described above, used in the present paper and mostly in the
literature, is needed, where operations on coeffect contexts are not pointwise.

3 Resource-aware semantics

Standard operational models do not say anything about resources used by the computation.
To address this problem, we follow an approach similar to that in [8], that is, we define
an instrumented semantics which keeps track of resource usage, hence, in particular, it
gets stuck if some needed resource is insufficient. However, unlike [8], the definition of our
resource-aware semantics, though parameterized on a grade algebra, is given independently
of the graded type system, as is the standard approach in calculi; in the next section, we
will show how the graded type system actually overapproximates resource usage, hence
guarantees soundness. As will be detailed in the following, the resource-aware semantics
is non-deterministic, in the sense that, when a resource is needed, it can be consumed in
different ways; hence, soundness is soundness-may, meaning that there is a reduction which
does not get stuck because of standard typing errors or resource consumption.

Reference calculus. The calculus is a variant of FJ [19]. The syntax is reported in the top
section of Figure 1. We write es as a metavariable for e1, . . . , en, n ≥ 0, and analogously
for other sequences. We assume variables x, y, z, . . ., class names C , D, field names f , and
method names m. Types are distinct from class names to mean that they could be extended
to include other types, e.g., primitive types. In addition to the standard FJ constructs, we
have a block expression, consisting of a local variable declaration, and a body.

The semantics is defined differently from the original one; that is, reduction is defined on
configurations e|ρ, where ρ is an environment, a finite map from variables into values. In this
way, variable occurrences are replaced one at a time by their value in the environment, rather
than once and for all. This definition can be easily shown to be equivalent to the original
one, and is convenient for our aims since, in this presentation, free variables in an expression
can be naturally seen as resources which are consumed each time a variable occurrence is
used (replaced by its value) during execution. In other words, this semantics can be naturally
instrumented by adding grades expressing the “cost” of resource consumption, as we will do
in Figure 2. Apart from that, the rules are straightforward; only note that, in rules (invk)
and (block), parameters (including this) and local variable are renamed to fresh variables,
to avoid clashes. Single contextual rules are given, rather than defining evaluation contexts,
to be uniform with the instrumented version, where this presentation is more convenient.

ECOOP 2023



3:6 Multi-Graded Featherweight Java

e ::= x | e.f | new C(es) | e.m(es) | {T x = e; e′} expression
T ::= C type (class name)
v ::= new C(vs) value

(var) x|ρ → v|ρ ρ(x) = v

(field-access)
new C(v1, . . . , vn).fi|ρ → vi|ρ

fields(C ) = T1 f1; . . . Tn fn;
i ∈ 1..n

(invk) v0.m(v1, . . . , vn)|ρ → e[y0/this][y1/x1 . . . yn/xn]|ρ′

v0 = new C(_)
mbody(C , m) = ⟨x1 . . . xn, e⟩
y0, . . . , yn ̸∈ dom(ρ)
ρ′ = ρ, y0 7→ v0, . . . , yn 7→ vn

(block) {C x = v; e}|ρ → e[y/x]|ρ, y 7→ v y ̸∈ dom(ρ)

(field-access-ctx)
e|ρ → e′|ρ′

e.f |ρ → e′.f |ρ′

(new-ctx)
ei|ρ → e′

i|ρ′

new C(v1, . . . , vi−1, ei, . . . , en)|ρ → new C(v1, . . . , vi−1, e′
i, . . . , en)|ρ′

(invk-rcv-ctx)
e0|ρ → e′

0|ρ′

e0.m(e1, . . . , en)|ρ → e′
0.m(e1, . . . , en)|ρ′

(invk-arg-ctx)
ei|ρ → e′

i|ρ′

v0.m(v1, . . . , vi−1, ei, . . . , en)|ρ → v0.m(v1, . . . , vi−1, e′
i, . . . , en)|ρ′

(block-ctx)
e1|ρ → e′

1|ρ′

{C x = e1; e2}|ρ → {C x = e′
1; e2}|ρ′

Figure 1 Syntax and standard reduction.

To be concise, the class table is abstractly modeled as follows, omitting its (standard)
syntax:

fields(C ) gives, for each class C , the sequence T1 f1; . . . Tn fn; of its fields, assumed to
have distinct names, with their types;
mbody(C , m) gives, for each method m of class C , its parameters and body.

Instrumented reduction. This reduction uses grades, ranged over by r , s, t, assumed to
form a grade algebra, specifying a partial order ⪯, a sum +, a multiplication ·, and constants
0 and 1, satisfying some axioms, as detailed in Definition 1 of Section 2.

In order to keep track of usage of resources, parametrically on a given grade algebra, we
instrument reduction as follows.

The environment associates, to each resource (variable), besides its value, a grade modeling
its allowed usage.
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Moroever, the reduction relation is graded, that is, indexed by a grade r , meaning
that it aims at producing a value to be used (at most) r times, or, in more general
(non-quantitative) terms, to be used (at most) with grade r .
The grade of a variable in the environment decreases, each time the variable is used, of
the amount specified in the reduction grade2.
Of course, this can only happen if the current grade of the variable can be reduced of
such an amount; otherwise the reduction is stuck.

Before giving the formal definition, we show some simple examples of reductions, considering
the grade algebra of naturals of Example 2(1), tracking how many times a resource is used.

▶ Example 4. Assume the following classes:
class A {}
class Pair {A first; A second }

We write vPair as an abbreviation for new Pair(new A(), new A()).

{A a = [new A()]4; {Pair p = [new Pair(a, a)]2; new Pair(p.first, p.second)}}|∅ →1

{Pair p = [new Pair(a, a)]2; new Pair(p.first, p.second)}|a 7→ ⟨new A(), 4⟩ →1

{Pair p = [new Pair(new A(), a)]2; new Pair(p.first, p.second)}|a 7→ ⟨new A(), 2⟩ →1

{Pair p = [new Pair(new A(), new A())]2; new Pair(p.first, p.second)}|a 7→ ⟨new A(), 0⟩ →1

new Pair(p.first, p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 2⟩ →1

new Pair(vPair.first, p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 1⟩ →1

new Pair(new A(), p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 1⟩ →1

new Pair(new A(), vPair.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩ →1

vPair|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩

In the example, the top-level reduction is graded 1, meaning that a single value is
produced. Subterms are annotated with the grade of their reduction. For instance, the outer
initialization expression is annotated 4, meaning that its result can be used (at most) 4 times.
To lighten the notation, in this example we omit the index 1. A local variable introduced
in a block is added3 as another available resource in the environment, with the value and
the grade of its initialization expression; for instance, the outer local variable is added with
grade 4. When evaluating the inner initialization expression, which is reduced with grade 2,
each time the variable a is used its grade in the environment is decremented by 2.

It is important to notice that the annotations in subterms are not type annotations. Except
those in arguments of constructor invocation, explained below, annotations are only needed
to ensure that reduction of a subterm happens at each step with the same grade, see the
formal definition below. We plan to investigate in future work a big-step formulation which
would not need such an artifice. In the example above, we have chosen for the reduction of
subterms the minimum grade allowing to perform the top-level reduction. We could have
chosen any greater grade; instead, with a strictly lower grade, the reduction would be stuck.

As anticipated, in a constructor invocation new C([e1]r1
, . . . , [en]rn

), the annotation ri

plays a special role: intuitively, it specifies that the object to be constructed should contain
ri copies of that field. Formally, this is reflected by the reduction grade of the subterm ei,
which must be exactly r · ri, if r is the reduction grade of the object, specifying how many
copies of it the reduction is constructing. Correspondingly, an access to the field can be used
(at most) r · ri times. This is illustrated by the following variant of the previous example.

2 More precisely, the reduction grade acts as a lower bound for this amount, see comment to rule (var).
3 Modulo renaming to avoid clashes, omitted in the example for simplicity.

ECOOP 2023



3:8 Multi-Graded Featherweight Java

▶ Example 5. Consider the term

{A a = [new A()]4; {Pair p = [new Pair(a, a)]2; new Pair( [p.first]2 , p.second)}}

As highlighted in grey, the first argument of the constructor invocation which is the body of
the inner block is now annotated with 2, meaning that the resulting object should have “two
copies” of the field. As a consequence, the expression p.first should be reduced with grade
2, as shown below, where vPair = new Pair(new A(), new A()), the first four reduction steps
are as in Example 4 and we explicitly write some annotations 1 for clarity

{A a = [new A()]4; {Pair p = [new Pair([a]1, a)]2; new Pair( [[p]1.first]2 , p.second)}}|∅ →∗
1

new Pair( [[p]1.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 2⟩ →1

new Pair( [[vPair]1.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 1⟩ STUCK

Reduction of the subterm in grey, aiming at constructing a value (new A()) which can be
used twice, is stuck, since we cannot obtain two copies of new A() from the field first of
the object vPair. If we choose, instead, to reduce the occurrence of p to be used twice, then
we get the following reduction, where again we omit steps which are as before:

{A a = [new A()]4; {Pair p = [new Pair([a]1, a)]2; new Pair( [[p]2.first]2 , p.second)}}|∅ →⋆
1

new Pair( [[p]2.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 2⟩ →1

new Pair( [[vPair]2.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩ →1

new Pair([new A()]2, p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩ STUCK

In this case, the reduction is stuck since we consumed all the available copies of p to produce
two copies of the field first, so now we cannot reduce p.second. To obtain a non-stuck
reduction, we should choose to reduce the initialization expression of p with index 3, hence
that of a with index 6. To complete the construction of the Pair, that is, to get a non-stuck
reduction, we should have 3 copies of p and therefore 6 copies of a.

The formal definition of the instrumented semantics is given in Figure 2. To make the
notation lighter, we use the same metavariables of the standard semantics in Figure 1. As
explained above, reduction is defined on annotated terms. Notably, in each construct, the
subterms which are reduced in contextual rules are annotated, so that their reduction always
happens with a fixed grade.

In rule (var), which is the key rule where resources are consumed, a variable occurrence is
replaced by the associated value in the environment, and its grade s decreases to s′, burning
a non-zero amount r ′ of resources which has to be at least the reduction grade. The side
condition r ′ + s′ ⪯ s ensures that the initial grade of the variable suffices to cover both the
consumed grade and the residual grade. To show why the amount of resource consumption
should be non-zero, consider, e.g., the following variant of Example 4:

{A a = [new A()]4; {Pair p = [new Pair(a, a)]0; new Pair(a, a)}}|∅

The local variable p is never used in the body of the block, so it makes sense for its initialization
expression to be reduced with grade 0, since execution needs no copies of the result. Yet, the
expression needs to be reduced, and to produce its useless result two copies of a are consumed;
in a sense, they are wasted. However, such resource usage is tracked, whereas it would be
lost if decrementing by 0. Removing the non-zero requirement would lead to a variant of
resource-aware reduction where usage of resource which are useless to construct the final
result is not tracked.

In rule (field-access), the reduction grade should be (overapproximated by) the multi-
plication of the grade of the receiver with that of the field (constructor argument). Indeed,
the former specifies how many copies of the object we have and the latter how many copies
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e ::= x | [e]r.f | new C([e1]r1
, . . . , [en]rn

) | (annotated) expression
[e0]r0

.m([e1]r1
, . . . , [en]rn

)es | {T x = [e]r; e′}

v ::= new C([v1]r1
, . . . , [vn]rn

) (annotated) value

(var) x|ρ, x 7→ ⟨v, s⟩ →r v|ρ, x 7→ ⟨v, s′⟩
r ⪯ r ′ ̸= 0
s′ + r ′ ⪯ s

(field-access) [new C([v1]r1
, . . . , [vn]rn

)]r .fi|ρ →s vi|ρ

fields(C ) = T1 f1; . . . Tn fn;
i ∈ 1..n
s ⪯ r · ri

(invk) [v0]r0
.m([v1]r1

, . . . , [vn]rn
)|ρ →r e[y0/this][y1/x1 . . . yn/xn]|ρ′

v0 = new C(_)
mbody(C , m) = ⟨x1 . . . xn, e⟩
y0, . . . , yn ̸∈ dom(ρ)
ρ′ = ρ, y0 7→ ⟨v0, r0⟩, . . . , yn 7→ ⟨vn, rn⟩

(block) {C x = [v]r ; e}|ρ →s e[y/x]|ρ, y 7→ ⟨v, r⟩
y ̸∈ dom(ρ)

(field-access-ctx)
e|ρ →r e′|ρ′

[e]r .f |ρ →s [e′]r .f |ρ′

(new-ctx)
ei|ρ →r·ri e′

i|ρ′

new C([v1]r1
, . . . , [vi−1]ri−1

, [ei]ri
, . . . , [en]rn

)|ρ →r
new C([v1]r1

, . . . , [vi−1]ri−1
, [e′

i]ri
, . . . , [en]rn

)|ρ′

(invk-rcv-ctx)
e0|ρ →r0 e′

0|ρ′

[e0]r0
.m([e1]r1

, . . . , [en]rn
)|ρ →r [e′

0]r0
.m([e1]r1

, . . . , [en]rn
)|ρ′

(invk-arg-ctx)
ei|ρ →ri e′

i|ρ′

[e0]r0
.m([v1]r1

, . . . , [vi−1]ri−1
, [ei]ri

, . . . , [en]rn
)|ρ →r

[e0]r0
.m([v1]r1

, . . . , [vi−1]ri−1
, [e′

i]ri
, . . . , [en]rn

)|ρ′

(block-ctx)
e1|ρ →s e′

1|ρ′

{C x = [e1]s; e2}|ρ →r {C x = [e′
1]s; e2}|ρ′

Figure 2 Instrumented reduction.

of the field each of such objects has; thus, their product provides an upper bound to the
grade of the resulting value. Note that, in this way, some reductions could be forbidden. For
instance, taking the grade algebra of naturals, an access to a field whose value can be used 3
times, of an object reduced with grade 2, can be reduced with grade (at most) 6. Another
more significant example is given in the following, taking the grade algebra of privacy levels.

Rule (invk) adds each method parameter, including this, as available resource in the
environment, modulo renaming with a fresh variable to avoid clashes. The associated value
and grade are that of the corresponding argument. Rule (block) is exactly analogous, apart
that only one variable is added.

Coming to contextual rules, the reduction grade of the subterm is that of the corresponding
annotation, so that all steps happen with a fixed grade. The only exception is rule (new-ctx),
where, symmetrically to rule (field-access), the reduction grade for subterms should be
the multiplication of the reduction grade of the object with the annotation of the field
(constructor argument), capturing the intuition that the latter specifies the grade of the field
for a single copy of the object. For instance, taking the grade algebra of naturals, to obtain
an object which can be used twice, with a field which can be used 3 times, the value of such
field should be an object which can be used 6 times.
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Note that, besides the standard typing errors such as looking for a missing method or
field, reduction graded r can get stuck since either rule (var) cannot be applied since the
side conditions do not hold, or rule (field-access) cannot be applied since the side condition
s ⪯ r · ri does not hold. Informally, either some resource (variable) is exhausted, that is, can
no longer be replaced by its value, or some field of some object cannot be extracted. It is also
important to note that the instrumented reduction is non-deterministic, due to rule (var).

In the grade algebra used in the previous example, grades model how many times resources
are used. However, grades can also model a non-quantitative4 knowledge, that is, track
possible modes in which a resource can be used, or, in other words, possible constraints on
how it could be used. A typical example of this situation are privacy levels, which can be
formalized similarly to what is done in [1], as described below.

▶ Example 6. Starting from any distributive semilattice lattice L, like in Example 2(5),
define L0 = ⟨|L0|, ≤0, ∨0, ∧0, 0, ⊤⟩, where |L0| = |L| + {0} with 0 ≤0 x, x ∨0 0 = 0 ∨0 x = x

and x ∧0 0 = 0 ∧0 x = 0, for all x ∈ |L|; on elements of |L| the order and the operations are
those of L. That is, we assume that the privacy levels form a distributive semilattice with
order representing “decreasing privacy”, and we add a grade 0 modeling “non-used”. The
simplest instance consists of just two privacy levels, that is, 0 ⪯ private ⪯ public. Sum is the
join, meaning that we obtain a privacy level which is less restrictive than both: for instance,
a variable which is used as public in a subterm, and as private in another, is overall used as
public. Multiplication is the meet, meaning that we obtain a privacy level which is more
restrictive than both: for instance, an access to a field whose value has been obtained in
public mode, of an object reduced in private mode, is reduced in private mode5. Note that
exactly the same structure could be used to model, e.g., rather than privacy levels, modifiers
readonly and mutable in an imperative setting, corresponding to forbid field assignment and
no restrictions, respectively. The following examples illustrates the use of such grade algebra.
We write priv and pub for short, and classes A and Pair are as in the previous examples.
1. Let e1 = {A y = [new A()]pub; {A x = [y]priv; x}} and p_ be either pub or priv, e1 starting

with the empty environment reduces with grade private as follows:

e1|∅ →priv {A x = [y]priv; x}|y 7→ ⟨new A(), pub⟩ with (block)
→priv {A x = [new A()]priv; x}|y 7→ ⟨new A(), p_⟩ with (block-ctx) and

y|y 7→ ⟨new A(), pub⟩ →priv new A()|y 7→ ⟨new A(), p_⟩
→priv x|y 7→ ⟨new A(), p_⟩, x 7→ ⟨new A(), priv⟩ with (block)
→priv new A()|y 7→ ⟨new A(), p_⟩, x 7→ ⟨new A(), priv⟩ with (var)

Instead reduction with grade public would be stuck since pub ̸⪯ priv and so

x|y 7→ ⟨new A(), p_⟩, x 7→ ⟨new A(), priv⟩ ̸→pub

Also the reduction of e2 = {A y = [new A()]priv; {A x = [y]pub; x}} with grade private

e2|∅ →priv {A x = [y]pub; x}|y 7→ ⟨new A(), priv⟩ with (Block)
̸→priv

would be stuck since y|y 7→ ⟨new A(), priv⟩ ̸→pub. Note that both e1 and e2 reduce to
new A() with the semantics of Figure 1.

4 Suck kind of applications are called informational in [1].
5 As in viewpoint adaptation [13], where permission to a field access can be restricted based on the

permission to the base object.
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2. Let e3 = {A x = [new A()]pub; new Pair([x]pub, [x]priv)}, e3 starting with the empty
environment reduces with grade public as follows:

e3|∅ →pub new Pair([x]pub, [x]priv)|x 7→ ⟨new A(), pub⟩ with (Block)
→pub new Pair([new A()]pub, [x]priv)|x 7→ ⟨new A(), p_⟩ with (New-Ctx) and

x|x 7→ ⟨new A(), pub⟩ →pub new A()|x 7→ ⟨new A(), p_⟩
→pub new Pair([new A()]pub, [new A()]priv)|x 7→ ⟨new A(), p_⟩ with (New-Ctx) and

x|x 7→ ⟨new A(), p_⟩ →priv new A()|x 7→ ⟨new A(), p_⟩

It is easy to see that also e3|∅ →∗
priv new Pair([new A()]pub, [new A()]priv)|x 7→

⟨new A(), p_⟩. So we have

[e3]r.f|∅ →∗
s [new Pair([new A()]pub, [new A()]priv)]r.f|x 7→ ⟨new A(), p_⟩

where f can be either first or second and r and s can be either pub or priv. Now, the
reductions of grade priv accessing either first or second produce the value of the fields

[new Pair([new A()]pub, [new A()]priv)]r.f|_ →priv new A()|_

However, looking at the reductions of grade pub, only

[new Pair([new A()]pub, [new A()]priv)]
pub

.first|_ →pub new A()|_

is not stuck. That is, we produce a value that can be used as public only if we get a public
field of a public object, whereas any value can be used as private.

We now state some simple properties of the semantics we will use to prove type soundness.
The former establishes that reduction does not remove variables from the environment, the
latter states that we can always decrease the grade of a reduction step.

▶ Proposition 7. If e|ρ →r e′|ρ′ then dom(ρ) ⊆ dom(ρ′) and for all x ∈ dom(ρ), ρ(x) = ⟨v, r⟩
implies ρ′(x) = ⟨v, s⟩ with s ⪯ r.

▶ Proposition 8. If e|ρ →r e′|ρ′ and s ⪯ r then e|ρ →s e′|ρ′.

We expect the instrumented reduction to be sound with respect to the standard reduction,
in the sense that by erasing annotations from an instrumented reduction sequence we get a
standard reduction sequence. This is formally stated below.

For any e expression, let us denote by ⌈e⌉ the expression obtained by erasing annotations,
defined in the obvious way, and analogously for environments, where grades associated to
variables are removed as well.

▶ Proposition 9 (Soundness of instrumented semantics).
If e|ρ →r e′|ρ′, then ⌈e⌉|⌈ρ⌉ → ⌈e′⌉|⌈ρ′⌉.

The converse does not hold, since a configuration could be annotated in a way that makes it
stuck; notably, some resource (variable) could be exhausted or some field of an object could
not be extracted. The graded type system in the next section will generate annotations
which ensure soundness, hence also completeness with respect to the standard reduction.

4 Graded Featherweight Java

Types (class names) are annotated with grades, as shown in Figure 3.
As anticipated at the end of Section 2, a coeffect context, of shape γ = x1 : r1, . . . , xn : rn,

where order is immaterial and xi ̸= xj for i ̸= j, represents a map from variables to grades
(called coeffects when used in this position) where only a finite number of variables have

ECOOP 2023



3:12 Multi-Graded Featherweight Java

e ::= x | e.f | new C(es) | e.m(es) | {T x = e; e′} expression
T ::= C r (graded) type
v ::= new C(vs) value

Figure 3 Syntax with grades.

non-zero coeffect. A (type-and-coeffect) context, of shape Γ = x1 :r1 C1, . . . , xn :rn Cn, with
analogous conventions, represents the pair of the standard type context x1 : C1 . . . , xn : Cn,
and the coeffect context x1 : r1, . . . , xn : rn. We write dom(Γ) for {x1, . . . , xn}.

As customary in type-and-coeffect systems, in typing rules contexts are combined by
means of some operations, which are, in turn, defined in terms of the corresponding operations
on coeffects (grades). More precisely, we define:

a partial order ⪯

∅ ⪯ ∅
x :s C , Γ ⪯ x :r C , ∆ if s ⪯ r and Γ ⪯ ∆

Γ ⪯ x :r C , ∆ if x ̸∈ dom(Γ) and Γ ⪯ ∆

a sum +

∅ + Γ = Γ
(x :s C , Γ) + (x :r C , ∆) = x :s+r C , (Γ + ∆)

(x :s C , Γ) + ∆ = x :s C , (Γ + ∆) if x /∈ dom(∆)

a scalar multiplication ·

s · ∅ = ∅ s · (x :r C , Γ) = x :s·r C , (s·Γ)

As the reader may notice, these operations on type-and-coeffect contexts can be equivalently
defined by lifting the corresponding operations on coeffect contexts, which are the pointwise
extension of those on coeffects, to handle types as well. In this step, the addition becomes
partial since a variable in the domain of both contexts is required to have the same type.

The type system relies on the type information extracted from the class table, which,
again to be concise, is abstractly modeled as follows:

the subtyping relation ≤ on class names is the reflexive and transitive closure of the
extends relation
mtype(C , m) gives, for each method m of class C , its enriched method type, where the
types of the parameters and of this have coeffect annotations.

Moreover, fields(C ) gives now a sequence C r1
1 f1; . . . C rn

n fn;, meaning that, to construct an
object of type C , we need to provide, for each i ∈ 1..n, a value with a grade at least ri.

The subtyping relation on graded types is defined as follows:

C r ≤ Ds iff C ≤ D and s ⪯ r

That is, a graded type is a subtype of another if the class is a heir class and the grade is more
constraining. For instance, taking the affinity grade algebra of Example 2(2), an invocation
of a method with return type C ω can be used in a context where a type C 1 is required, e.g.,
to initialize a C 1 variable.

The typing judgment has shape Γ ⊢ e : T ⇝ e′, where Γ is a type-and-coeffect context,
and e′ is an annotated expression, as defined in Figure 2. That is, typechecking generates
annotations in code such that evaluation cannot get stuck, as will be formally expressed and
proved in the following.



R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:13

(t-sub)
Γ ⊢ e : T ⇝ e′

Γ′ ⊢ e : T ′ ⇝ e′
Γ ⪯ Γ′

T ≤ T ′ (t-var) x :r C ⊢ x : C r ⇝ x
r ̸= 0

(t-field-access)
Γ ⊢ e : C r ⇝ e′

Γ ⊢ e.fi : C r·ri

i ⇝ [e′]r .fi
fields(C ) = C r1

1 f1; . . . C rn
n fn;

(t-new)
Γi ⊢ ei : C r·ri

i ⇝ e′
i ∀i ∈ 1..n

Γ1 + . . . + Γn ⊢ new C(e1, . . . , en) : C r ⇝
new C([e′

1]r1
, . . . , [e′

n]rn
)

fields(C ) = C r1
1 f1; . . . C rn

n fn;

(t-invk)
Γ0 ⊢ e0 : C r0 ⇝ e′

0 Γi ⊢ ei : C ri

i ⇝ e′
i ∀1 ∈ 1..n

Γ0 + . . . + Γn ⊢ e0.m(e1, . . . , en) : T ⇝
[e′

0]r0
.m([e1]r1

, . . . , [en]rn
)

mtype(C , m) = r0, C r1
1 . . . C rn

n → T

(t-block)
Γ1 ⊢ e1 : C r ⇝ e′

1 Γ2, x :r C ⊢ e2 : T ⇝ e′
2

Γ1 + Γ2 ⊢ {C r x = e1; e2} : T ⇝ {C x = [e′
1]r ; e′

2}

(t-env)
⊢ vi : C ri

i ⇝ v′
i ∀i ∈ 1..n

Γ ⊢ ρ⇝ ρ′

Γ = x1 :r1 C1, . . . , xn :rn Cn

ρ = x1 7→ ⟨v1, r1⟩, . . . , xn 7→ ⟨vn, rn⟩
ρ′ = x1 7→ ⟨v′

1, r1⟩, . . . , xn 7→ ⟨v′
n, rn⟩

(t-conf)
∆ ⊢ e : T ⇝ e′ Γ ⊢ ρ⇝ ρ′

Γ ⊢ e|ρ : T ⇝ e′|ρ′ ∆ ⪯ Γ

Figure 4 Graded type system.

In a well-typed class table, method bodies are expected to conform to method types.
That is, mtype(C , m) and mbody(C , m) should be either both undefined or both defined with
the same number of parameters. In the latter case, the method body should be well-typed
with respect to the method type, notably by typechecking the method body we should get
coeffects which are (overapproximated by) those specified in the annotations. Formally, if
mbody(C , m) = ⟨x1 . . . xn, e⟩, and mtype(C , m) = r0, C r1

1 . . . C rn
n → T , then the following

condition must hold:

(t-meth) this :r0 C , x1 :r1 C1, . . . , xn :rn
Cn ⊢ e : T ⇝ e′

Moreover, we assume the standard coherence conditions on the class table with respect to
inheritance. That is, if C ≤ D, then fields(D) is a prefix of fields(C ) and, if mtype(C , m) =
r0, C r1

1 . . . C rn
n → T , then mtype(D, m) = r0, C r1

1 . . . C rn
n → T ′ with T ′ ≤ T .

In Figure 4, we describe the typing rules, which are parameterized on the underlying
grade algebra.

In rule (t-sub), both the coeffect context and the (graded) type can be made more general.
This means that, on one hand, variables can get less constraining coeffects. For instance,
assuming again affinity coeffects, an expression which can be typechecked assuming to use
a given variable at most once (coeffect 1) can be typechecked as well with no constraints
(coeffect ω). On the other hand, recalling that grades are contravariant in types, an expression
can get a more constraining grade. For instance, an expression of grade ω can be used where
a grade 1 is required.

If we take r = 1, then rule (t-var) is analogous to the standard rule for variable in
coeffect systems, where the coeffect context is the map where the given variable is used
once, and no other is used. Here, more generally, the variable can get an arbitrary grade r ,
provided that it gets the same grade in the context. However, the use of the variable cannot
be just discarded, as expressed by the side condition r ̸= 0.

In rule (t-field-access), the grade of the field is multiplied by the grade of the receiver.
As already mentioned, this is a form of viewpoint adaptation [13]. For instance, using affinity
grades, a field graded ω of an object graded 1 can be used at most once.
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In rule (t-new), analogously to rule (t-var), the constructor invocation can get an
arbitrary grade r , provided that the grades of the fields are multiplied by the same grade.
Coeffects of the subterms are summed, as customary in type-and-coeffect systems.

In rule (t-invk), the coeffects of the arguments are summed as well. The rule uses the
function mtype on the class table, which, given a class name and a method name, returns
its parameter and return (graded) types. For the implicit parameter this only the grade is
specified. Note that the grades of the parameters are used in two different ways: as (part of)
types, when typechecking the arguments; as coeffects, when typechecking the method body.

In rule (t-block), the coeffects of the initialization expression are summed with those of
the body, excluding the local variable. Analogously to method parameters, the grade of the
local variable is both used as (part of) type, when typechecking the initialization expression,
and as coeffect, when typechecking the body.

Finally, we have straightforward rules for typing environments and configurations. Values
in the environment are assumed to be closed, since we are in a call-by-value calculus. Also
note that, in the judgment for environments and configurations, since no subsumption rule is
available, variables in the context are exactly those in the domain of the environment, which
are a superset of those used in the expression.

▶ Example 10. We show a simple example illustrating the use of graded types, assuming
affinity grades. We write in square brackets the grade of the implicit this parameter. The
class Pair declares three versions of the getter for the first field, which differ for the grade
of the result: either 0, meaning that the result of the method cannot be used, or 1, meaning
it can be used at most once, or ω, meaning it can be used with no constraints. Note that the
first version, clearly useless in a functional calculus, could make sense adding effects, e.g. in
an imperative calculus, playing a role similar to that of void.
class Pair { A1 first; A1 second ;

A0 getFirstZero () [1]{ this.first}
A1 getFirstAffine () [1]{ this.first}
Aω getFirst () [1]{ this. first}

}

The coeffect of this is 1 in all versions, and it is actually used once in the bodies. The
occurrence of this in the bodies can get any non-zero grade thanks to rule (t-var), and
fields are graded 1, meaning that a field access does not affect the grade of the receiver, hence
the three bodies can get any non-zero grade as well, so they are well-typed with respect to
the grade in the method return type.

In the client code below, a call of the getter is assigned to a local variable of the same
grade, which is then used consistently with such grade.
Pair1 p = ...

{A0 a = p. getFirstZero (); new Pair(new A(), new A())}
{A1 a = p. getFirstAffine (); new Pair(a,new A())}
{Aω a = p. getFirst (); new Pair(a,a)}

The following blocks are, instead, ill-typed, for two different reasons.
{A1 a = p. getFirst (); new Pair(a,a)}
{Aω a = p. getFirstAffine (); new Pair(a,a)}

In the first one, the initialization is correct, by subsumption, since we use an expression of
a less constrained grade. However, the variable is then used in a way which is not compatible
with its grade. In the second one, instead, the variable is used consistently with its grade,
but the initialization is ill-typed, since we use an expression of a more constrained grade.
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Finally, note that the coeffect of this could be safely changed to be ω in the three methods,
providing an overapproximated information; in this case, however, the three invocations in
the client code would be wrong, since the receiver p is required to be used at most once.

▶ Example 11. Consider the following source (that is, non-annotated) version of the
expression in Example 5.
{Apublic y = new A(); {Aprivate x = y; x}}

The private variable x is initialized with the public expression/variable y. The block expression
has type Aprivate as the following type derivation shows.

(t-block)

(t-new)
⊢ new A() : Apub D

⊢ {Apub y = new A(); {Apriv x = y; x}} : Apriv

where D is the following derivation

(t-block)

(t-sub)

(t-var)
y :pub A ⊢ y : Apub

y :pub A ⊢ y : Apriv (t-var)
y :pub A, x :priv A ⊢ x : Apriv

y :pub A ⊢ {Apriv x = y; x} : Apriv

On the other hand, initializing a public variable with a private expression as in
{Aprivate y = new A(); {Apublic x = y; x}}

is not possible, as expected, since y :priv A ̸⊢ y : Apub .
Consider now the class Pair with a private field and a public one.

class B { Apublic f1; Aprivate f2; }

The expression e
{Apublic x = new A(); new B(x,x)}

can be given type Pairpublic as follows:

(t-block)

(t-new)
⊢ new A() : Apub (t-new)

(t-var)
x :pub A ⊢ x : Apub (t-sub)

(t-var)
x :pub A ⊢ x : Apub

x :pub A ⊢ x : Apriv

x :pub A ⊢ new Pair(x, x) : Pairpub

⊢ {Apub x = new A(); new Pair(x, x)} : Pairpub

By (t-sub) we can also derive ⊢ e : Pairpriv and so we get

(t-field)
⊢ e : Pairpriv

⊢ e.first : Apriv (t-field)
⊢ e : Pairpub

⊢ e.second : Apriv

that is, accessing a public field of a private expression we get a private result as well as
accessing a private field of a public expression.
Also note that the following expression e′

{Aprivate x = new A(); new B(x,x)}

can be given only type Pairprivate by

(t-block)

(t-new) ⊢ new A() : Apriv (t-new)

(t-var)
x :priv A ⊢ x : Apriv (t-var)

x :priv A ⊢ x : Apriv

x :priv A ⊢ new Pair(x, x) : Pairpriv

⊢ {Apriv x = new A(); new Pair(x, x)} : Pairpriv

We cannot derive ⊢ e′ : Pairpub, since the grade of first is public and (t-new) would
require x :priv A ⊢ x : Apub·pub, which does not hold.
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(t-sub)
Γ ⊢a e : T

Γ′ ⊢a e : T ′
Γ ⪯ Γ′

T ≤ T ′ (t-var) x :r C ⊢a x : C r r ̸= 0

(t-field-access)
Γ ⊢a e : C r

Γ ⊢a [e]r.fi : C r·ri
i

fields(C ) = C r1
1 f1; . . . C rn

n fn;

(t-new)
Γi ⊢a ei : C r·ri

i ∀i ∈ 1..n

Γ1 + . . . + Γn ⊢a new C([e1]r1
, . . . , [en]rn

) : C r fields(C ) = C r1
1 f1; . . . C rn

n fn;

(t-invk)
Γ0 ⊢a e0 : C r0 Γi ⊢a ei : C ri

i ∀1 ∈ 1..n

Γ0 + . . . + Γn ⊢a [e0]r0
.m([e1]r1

, . . . , [en]rn
) : T mtype(C , m) = r0, C r1

1 . . . C rn
n → T

(t-block)
Γ1 ⊢a e1 : C r Γ2, x :r C ⊢a e2 : T
Γ1 + Γ2 ⊢a {C x = [e1]r; e2} : T

(t-env)
⊢a vi : C ri

i ∀i ∈ 1..n

Γ ⊢a ρ

Γ = x1 :r1 C1, . . . , xn :rn Cn

ρ = x1 7→ ⟨v1, r1⟩, . . . , xn 7→ ⟨vn, rn⟩

(t-conf)
∆ ⊢a e : T Γ ⊢a ρ

Γ ⊢a e|ρ : T ∆ ⪯ Γ

Figure 5 Graded type system for annotated syntax.

Resource-aware soundness. We state that the graded type system is sound with respect
to the resource-aware semantics. In other words, the graded type system prevents both
standard typing errors, such as invoking a missing field or method, and resource-usage errors,
such as requiring a resource which is exhausted (cannot be used in the needed way).

In order to state and prove a soundness theorem, we need to introduce a (straightforward)
typing judgment ⊢a for annotated expressions, environments and configurations. The typing
rules are reported in Figure 5.

Recall that ⌈_⌉ denotes erasing annotations. It is easy to see that an annotated expression
is well-typed if and only if it is produced by the type system:

▶ Proposition 12. Γ ⊢ e : T ⇝ e′ if and only if ⌈e′⌉ = e and Γ ⊢a e′ : T.

A similar property holds for environments and configurations.
The main result is the following resource-aware progress theorem.

▶ Theorem 13 (Resource-aware progress). If Γ ⊢a e|ρ : C r then either e is a value or
e|ρ →r e′|ρ′ and Γ′ ⊢a e′|ρ′ : C r with dom(Γ) ⊆ dom(Γ′) and Γ′ ⪯ Γ, ∆.

When reduction is non-deterministic, we can distinguish two flavours of soundness,
soundness-must meaning that no computation can be stuck, and soundness-may, meaning
that at least one computation is not stuck. The terminology of may and must properties is
very general and comes originally from [12]; the specific names soundness-may and soundness-
must were introduced in [10, 9] in the context of big-step semantics. In our case, graded
reduction is non-deterministic since, as discussed before, the rule (var) could be instantiated
in different ways, possibly consuming the resource more than necessary. However, we expect
that, for a well-typed configuration, there is at least one computation which is not stuck,
hence a soundness-may result. Soundness-may can be proved by a theorem like the one
above, which can be seen as a subject-reduction-may result, including standard progress.
In our case, if the configuration is well-typed, that is, annotations have been generated by
the type system, there is a step which leads, in turn, to a well-typed configuration. More in
detail, the type is preserved, resources initially available may have reduced grades, and other
available resources may be added.
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Theorem 13 is proved as a special case of the following more general result, which makes
explicit the invariant needed to carry out the induction. Indeed, by looking at the reduction
rules, we can see that computational ones either add new variables to the environment or
reduce the grade of a variable of some amount that depends on the grade of the reduction. In
the latter case, the amount can be arbitrarily chosen with the only restrictions that it is non
zero and at least the grade of the reduction. However, to prove progress, we not only have to
prove that a reduction can be done, but, if the reduction is done in a context, say evaluating
the argument of a constructor, then after such reduction we still have enough resources to go
on with the reduction, that is, to evaluate the rest of the context (the other arguments of the
constructor). This means that the resulting environment has enough resources to type the
whole context (the constructor call). For this reason, in the statement of the theorem that
follows, we add to the assumption of Theorem 13 a typing context Θ that would contain
the information on the amount of resources that we want to preserve during the reduction
(see Item 4 of the theorem). This allows us to choose the appropriate grade to be kept when
reducing a variable and to reconstruct a typing derivation when using contextual reduction
rules. For the expression at the top level, as we see from the proof of Theorem 13, Θ is
simply 0 for all variables in the typing context in which the expression is typed.

▶ Theorem 14. If ∆ ⊢a e : C r and Γ ⊢a ρ and ∆ + Θ ⪯ Γ and dom(∆) ⊆ dom(Θ) and e is
not a value, then there are e′, ρ′, ∆′, Γ′ and Θ′ such that
1. e|ρ →r e′|ρ′ and
2. ∆′ ⊢a e′ : C r with ∆′ ⪯ ∆, Θ′ and
3. Γ′ ⊢a ρ′ with Γ′ ⪯ Γ, Θ′ and
4. ∆′ + Θ ⪯ Γ′.

Finally, the following corollary states both subject-reduction for the standard semantics,
that is, type and coeffects are preserved, and completeness of the instrumented semantics,
that is, for well-typed configurations, every reduction step in the usual semantics can be
simulated by an appropriate step in the instrumented semantics.

▶ Corollary 15 (Subject reduction). If Γ1 ⊢ e1|ρ1 : C r ⇝ e′
1|ρ′

1 and e1|ρ1 → e2|ρ2, then
Γ2 ⊢ e2|ρ2 : C r ⇝ e′

2|ρ′
2 with dom(Γ1) ⊆ dom(Γ2) and Γ2 ⪯ Γ1, ∆, and e′

1|ρ′
1 →r e′

2|ρ′
2.

Proof. By Proposition 12 we get Γ1 ⊢a e′
1|ρ′

1 : C r and, by Theorem 13, e′
1|ρ′

1 →r e′
2|ρ′

2
and Γ2 ⊢a e′

2|ρ′
2 : C r with dom(Γ1) ⊆ dom(Γ2) and Γ2 ⪯ Γ1, ∆. By Proposition 12, we

get Γ2 ⊢ ⌈e′
2⌉|⌈ρ′

2⌉ : C r ⇝ e′
2|ρ′

2 and by Proposition 9, we get e1|ρ1 → ⌈e′
2⌉|⌈ρ′

2⌉. By the
determinism of the standard semantics we have ⌈e′

2⌉ = e2 and ⌈ρ′
2⌉ = ρ2, hence the thesis. ◀

5 Combining grades

As we have seen, each grade algebra encodes a specific notion of resource usage. However, a
program may need different notions of usage for different resources or different pieces of code
(e.g., different classes). Hence, one needs to use several grade algebras at the same time, that
is, a family (Hk)k∈K of grade algebras6 indexed over a set K of grade kinds. We assume grade
kinds to always include N and T, with HN and HT the grade algebras of natural numbers
and trivial, respectively, as in Example 2, since they play a special role, as will be shown.

6 H stands for “heterogeneous”.
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▶ Example 16. Assume to use, in a program, grade kinds N, A, P, PP, AP, and T, where:
HA is the affinity grade algebra, as in Example 2(3).
HP and HPP are two different instantiations of the grade algebra of privacy levels, as in
Example 6; namely, in HP there are only two privacy levels public and private, whereas in
HPP we have privacy levels a, b, c, d, with a ⪯ b ⪯ d and a ⪯ c ⪯ d.
Finally, HAP is HA × HP, as in Example 2(7), tracking simultaneously affinity and privacy.

We want to make grades of all such kinds simultaneously available to the programmer. In
order to achieve this, we should specify how to combine grades of different kinds through
their distinctive operators; for instance, an object with grade of kind k could have a field
with grade of kind µ, hence a field access should be graded by their multiplication.

In other words, we need to construct, starting from the family (Hk)k∈K , a single grade
algebra of heterogeneous grades. In this way, the meta-theory developed in previous sections
for an arbitrary grade algebra applies also to the case when several grade algebras are used
at the same time. Note that this construction is necessary since we do not want available
grades to be fixed, as in [23]; rather, the programmer should be allowed to define grades for
a specific application, using some linguistic support which could be the language itself, as
will be described in Section 6.

Direct refinement. The obvious approach is to define heterogeneous grades as pairs ⟨k, r⟩
where k ∈ K, and r ∈ Hk . Concerning operators, in previous work, handling coeffects rather
than grades, [3] we took the simplest choice, that is, combining (by either sum or product)
grades of different kinds always returns ⟨∞, T⟩, meaning, in a sense, that we “do not know”
how the combination should be done. The only exception are grades of kind N; indeed, since
the corresponding grade algebra is initial, we know that, for any kind k, there is a unique
grade homomorphism ιk from Nat to Hk , hence, to combine ⟨n, N⟩ with ⟨r , k⟩, we can map
n into a grade of kind k through such homomorphism, and then use the operator of kind
k. In this paper, we generalize this idea, by allowing the programmer to specify, for each
pair of kinds k and µ, a uniquely determined kind k ⊕ µ and two uniquely determined grade
homomorphisms lhH

κ,µ : Hκ → Hκ⊕µ, and rhH
κ,µ : Hµ → Hκ⊕µ. In this way, to combine ⟨κ, r⟩

and ⟨µ, s⟩, we can map both in grades of kind k ⊕ µ, and then use the operator of kind k ⊕ µ.
The operator ⊕ and the family of unique homomorphisms, one for each pair of kinds,

can be specified by the programmer, in a minimal and easy to check way, by defining a
(direct) refinement relation ⊏1, as defined below, and a family of grade homomorphisms
Hκ,µ : Hκ → Hµ, indexed over pairs κ ⊏1 µ.

Given a relation ⇒ on kinds, a path from k0 to kn is a sequence k0 . . . kn such as ki ⇒ ki+1,
for all i ∈ 1..n − 1. We say that µ is an ancestor of κ if there is a path from κ to µ.

Then, a (direct) refinement relation is a relation ⊏1 on K \ {N, T} such as the following
conditions hold:
1. for each κ, µ, there exists at most one path from κ to µ

2. for each κ, µ with a common ancestor, there is a least common ancestor, denoted κ ⊕ µ;
that is, such that, for any common ancestor ν, ν is an ancestor of k ⊕ µ.

Note that, thanks to requirement (1), requirement (2) means that the unique path, e.g., from
κ to ν, consists of a unique path from κ to k ⊕ µ, and then a unique path from k ⊕ µ to ν.

Given a direct refinement relation ⊏1, we can derive the following structure on K:
⊏1 can be extended to a partial order ⊑ on K, by taking the reflexive and transitive
closure of ⊏1 and adding N ⊑ κ ⊑ T for all κ ∈ K.
⊕ can be extended to all pairs, by defining κ⊕µ = T if κ and µ have no common ancestor.
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T

A P

AP PP

N

Figure 6 Direct refinement diagram.

Altogether, we obtain an instance of a structure called grade signature, as will be detailed in
Definition 18. Moreover, given a ⊏1-family of homomorphisms:

they can be extended, by composition7, to all pairs of grades ⟨κ, µ⟩ ∈ K \ {N, T} such
that there is a path from κ to µ; since this path is unique, the resulting homomorphism
is uniquely defined
for each kind κ, we add the unique homomorphisms from Nat and to Triv.

Altogether, besides a grade algebra for each kind, we get a grade homomophism for each pair
⟨κ, µ⟩ such that κ ⊑ µ. That is, we obtain an instance of a structure called heterogeneous
grade algebra, as will be detailed in Definition 19.

Thus, as desired, combining grades of kinds ⟨κ, r⟩ and ⟨µ, s⟩ can be defined by mapping
both r and s into grades of kind κ ⊕ µ, and then the operator of kind κ ⊕ µ is applied.

The fact that in this way we actually obtain a grade algebra, that is, all required axioms
are satisfied, is proved in the next subsection on the more general case of an arbitrary grade
signature and heterogeneous grade algebra.

Note the special role played by the grade kinds N and T, with their corresponding
grade algebras. The former turns out to be the minimal kind required in a grade signature
(Definition 18); this is important since the zero and one of the resulting grade algebra (hence
the zero and one used in the type system) will be those of this kind. The latter, as shown
above, is used as default common ancestor for pairs of kinds which do not have one.

▶ Example 17. Coming back to our example, a programmer could define the direct refinement
relation and the corresponding homomorphisms as follows:

PP ⊏1 P, and the homomorphism maps, e.g., a, b, and c into private and d into public
AP ⊏1 A, and AP ⊏1 P, and the homomorphisms are the projections.

Thus, for instance, the grade ⟨AP, ⟨ω, private⟩⟩, meaning that we can use the resource an
arbitrary number of times in private mode, and ⟨PP, d⟩, meaning that we can use the resource
in d mode, gives private. Indeed, both grades are mapped into the grade algebra of privacy
levels 0 ⪯ private ⪯ public; for the former, the information about the affinity is lost, whereas
for the second the privacy level d is mapped into public; finally, we get private = private ·public.

The direct refinement relation is pictorially shown in Figure 6. Dotted arrows denote
(some of) the order relations added for N and T.

Note that specifying the grade signature and the heterogeneous grade algebra indirectly,
by means of the direct refinement relation and the corresponding homomorphisms, has a
fundamental advantage: the semantic check that, for each κ, µ, we can map grades of grade
κ into grades of kind µ in a unique way (that is, there is at most one homomorphism), which
would require checking the equivalence of function definitions, is replaced by the checks (1)

7 Note that in this way we obtain, in particular, all the identities.
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and (2) in the definition of direct refinement, which are purely syntactic and can be easily
implemented in a type system (a simple stronger condition is to impose that each kind has a
unique parent in the direct refinement relation, as it is for single inheritance).

In Section 6, we will see how to express both grade algebras and homomorphisms in Java;
roughly, both will be represented by classes implementing a suitable generic interface.

A general construction. We provide a construction that, starting from a family of grade
algebras with a suitable structure, yields a unique grade algebra summarising the whole
family. As a consequence, the meta-theory developed in previous sections for a single grade
algebra applies also to the case when several grade algebras are used at the same time.

To develop this construction, we use simple and standard categorical tools, referring
to [20, 26] for more details. Given a category C , we denote by C0 the collection of objects
in C and we say that C is small when C0 is a set. Recall that any partially ordered set
P = ⟨P0, ⊑⟩ can be seen as a small category where objects are the elements of P0 and, for
all x, y ∈ P0, there is an arrow x → y iff x ⊑ y; hence, for every pair of objects in P0, there
is at most one arrow between them, and the only isomorphisms are the identities.

▶ Definition 18. A grade signature S is a partially ordered set with finite suprema, that is,
it consists of the following data:

a partially ordered set ⟨S0, ⊑⟩;
a function ⊕ : S0 ×S0 → S0 monotone in both arguments and such that for all κ, µ, ν ∈ S0,
κ ⊕ µ ⊑ ν iff κ ⊑ ν and µ ⊑ ν;
a distinguished object I ∈ S0 such that I ⊑ κ, for all κ ∈ S0.

Intuitively, objects in S represent the kinds of grades one wants to work with, while the
arrows, namely, the order relation, model a refinement between such kinds: κ ⊑ µ means
that the kind κ is more specific than the kind µ. The operation ⊕ combines two kinds to
produce the most specific kind generalising both. Finally, the kind I is the most specific one.

It is easy to check that the following properties hold for all κ, µ, ν ∈ S0:

(κ ⊕ µ) ⊕ ν = κ ⊕ (µ ⊕ ν) κ ⊕ κ = κ

κ ⊕ µ = µ ⊕ κ κ ⊕ I = κ

namely, ⟨S0, ⊕, I⟩ is a commutative idempotent monoid.

▶ Definition 19. A heterogeneous grade algebra over the grade signature S is just a functor
H : S → GrAlg . That is, it consists of a grade algebra H(κ), written also Hκ, for every
kind κ ∈ S0, and a grade algebra homomorphism Hκ,µ : Hκ → Hµ for every arrow κ ⊑ µ,
respecting composition and identities8 , that is, κ ⊑ µ ⊑ ν implies Hκ,ν = Hµ,ν ◦ Hκ,µ and
Hκ,κ = idHκ

.

Essentially, the homomorphisms Hκ,µ realise the refinement κ ⊑ µ, transforming grades of
kind κ into grades of kind µ, preserving the grade algebra structure.

Observe that the arrows I ⊑ κ and κ ⊑ κ⊕µ and µ ⊑ κ⊕µ in S give rise to the following
grade algebra homomorphisms:

inH
κ = HI,κ : HI → Hκ lhH

κ,µ = Hκ,κ⊕µ : Hκ → Hκ⊕µ rhH
κ,µ = Hµ,κ⊕µ : Hµ → Hκ⊕µ

8 The notation Hκ,µ makes sense, since between κ and µ there is at most one arrow.
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which provide us with a way to map grades of kind I into grades of any other kind, and
grades of kind κ and µ into grades of their composition κ ⊕ µ. By functoriality of H and
using the commutative idempotent monoid structure of S , we get the following equalities
hold in the category GrAlg , ensuring consistency of such transformations:

lhH
κ⊕µ,ν ◦ lhH

κ,µ = lhH
κ,µ⊕ν (1)

rhH
κ⊕µ,ν ◦ lhH

κ,µ = rhH
κ,µ⊕ν ◦ lhH

µ,ν (2)
lhH

κ,µ = rhH
µ,κ (3)

lhH
κ,κ = idHκ

(4)
lhH

κ,I = idHκ
(5)

rhH
κ,I = inH

κ (6)

In the following, we will show how to turn a heterogeneous grade algebra into a single
grade algebra. The procedure we will describe is based on a general construction due to
Grothendieck [17] defined on indexed categories.

Let us assume a grade signature S and a heterogeneous grade algebra H : S → GrAlg .
We consider the following set:

|G(H)| = {⟨κ, r⟩ | κ ∈ S0, r ∈ |Hκ|}

That is, elements of G(H) will be kinded grades, namely, pairs of a kind κ and a grade of
that kind. Note that this is indeed a set because S is small, that is, S0 is a set. Then, we
define a binary relation ⪯H on |G(H)| as follows:

⟨κ, r⟩ ⪯H ⟨µ, s⟩ iff κ ⊑ µ and Hκ,µ(r) ⪯µ s

that is, the kind κ must be more specific than the kind µ and, transforming r by Hκ,µ, we
obtain a grade of kind µ which is smaller than s. These data define a partially ordered set as
the following proposition shows.

▶ Proposition 20. ⟨|G(H)|, ⪯H⟩ is a partially ordered set.

The additive structure is given by a binary operation +H : |G(H)| × |G(H)| → |G(H)|
and an element 0H in |G(H)| defined as follows:

⟨κ, r⟩ +H ⟨µ, s⟩ = ⟨κ ⊕ µ, lhH
κ,µ(r) +κ⊕µ rhH

κ,µ(s)⟩ 0H = ⟨I, 0I⟩

That is, the addition of ⟨κ, r⟩ and ⟨µ, s⟩ is performed by first mapping r and s in the most
specific kind generalising both κ and µ, namely κ ⊕ µ, and then by summing them in the
grade algebra over that kind. The zero element is just the zero of the most specific kind.

▶ Proposition 21. ⟨|G(H)|, ⪯H , +H , 0H⟩ is an ordered commutative monoid.

▶ Proposition 22. 0H ⪯H ⟨κ, r⟩ for every ⟨κ, r⟩ ∈ |G(H)|.

Similarly, the multiplicative structure is given by a binary operation ·H : |G(H)| ×
|G(H)| → |G(H)| and an element 1H in |G(H)| defined as follows:

⟨κ, r⟩ ·H ⟨µ, s⟩ =

{
⟨κ ⊕ µ, lhH

κ,µ(r) ·κ⊕µ rhH
κ,µ(s)⟩ ⟨κ, r⟩ ̸= 0H and ⟨µ, s⟩ ≠ 0H

0H otherwise
1H = ⟨I, 1I⟩

Notice that the definitions above follow almost the same pattern as additive operations, but
we force that multiplying by 0H we get again 0H , which is a key property of grade algebras.
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▶ Proposition 23. ⟨|G(H)|, ⪯H , ·H , 1H⟩ is an ordered monoid.

Altogether, we finally get the following result.

▶ Theorem 24. G(H) = ⟨|G(H)|, ⪯H , +H , ·H , 0H , 1H⟩ is a grade algebra.

6 Grades as Java expressions

In Section 4 we described how a Java-like language could be equipped with grades decorating
types, taken in an arbitrary grade algebra. Moreover, in Section 5, we have shown that such
grade algebra could have been obtained by composing, in a specific way determined by provid-
ing a minimal collection of grade homomorphisms, different grade algebras corresponding to
different ways to track usage of resources. In this section, we consider the issue of providing a
linguistic support to this aim. This could be done by using an ad-hoc configuration language,
however, we believe an interesting solution is that the grade annotations in types could be
written themselves in Java.

The key idea is that grade annotations are Java expressions of (classes implementing) a
predefined interface Grade, analogously to Java exceptions which are expressions of (subclasses
of) Exception. Moreover, grade homomorphisms are user-defined as well. Namely, a user
program can include:

pairs of grade classes and grade factory classes, each one modeling a grade algebra desired
for the specific application, with the factory class providing its constants
grade homomorphism classes, each one modeling a homomorphism from a grade algebra
(class) to another.

When typechecking code with grade annotations, the grades internally used by the type
system are those obtained by combining all the declared grade algebras (classes) by means
of the declared grade homomorphism classes, with the construction described in Section 5.
Operations on grades in the same grade algebra (class) are derived from user-defined methods,
as discussed more in detail below, whereas operations on heterogeneous grades are derived
as in the construction in Section 5.

Grade and grade factory classes. They are classes implementing the following generic
interfaces, respectively:

interface Grade <T extends Grade <T>> {
boolean leq(T x);
T sum(T x);
T mult(T x);

}
interface GradeFactory <T extends Grade <T>>{

T zero ();
T one ();

}

Grade homomorphism classes. They are classes implementing the following generic inter-
face:

interface GradeHom <T extends Grade <T>, R extends Grade <R>> {
R apply(T x);

}
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Examples of grade classes and grade homomorphism classes can be found in [4].
Typechecking could then be performed in two steps:

1. Code defining grades, which is assumed to be standard (that is, non-graded) Java code,
is typechecked by the standard compiler.

2. Graded code (containing grade annotations written in Java) is typechecked accordingly
to the graded type system in Figure 4, where the underlying grade algebra is obtained by
composing, by the construction described in Section 5, the user-defined grade algebras
through the user-defined grade homomorphisms. Each user-defined algebra has as carrier
(set of grades) the Java values which are instances of the corresponding class, and the
operations are computed by executing user-defined methods in such class. For instance,
to compute the sum v1 + v2 of two grades which are values of a grade class, we evaluate
v1.sum(v2). Analogously to compute the result of a grade homomorphism.

For the whole process to work correctly, the following are responsabilities of the programmer:
Grade classes, grade factory classes, and grade homomorphism classes should satisfy
the axioms required for the structures they model, e.g., that the sum derived from sum
methods is commutative and associative. The same happens, for instance, in Haskell,
when one defines instances of Functor or Monad.
Code defining grades should be terminating, since, as described above, the second
typechecking step requires to execute code typechecked in the first step.
Finally, the relation among grade classes implicitly defined by declaring grade homo-
morphism classes should actually be a direct refinement relation, that is, should satisfy
the two requirements: (1) there exists at most one path between two grade classes, and
(2) each two grade classes with a common ancestor have a least common ancestor. These
are requirements easy to check, similarly to the check that inheritance is acyclic, or that
there are no diamonds in multiple inheritance.

An interesting point is that implementations could use in a parametric way auxiliary tools, not-
ably a termination checker to prevent divergence in methods implementing grade operations,
and/or a verifer to ensure that they provide the required properties.

7 Related work

The two contributions which have been more inspiring for the work in this paper are the
instrumented semantics proposed in [8] and the Granule language [23]. In [8], the authors
develop GraD, a graded dependent type system that includes functions, tensor products,
additive sums, and a unit type. Moreover, they define an instrumented operational semantics
which tracks usage of resources, and prove that the graded type system is sound with respect
to such instrumented semantics. In this paper, we take the same approach to define a
resource-aware semantics, parametric on an arbitrary grade algebra. However, differently
from [8], where such semantics is defined on typed terms, with the only aim to show the
role of the type system, the definition of our semantics is given independently from the type
system, as is the standard approach in calculi. That is, the aim is also to provide a simple
purely semantic model which takes into account usage of resources.

Granule [23] is a functional language equipped with graded modal types, where different
kinds of grades can be used at the same time, including naturals for exact usage, security
levels, intervals, infinity, and products of coeffects. We owe to Granule the idea of allowing
different kinds of grades to coexist, and the overall objective to exploit graded modal types in
a programming language. Concerning heterogeneous grades, in this paper we push forward
the Granule approach, since we do not want this grade algebra to be fixed, but extendable
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by the programmer with user-defined grades. To this aim we define the construction in
Section 5. Concerning the design of a graded programming language, here we investigate the
object-oriented rather than functional paradigm, taking some solutions which seem more
adequate in that context, e.g., to have once-graded types and no boxing/unboxing. The
design and implementation of a real Java-like language are not objectives of the current paper;
however, we outline in Section 6 a possible interesting solution, where grade annotations are
written in the language itself.

Coming more in general to resource-aware type systems, coeffects were first introduced
by [24] and further analyzed by [25]. In particular, [25] develops a generic coeffect system
which augments the simply-typed λ-calculus with context annotations indexed by coeffect
shapes. The proposed framework is very abstract, and the authors focus only on two opposite
instances: structural (per-variable) and flat (whole context) coeffects, identified by specific
choices of context shapes.

Most of the subsequent literature on coeffects focuses on structural ones, for which there
is a clear algebraic description in terms of semirings. This was first noticed by [7], who
developed a framework for structural coeffects for a functional language. This approach is
inspired by a generalization of the exponential modality of linear logic, see, e.g., [6]. That
is, the distinction between linear and unrestricted variables of linear systems is generalized
to have variables decorated by coeffects, or grades, that determine how much they can
be used. In this setting, many advances have been made to combine coeffects with other
programming features, such as computational effects [14, 23, 11], dependent types [2, 8, 22],
and polymorphism [1]. Other graded type systems are explored in [2, 15, 1], also combining
effects and coeffects [14, 23]. In all these papers, the process of tracking usage through
grades is a powerful method of instrumenting type systems with analyses of irrelevance and
linearity that have practical benefits like erasure of irrelevant terms (resulting in speed-up)
and compiler optimizations (such as in-place update).

As already mentioned, [22] and [27] observed that contexts in a structural coeffect system
form a module over the semiring of grades, event though they do not use this structure in its
full generality, restricting themselves to free modules, that is, to structural coeffect systems.
Recently, [5] shows a significant non-structural instance, namely, a coeffect system to track
sharing in the imperative paradigm.

8 Conclusion

The contributions of the paper can be summarized as follows:
Resource-aware extension of FJ reduction, parametric on an arbitrary grade algebra.
Resource-aware extension of the type system, proved to ensure soundness-may of the
resource-aware semantics.
Formal construction which, given grades of different kinds and grade transformations
corresponding to a refinement relation among kinds (formally, a functor over a grade
signature), provides a grade algebra of heterogeneous grades.
Notion of direct refinement allowing a minimal and easy to check way to specify the
above functor.
Outline of a Java extension where grades are user-defined, and grade annotations are
written in the language itself.

As already noted, the key novel ideas in the contributions above are mostly independent from
the language. So, a first natural direction for future work is to explore their incarnation in
another paradigm, e.g., the functional one. That would include the definition of a parametric
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resource-aware reduction independent from types, the design of a type system with once-
graded types, and possibly the design of user-defined grades in a functional language, e.g., in
Haskell by relying on the typeclass feature. Though the overall approach should still apply,
we expect the investigation to be significant due to the specific features of the paradigm.

The resource-aware operational semantics defined in this paper requires annotations in
subterms, with the only aim to fix their reduction grade in the reduction of the enclosing
term. As mentioned in Section 3, adopting a big-step style would clearly remove the need
of such technical artifice; only annotations in constructor subterms should be kept, since
they express a true constraint on the semantics. Thus, a very interesting alternative to be
studied is a big-step version of resource-aware semantics, allowing a more abstract and clean
presentation. With this choice, we should employ, to prove soundness-may, the techniques
recently introduced in [10, 9].

Coming back to Java-like languages, the FJ language considered in the paper does not
include imperative features. Adding mutable memory leads to many significant research
directions. First, besides the model presented in this paper, and in general in literature, where
“using a resource” means “replacing a variable with its value”, another view is possible where
the resource is the memory and “using” means “interacting with the memory”. Moreover, we
would like to investigate more in detail how to express by grade algebras forms of usages
which are typical of the imperative paradigm, such as the readonly modifier, and, more in
general, capabilities [18, 16].
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