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Abstract

Consider a time series that takes values in a general topological space, and suppose that
its Small-ball probability is factorized into two terms that play the role of a surrogate density
and a volume term. The latter allows us to study the complexity of the underlying process. In
some cases, the volume term can be analytically specified in a parametric form as a function of
a complexity index. This work presents the study of an estimator for such an index whenever
the volume term is monomial. Weak consistency and asymptotic Gaussianity are shown under
an appropriate dependence structure, providing theoretical support for the construction of
confidence intervals. A Monte Carlo simulation is performed to evaluate the performance of
the approach under various conditions. Finally, the method is applied to identify the complexity
of two real data sets.

Keywords: Small–ball Probability, β–mixing, Asymptotic Normality, Block–Jackknife
Subject classification: 62R10; 62G05

1 Introduction

The branch of statistics concerned with the development of methods for analyzing the so–called
Functional data, i.e., discretized curves, surfaces, images, or other complex objects, is known as
Functional Statistics. Functional data appear in various fields, such as medicine, engineering,
economics, etc., and in the last two decades this discipline has experienced a strong growth thanks
to the technological development of data collection devices and the increase in computing power.
The interest of researchers in this field is evidenced by a conspicuous literature. For a general
introduction to functional data analysis, interested readers can refer to the classic monographs by
Ferraty and Vieu (2006); Horváth and Kokoszka (2012); Kokoszka and Reimherr (2017); Ramsay
and Silverman (2005). For recent statistical methodologies, algorithms, and ad–hoc mathematical
tools in (non)parametric functional setting, one can refer to the recent special issues Aneiros et al.
(2019b), Aneiros et al. (2019a), Aneiros et al. (2022), book collections Aneiros et al. (2020), Aneiros
et al. (2017) and references therein.
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Figure 1: Left – Electricity demand in three randomly selected consecutive weeks in 1998. Right –
Daily load curves obtained for 1998.

Among the many techniques that have been introduced in the field of Functional Statistics, those
developed for the analysis of functional time series, i.e., sequences of functional random elements
(such as, random curves) observed over time (e.g. Bosq, 2000 and Horváth and Kokoszka, 2012)
play a very important role. These particular data can be obtained, for instance, by dividing a
single real time series into successive segments, where each segment corresponds to a particular
time interval, such as a day. In this way, some special recurring patterns (e.g., daily shapes) can
be modelled as features of the space in which the random elements take values. Moreover, it is
possible to compute an estimate of a probability density or a cumulative distribution, etc., for each
segment, resulting in a functional time series of observed densities or related objects that can be
considered as non–standard functional data.

As a first example, consider the time series of half-hourly electricity demand (in megawatts)
recorded in Adelaide between January 1, 1998 and December 31, 2006 (see Magnano et al., 2008).
An initial examination of the data reveals a periodic pattern within a day: This suggests that the
original time series could be divided into functional observations, each coinciding with a particular
daily load curve. The plots in Figure 1 represent the time series observed in three consecutive
weeks, randomly selected from the original time series in 1998, and the resulting functional dataset
for the same year.

A second example is the daily return densities for the S&P500 index over the period October
14, 2016 to May 6, 2017, with a frequency of 1 minute for a total of 140 market days: the resulting
functional time series is the collection of daily densities of log–returns estimated using the standard
Parzen–Rosenblatt approach. The original time series of S&P500 values and the resulting functional
samples are shown in Figure 2.

Functional time series modelling was one of the first topics to be treated systematically both
from a theoretical and a practical point of view, thanks to the monograph by Bosq (2000). This
text focused on linear modelling (in particular, on autoregressive processes in Banach and Hilbert
spaces) and laid a foundation for the subsequent literature. More recently, the book by Horváth
and Kokoszka (2012) provided an update on the state of the art in this area. It is worth noting that
in these references a second–order structure is always assumed for the underlying random element.

Beyond the linear world, one can study the functional time series in more general topological
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Figure 2: Left – S&P500 index from 14th October 2016, to 6th May 2017, with 1 minute frequency.
Right – Daily density estimates of log–returns during the same period.

spaces using nonparametric approaches: in this framework, the notion of Small–Ball Probability
(SmBP) emerges and plays a central role (see, e.g., Ferraty and Vieu, 2006). In general, given a
random element X that takes values in F , a set endowed with a (semi–)metric d, the SmBP is
the asymptotic behaviour of the probability that X belongs to a ball centred at χ ∈ F and whose
radius h tends to zero:

φχ (h) = P (d (X,χ) ≤ h) h −→ 0.

A typical assumption is that φχ (h) factorizes into two terms:

φχ (h) ∼ ψ(χ)ϕ(h) h −→ 0 (1)

with some identifiability constraints, such as E[ψ(X)] = 1. Such a factorization allows to separate
the contribution of the spatial term ψ (χ), which depends only on the centre of the sphere, and the
volume term ϕ (h), which depends on the radius h. Interested readers can find some insights into
the subject in Bogachev (1998); Bongiorno and Goia (2017); Li and Shao (2001) and the references
therein.

As recently pointed out in Bongiorno et al. (2018), the behaviour of the function ϕ (h) when h −→
0 carries information about the complexity of X without assuming a dominant measure on F or a
second–order structure for X. For example, if ϕ (h) exhibits an exponential form hγ exp

(
−cγ,β/hβ

)
with β, γ, cγ,β positive constants, then X belongs to the so called exponential family, which includes
many diffusion processes (see Lifshits, 2012; Li and Shao, 2001); while if ϕ (h) has a monomial form
cθh

θ with cθ and θ positive constants, then X belongs to the so called monomial family, which
includes the fractal processes of order θ (see Ferraty and Vieu, 2006, Definition 13.1) and the finite
dimensional ones, with θ being a positive integer. In these cases, ϕ (h) has a parametric form
identified by some real complexity indexes (namely γ, β, and θ). Thus, given the information
contained in ϕ (h), to study the complexity represents a preliminary explorative step that could
help in modelling the process.

This work deals with F–valued stationary functional processes (Xi)i∈N, where it is assumed
that each Xi belongs to the same family, and the goal is to evaluate the corresponding complexity
indexes. Even though the methodology can be straightforwardly implemented to both families
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mentioned, only the monomial family is considered here because of its natural interpretation of the
corresponding complexity index. For a better illustration and appreciation of this fact, consider the
following examples. As a first example, let F = L2

[0,1] be the space of square integrable real–valued

functions defined over [0, 1] with orthogonal basis (η1, η2, . . . ) and let Xi = µ+
∑q

j=1 Zjiηj , where

µ ∈ L2
[0,1] and {Z1i, . . . , Zqi, i = 1, 2, . . . } is a suitable q–dimensional real random process. In this

case, taking d as the metric induced by the classical L2
[0,1] norm, the complexity index θ must be

q. Another example considers a process Xi that takes values in F , the subset of L2
[0,1] containing

all the Gaussian densities. In this case, the parameters µi and σi for Xi are suitable real random
processes and, taking d as in the previous example, θ = 2. In both examples, the complexity index
θ is the number of real random processes necessary to define Xi. Such an interpretation is similar
to what happens in (regression) modelling where the concept of degrees of freedom is introduced
to measure the complexity of specifications. Finally, note that the computation of φχ (h) might
depend on the choice of d. In particular, if d is taken from a set of equivalent metrics, then the
SmBP as well as θ do not change. On the other hand, if d is a semi–metric, then the value of the
complexity index can be smaller than that obtained with a metric. This is the case in the first
example, if there is a constant function among the elements of the basis ηj (which is assumed to be
smooth) and d is the L2 norm computed on the first derivatives X ′

i, then θ = q − 1.
This paper discusses the evaluation of complexity from both theoretical and applied points

of view at different levels. In particular, an estimate θn for the complexity index is derived by
minimising a suitable dissimilarity measure between an empirical estimate ϕn (based on the U–
statistic) for ϕ and the target complexity function ϕθ (h) = cθh

θ. The approach presented here
does not require any second–order structure for the underlying process, unlike the usual techniques
for determining dimensionality that, indeed rely on some covariance operators (see e.g., Bathia
et al., 2010; Hall and Vial, 2006).

Some asymptotic properties for the estimator θn are analyzed: in particular, a weak law of large
numbers and a central limit theorem are derived. For this purpose, among all possible dependence
structures for the functional process (Xi)i∈N, the notion of F–approximating functional on a sta-
tionary β–mixing sequence is assumed; see e.g., Doukhan (1994); Borovkova et al. (2001) for an
overview of the various definitions of mixing and (Hörmann and Kokoszka, 2010, Section 2) for a
comparison between the different notions of dependence for functional time series. Furthermore,
the rates of convergence are derived in terms of the coefficients related to the dependence structure.
This enriches the existing literature on the subject, which has so far focused only on the i.i.d. case
(see Bongiorno et al., 2020). Finally, thanks to asymptotic normality, a confidence interval for θ can
be written: to operationalise it, a suitable estimate of the standard error of θn is introduced based
on a block–Jackknife approach, and then the coverage properties of this estimator are analysed us-
ing a Monte Carlo approach under different scenarios and experimental conditions. The procedure
is then carried out for the functional time series of electricity demand presented above and for the
log–returns densities of S&P500.

The article is structured as follows: in Section 2 the estimator θn is introduced, its asymptotic
properties are given, and a confidence interval for θ is proposed; Section 3 shows numerical examples
for functional time series of finite dimension and for parametric density families; Section 4 illustrates
the methodology on two real datasets; finally, Section 6 and the supplementary materials collect all
technical results and proofs.
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2 Point and interval estimate for the complexity index

From now on, F is a set of real functions defined on a compact set I, equipped with a semi–metric
d (·, ·). Consider a stationary discrete–time random process (Xi)i∈N where each Xi has the same
distribution as the random curve X that takes values in F , for which (1) holds with E [ψ (X)] = 1,
and ϕ(h) ∼ cθh

θ, as h −→ 0.
In order to estimate the complexity parameter θ from the observed sequence (X1, . . . , Xn),

one can minimise a dissimilarity measure between an estimate of the complexity function and
the target ϕθ (h) = cθh

θ with h in a suitable right neighbourhood of zero. To do this, consider
the following empirical pointwise estimate of ϕ at the point h ∈ H (where H = [hm, hM ], with
0 < hm < hM < +∞ are suitably chosen):

ϕn(h) :=
1

n(n− 1)

∑
1≤i ̸=j≤n

I{d(Xi,Xj)≤h}. (2)

This is a second–order U–statistics that adapts the sample correlation integral (see Grassberger
and Procaccia, 1983) to the functional setting.

For what concerns H, its extremes must be chosen not too small to avoid that the indicator
function in (2) does not vanish systematically. To do this, hm is chosen so that

P(Dmin < hm) > 0, (3)

where Dmin = mini ̸=j d (Xi, Xj) is the first–order statistics of the sample Di,j = d (Xi, Xj) (1 ≤
i ̸= j ≤ n, with size n (n− 1) > 0) of identically distributed random variables with common cdf
F . Thanks to Markov inequality, it suffices to take hm > E [Dmin] to obtain (3), and a direct
application of (Rychlik, 1994, Corollary 3) leads to

hm > n (n− 1)

∫ bn

0

ydF (y) (4)

where bn = F−1 (1/ (n (n− 1))). Note that, when n diverges, bn goes to zero and one can approx-
imate the integral in (4) as bnF (bn); thus, for n large enough it is sufficient to select hm greater
than the empirical quantile of order 1/ (n (n− 1)) of Di,j . Further practical details are provided in
Section 3.

For what concerns the dissimilarity, a possible and effective option is the so-called cosine-
dissimilarity

∆(ϕn, ϕθ) = 1− ⟨ϕn, ϕθ⟩2

∥ϕn∥2 ∥ϕθ∥2
,

where ⟨ϕn, ϕθ⟩ =
∫
H ϕn (h)ϕθ (h) dh and ∥ϕ∥2 = ⟨ϕ, ϕ⟩. The resulting estimator θn of the complex-

ity parameter θ is
θn = argmin

θ∈Θ
∆(ϕn, ϕθ),

where Θ is a suitable compact subset of (0,+∞).
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2.1 Some asymptotic results

Denote by θ0 the true value of θ, and choose Θ such that θ0 ∈ Θ. In this section, the weak con-
sistency of θn to θ0, and the asymptotic normality of

√
n (θn − θ0) are stated. To do this in a

dependent framework, some special conditions on the nature of the stationary stochastic process
(Xi)i∈N are necessary, in particular this work deals with β–mixing sequences (see Definition 2.1)
and with F–approximating functional for F–valued processes (see Definition 2.2) that general-
izes 1–approximation functional for a real process (see Borovkova et al., 2001, Definition 1.4).
The following definitions provide a feasible mathematical framework that allows one to derive an
asymptotic theory by adapting existing techniques in the real–valued setting to the functional one.

Definition 2.1 Let (Xi)i∈N be a process taking values in F , Mb
a be the σ-field generated by {Xi, a ≤

i ≤ b} where a ≤ b ∈ N and (βk)k≥0 be the sequence of β–mixing coefficients defined by

βk = sup
a∈N

E

[
sup

A∈M∞
a+k

| P (A|Ma
1)− P(A) |

]
.

The process (Xi)i∈N is called β–mixing if βk −→ 0 as k −→ +∞.

Definition 2.2 The sequence (Xi)i∈N is an F-approximating functional on a process (Zi)i∈Z with
approximation constants (aℓ)ℓ≥0 if

E
[
d
(
X1,E

[
X1|Gℓ

−ℓ

])]
≤ aℓ, ℓ = 0, 1, 2, . . . (5)

where limℓ→∞ aℓ = 0 and Gℓ
−ℓ is a σ–algebra generated by Z−ℓ, . . . , Zℓ.

Roughly speaking, the F-approximation functional condition states that the process (Xi)i∈N
approaches its mean given the dependency structure of finitely many Zi (i.e. Gℓ

−ℓ), when ℓ diverges
to infinity. In the following example, a F-approximating functional on a real process is provided.

Example 2.3 Let Xi (t) = Ziη (t), t ∈ [0, 1], i ∈ N, where (Zi)i∈N is a stationary real AR(1) and
η ∈ Lp, p ≥ 1, i.e. the space of p–integrable functions on [0, 1]. Then X1 = Z1η is measurable with
respect to Gℓ

0 and hence, taking d as the Lp distance, Equation (5) holds for any positive sequence
(aℓ)ℓ≥0 decreasing to zero. The same holds whenever Xi (t) =

∑q
j=1 Zjiηj (t), t ∈ [0, 1] with q ≥ 1

and Zji are real autoregressive processes independent on Zki with k ̸= j and (ηj)j∈N is a basis of
Lp.

All the proposed asymptotic results are based on the following main assumptions. The first
one models the dependency structure. In particular, among the different dependency structures
that could be considered in the framework of functional time series (for a review see Hörmann
and Kokoszka, 2010), the one chosen here provides a fairly general and convenient theoretical
paradigm. The second assumption is related to the small–ball probability, which must be positive
and factorisable, with a monomial volume term.

(A-1) (Xi)i∈N is a F–approximating functional on a stationary, β–mixing sequence with constants
(al)l≥0.

(A-2) Xi are distributed as X, a F–valued random elements for which:
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i. φχ (h) > 0, for any h > 0 and χ;

ii. supχ |φχ (h) /ϕ (h)− ψ (χ)| −→ 0, as h −→ 0;

iii. ϕ (h) = ϕθ (h) = cθh
θ.

(A-3) Let δn(θ) = 1−∆(ϕn, ϕθ) and δ (θ) = 1−∆(ϕθ0 , ϕθ). Assume that δ (θ) ∈ C2(Θ) and strictly
convex over the set Θ.

It is now possible to state the weak law of large numbers (WLLN) and the central limit theorem
(CLT) for θn. To give an idea of the proofs, the first result is obtained as a consequence of the
convergence in probability of δn(θ) to its theoretical counterpart δ (θ) uniformly over Θ; the second
one is based on a delta–method approach.

Theorem 2.4 (WLLN) Under assumptions (A-1) and (A-2), θn converges to θ0 in probability,

as n −→ ∞. If, in addition, (A-3) holds together with αK = (2
∑∞

k=K ak)
1/2

<∞, then there exist
two positive sequences of positive integers L = L(n), m = m(n) and a real valued function f such
that

|θn − θ0| = Op

(
(2αL + βm−2L + f(2αL + βm−2L))

1/2
)
.

It is worth noting that the rate of convergence involves the coefficients ak and βk that characterize
the dependency structure. For what concern L and m, only an implicit definition is available and,
to avoid excessive technicalities at this stage, their natures and relationships are detailed in the
proof of Lemma 6.1 in the supplementary materials.

Theorem 2.5 (CLT) Under assumptions (A-1), (A-2) and (A-3) with βk = O(k−β) for β ≥ 8
and ak = O(k−a) for a = max{β + 3, 12} and denoting by δ′′ the second derivative of δ, then

√
n
∥ϕθ0∥4δ′′(θ0)

2
(θn − θ0)

is asymptotically distributed as a centered Gaussian random variable.

The proofs of theorems 2.4 and 2.5 are inspired by the theory of U–processes as done in Bongiorno
et al. (2020) in the independent case, and to handle the dependency structure the proofs take
advantage of results by (Borovkova et al., 2001, Theorem 6) and (Wendler, 2012, Theorem 1 and
Corollary 1) respectively. Theorem 2.5 could be proved alternatively with arguments similar to
those in (Borovkova et al., 2001, Theorem 9), but at the cost of a more elaborate set of assumptions
such as the summability conditions on the β–mixing coefficients, the approximation constants ak
and additional constraints on the kernel of the U–statistic (2). By using the indicator function in
the latter, the assumptions such as 1–continuity condition Borovkova et al. (2001) and the uniform
variation Wendler (2012) could be straightforwardly verified.

To improve the readability of the paper and for the sake of completeness, all the proofs are
deferred to Section 6 and the supplementary materials. Note that theorems 2.4 and 2.5 can be ex-
tended beyond the monomial family to include processes whose volume term exhibits an exponential
form. In such a case, assumption (A-2) iii. can be replaced by ϕ (h) = ϕθ (h) = c1h

α exp{−C2/h
β},

where θ = (α, β) ∈ [0,∞) × [0,∞) and positive constants C1, C2 while the cosine dissimilarity
measure involves the logarithm of the volume terms, see Bongiorno et al. (2020) for more details in
the i.i.d. case.
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2.2 Confidence intervals for the complexity index

This Section provides a way to operationalise the above theoretical results. In particular, thanks to
Theorem 2.5, it is possible to write the following asymptotic confidence interval for θ at the level
1− α:

θn ± z1−α/2 se (θn) ,

where z1−α/2 is the quantile of order 1 − α/2 of a standard normal distribution and se (θn) is the
standard error of θn.

Since an explicit form of the standard error of the estimator θn is not available, an estimate
must be provided in order to implement the procedure. A possible strategy is to exploit resampling
methods: among the existing alternatives for dependent data, the overlapping block–Jackknife
method introduced by Liu and Singh (1992) is used here: the procedure is briefly recalled below
and interested readers can find more details in the cited article.

Consider the blocks Bj = (Xj , . . . , Xj+ℓ−1) of length ℓ, extracted from X = (X1, . . . , Xn), where
j = 1, . . . , N , N = n− l+1 and 1 ≤ ℓ ≤ n is a suitably selected parameter. For j = 1, . . . , N , define

the j–th Jackknife block–deleted point value θ
(j)
n , as the estimate of θ evaluated by removing the

block Bj from X . The block–Jackknife estimate of the variance θn then has the following form:

V̂ arBJ(θn) =
ℓ

(n− ℓ)N

N∑
j=1

(
θ̃(j)n − θn

)2

,

where θ̃
(j)
n = (nθn − (n− ℓ)θ

(j)
n )/ℓ is the j–th Jackknife pseudovalue of θn.

To assess the practical performances of the proposed confidence interval and to show how it can
be used in practice, a numerical illustration of the method, through simulation studies, is provided
in the next section.

3 Simulations

The proposed study shows how the introduced method works on simulated standard and non–
standard functional time series. For different experimental settings ( nature of the involved curves,
sample size and complexity index θ), the mean and the estimated standard error for pointwise
estimates θn over 1000 MC simulations are evaluated. For each replication, the confidence interval
for θ at the nominal level 95% is computed, with the standard error estimated by the Jackknife
approach presented above. Finally, the coverage of the latter is evaluated as the percentage of
times in which the true dimension is covered by the CI. To complete the analysis, the coverage for
dimensions around the true one are also computed. The examples are accompanied by a discussion
of the tuning of the involved parameters, the influence of the choice of d, and the role of a possible
presence of a noise term. The remainder of this section is divided into two parts, each devoted
to a different simulation scenario for the functional time series: the finite dimensional and the
parametric densities cases.

3.1 Finite dimensional process

The first experiment aims to illustrate and discuss the application of the methodology to functional
time series that take values in finite dimensional linear spaces.
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Settings. The functional data are generated according to the following model (see Example 2.3):

Xi(t) =

θ0∑
j=1

Zjiηj(t), t ∈ [0, 1], i = 1, . . . , n (6)

where the basis functions are ηj(u) =
√
2 cos(πjt) and, for each j = 1, . . . , θ0, (Zji)i∈N is an

autoregressive process of order 1 with coefficient (−1)j(0.9− b/θ0) and 0 < b < 0.9 independent on
(Zki)i∈N with k ̸= j. The value b controls the decay of variability with j of coefficients Zji in the
θ0–dimensional expansion (6): the smaller b is, the slower the decay is. Each curve is generated
over a finite discrete mesh of 100 equispaced points in [0, 1].

The experiment is based on the combination of these settings:

� sample sizes n = 100, 200, 300 and 500;

� b = 0.2, 0.5 and 0.8

� θ0 = 1, 2, 3, 4, 5 and 6.

Choice of d, H and ℓ. In this simulation the distance involved in the SmBP is the classical L2

metric:

d (f, g) =

√∫ 1

0

(f (t)− g (t))
2
dt,

where the integral is suitably approximated by summations.
To select the interval bounds ofH, one has to balance a negative bias for θn that arises whenH is

too close to zero, and its variability that increases when the length of H decreases. Some numerical
experiments are performed and a good compromise seems to be achieved when the interval bounds
of H are the empirical quantiles of order 40/

(
n2 − n

)
and 440/

(
n2 − n

)
of the dissimilarities

d (Xi, Xj) with i ̸= j. In this way, there are at least 40 and at most 440 computed dissimilarities
that contribute positively to the computation of (2).

Preliminary simulations suggest that the choice of the length ℓ of the blocks does not significantly
affect the estimates, and it is chosen here in a heuristic way by ℓ = ⌈ 3

√
n⌉ (where ⌈a⌉ denotes the

smallest integer greater than a). In this way, ℓ ranges from 5 to 8 according to the used sample
size.

Results and discussions. With the above settings, the results of the numerical experiments
are computed and collected in tables 1, 2, and 3. Each table is divided into four parts, each one
containing results for the different used sample sizes. For each dimension θ0, the mean θn and
the standard deviation std (θn) of θn, computed over the 1000 MC replications, are reported. The
last three columns of each table collect the estimated coverages of the confidence intervals for the
dimensions θ0 − 1, θ0 and θ0 + 1 (“x”denotes an unavailable data).

Reading the tables, it emerges that in all cases there is a negative bias that increases with θ0
for a fixed sample size. The standard deviation of the estimates also behaves similarly. On the
other hand, these behaviours are less pronounced as the sample size increases: the method performs
very well for rather small dimensions and relatively small sample sizes, whereas it does not seem to
produce excellent results when θ0 ≥ 5. Regarding the coverage of the true complexity parameter
θ0, it can be seen that in general all confidence intervals are rather conservative. The presence of a
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Coverage

n θ0 θn std (θn) θ0 − 1 θ0 θ0 + 1
100 1 1 0.075 x 0.99 0

2 1.985 0.147 0 0.987 0.002
3 2.88 0.212 0.131 0.974 0.043
4 3.674 0.269 0.688 0.913 0.083
5 4.37 0.328 0.967 0.786 0.079
6 4.965 0.381 0.992 0.52 x

200 1 1.003 0.078 x 0.993 0
2 1.999 0.149 0 0.995 0.003
3 2.957 0.231 0.078 0.987 0.1
4 3.853 0.288 0.521 0.975 0.231
5 4.665 0.356 0.872 0.955 0.257
6 5.414 0.414 0.973 0.883 x

300 1 1.006 0.077 x 0.997 0
2 2.001 0.148 0.001 0.995 0.006
3 2.988 0.222 0.056 0.997 0.126
4 3.915 0.299 0.45 0.986 0.282
5 4.773 0.349 0.851 0.978 0.353
6 5.558 0.418 0.96 0.949 x

500 1 1.003 0.078 x 0.997 0
2 2.005 0.151 0 0.994 0.004
3 2.987 0.226 0.065 0.991 0.127
4 3.951 0.295 0.454 0.995 0.342
5 4.85 0.366 0.789 0.987 0.451
6 5.715 0.431 0.944 0.972 x

Table 1: Case b = 0.2. Estimated mean, standard deviation of θn over 1000 MC replications and
coverage of confidence intervals at level 95% for θ0 and θ0 ± 1.

negative bias, the high variability of the estimates for θ0 ≥ 5 and n not being large enough produce
intervals that systematically also cover the dimension θ0 − 1, but not the dimension θ0 +1, leading
to a parsimonious modelling of the process. Finally, note that the value of b has no significant effect
on the pointwise and interval estimates.

In order to evaluate the impact of choice of d, the above experiment is performed again with a
fixed setting (n = 200 and b = 0.5) and varying d among the following:

� L2: see above;

� L1: d (f, g) =
∫
[0,1]

|f (t)− g (t)| dt;

� L∞: d (f, g) = sup
t∈[0,1]

|f (t)− g (t)|;

� H: d (f, g) =
√∫

[0,1]
(f ′ (t)− g′ (t))

2
dt, where f ′ denotes the first derivative of f .
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Coverage

n θ0 θn std (θn) θ0 − 1 θ0 θ0 + 1
100 1 1.002 0.076 x 0.994 0

2 1.980 0.153 0 0.991 0.004
3 2.872 0.216 0.114 0.978 0.04
4 3.684 0.27 0.697 0.93 0.079
5 4.43 0.334 0.959 0.83 0.089
6 5.111 0.38 0.997 0.672 x

200 1 1.004 0.075 x 0.996 0
2 1.997 0.151 0 0.993 0.002
3 2.96 0.221 0.064 0.989 0.094
4 3.859 0.285 0.501 0.983 0.207
5 4.682 0.356 0.884 0.949 0.273
6 5.471 0.398 0.981 0.911 x

300 1 1.005 0.076 x 0.997 0
2 1.996 0.154 0 0.992 0.003
3 2.978 0.227 0.053 0.993 0.115
4 3.905 0.284 0.459 0.993 0.265
5 4.765 0.349 0.824 0.975 0.354
6 5.604 0.407 0.967 0.953 x

500 1 1.005 0.073 x 0.996 0
2 2.009 0.148 0 0.997 0.006
3 2.989 0.230 0.06 0.996 0.128
4 3.95 0.287 0.42 0.994 0.337
5 4.85 0.361 0.789 0.992 0.443
6 5.742 0.428 0.942 0.98 x

Table 2: Case b = 0.5. Estimated mean, standard deviation of θn over 1000 MC replications and
coverage of confidence intervals at level 95% for θ0 and θ0 ± 1.
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Coverage

n θ0 θn std (θn) θ0 − 1 θ0 θ0 + 1
100 1 1.006 0.074 x 0.992 0

2 1.981 0.142 0 0.992 0.001
3 2.892 0.221 0.099 0.977 0.052
4 3.689 0.263 0.683 0.933 0.066
5 4.456 0.339 0.934 0.828 0.1
6 5.103 0.382 0.993 0.653 x

200 1 1.004 0.076 x 0.994 0
2 2.006 0.15 0 0.995 0.005
3 2.96 0.223 0.064 0.993 0.109
4 3.857 0.287 0.523 0.981 0.21
5 4.683 0.345 0.891 0.956 0.247
6 5.489 0.401 0.987 0.928 x

300 1 1 0.077 x 0.996 0
2 2 0.152 0 0.993 0.004
3 2.989 0.236 0.061 0.995 0.128
4 3.905 0.29 0.443 0.986 0.269
5 4.772 0.356 0.837 0.978 0.346
6 5.618 0.42 0.961 0.956 x

500 1 1.009 0.075 x 0.996 0
2 2.006 0.154 0 0.996 0.01
3 2.986 0.223 0.059 0.995 0.128
4 3.939 0.289 0.44 0.989 0.318
5 4.858 0.367 0.789 0.985 0.456
6 5.722 0.436 0.945 0.979 x

Table 3: Case b = 0.8. Estimated mean, standard deviation of θn over 1000 MC replications and
coverage of confidence intervals at level 95% for θ0 and θ0 ± 1.
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Coverage

n θ0 θn std (θn) θ0 − 1 θ0 θ0 + 1
L2 1 1.004 0.075 x 0.996 0

2 1.997 0.151 0 0.993 0.002
3 2.96 0.221 0.064 0.989 0.094
4 3.859 0.285 0.501 0.983 0.207
5 4.682 0.356 0.884 0.949 0.273
6 5.471 0.398 0.981 0.911 x

L1 1 1.004 0.075 x 0.996 0
2 1.996 0.15 0 0.995 0.003
3 2.957 0.223 0.071 0.99 0.086
4 3.855 0.287 0.506 0.984 0.214
5 4.672 0.352 0.881 0.949 0.254
6 5.471 0.4 0.981 0.911 x

L∞ 1 1.004 0.075 x 0.996 0
2 2 0.151 0 0.992 0.007
3 2.958 0.22 0.053 0.993 0.099
4 3.844 0.272 0.53 0.984 0.185
5 4.646 0.348 0.905 0.947 0.238
6 5.419 0.397 0.984 0.887 x

H 1 1.004 0.075 x 0.996 0
2 2.002 0.151 0 0.99 0.003
3 2.948 0.217 0.058 0.992 0.092
4 3.823 0.274 0.55 0.98 0.178
5 4.572 0.345 0.928 0.108 0.170
6 5.268 0.385 0.993 0.812 x

Table 4: Case n = 200, b = 0.5. Estimated mean, standard deviation of θn over 1000 MC replica-
tions and coverage of confidence intervals at level 95% for θ0 and θ0 ± 1.

Table 4 summarises the obtained results. It arises that the choice of semi–metric has no effect
on the estimates of the complexity index. This is because when the process is in a finite dimensional
space, the L1, L2 and L∞ norms are equivalent. Moreover, since in this controlled simulation the
used basis (ηj) does not include a constant, the semi–metric H also yields similar results for the
estimation of θ0.
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Coverage

θ0 θn std (θn) θ0 − 1 θ0 θ0 + 1
1 1 0.072 x 0.99 0
2 2 0.152 0.001 0.994 0.006
3 2.93 0.216 0.084 0.99 0.076
4 3.76 0.287 0.646 0.957 0.151
5 4.51 0.327 0.952 0.892 0.148
6 5.17 0.393 0.997 0.721 x

Table 5: Case: trajectories without second–orderstructure, n = 200, b = 0.5. Estimated mean,
standard deviation of θn over 1000 MC replications and coverage of confidence intervals at level
95% for θ0 and θ0 ± 1.

As mentioned in the Introduction, the proposed procedure is free of assumptions about the
second–order structure of the process. To illustrate this via numerical experiment, 1000 MC repli-
cations of the previous setting are performed, where here the innovation of the autoregressive
process Zki is a t–Student with two degrees of freedom and the following parameters are adopted
θ = 1, . . . , 6, b = 0.5, n = 200 and d = L1. The chosen innovation and the L1–metric guarantee
that process in (6) does not possess a second–order structure, but still satisfies the assumptions
introduced in Section 2.1; in particular, the combination of the t(2) and the L1–metric guarantees
the existence of the conditional mean in the F–approximating functional (see Definition 2.2). The
results are collected in Table 5, which shows similar behaviour to the previous tables in terms of
negative bias, its relation to θ0 and coverage.

Another important problem is to evaluate the sensitivity of the method when the trajectories
are affected by noise. To do this, consider the model

Xi (t) = Yi (t) + σEi (t) t ∈ [0, 1] , i = 1, . . . , n

where Yi (t) are genereted according to (6) with b = 0.5, θ0 = 1, 2, 3, 4, 5 and 6, n = 200, and
Ei (t) is a noise process independent from Yi (t). In this study, a Standard Brownian Motion, a
process belonging to the exponential family, is used and σ = 0.01, 0.05, 0.1 is chosen to determine
its impact. This produces functional data which are elements of a more complex family than the
monomial one; this leads to estimates larger than θ0, and this effect is particularly emphasized
when the complexity of Y s is low (θ0 is small) and σ rather large. This trade–off is corroborated
by the results reported in Table 6.

3.2 Parametric densities

Aside from the standard functional time series in linear spaces, one can also consider non–standard
objects: here, sequences of probability densities are used. In particular, let ϕ (t, µ, σ), t ∈ R, be the
density of a Gaussian distribution with parameters µ and σ, the data are generated according to
the following mixture model:

Xi(t) = wiϕ (t, µ1,i, σ1,i) + (1− wi)ϕ (t, µ2,i, σ2,i) , i = 1, . . . .n, (7)

discretized over a suitable mesh of 100 equispaced points (tj), selected so that
∫ t100
t1

Xi (t) dt ≥ 0.99
for any i: roughly speaking, all the densities can be represented on the same interval without
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Coverage

σ θ0 θn std (θn) θ0 − 1 θ0 θ0 + 1
0.01 1 1.532 0.113 x 0.029 0.201

2 2.001 0.152 0 0.996 0.003
3 2.961 0.219 0.071 0.993 0.094
4 3.860 0.285 0.494 0.981 0.213
5 4.682 0.356 0.875 0.95 0.256
6 5.471 0.398 0.979 0.916 x

0.05 1 2.626 0.196 x 0 0.339
2 2.125 0.161 0 0.989 0.025
3 2.985 0.219 0.047 0.996 0.114
4 3.870 0.286 0.483 0.983 0.208
5 4.687 0.357 0.872 0.95 0.264
6 5.475 0.396 0.979 0.917 x

0.1 1 3.306 0.242 x 0 0
2 2.411 0.186 0 0.761 0.379
3 3.054 0.222 0.024 0.994 0.172
4 3.899 0.289 0.454 0.988 0.237
5 4.704 0.357 0.877 0.958 0.292
6 5.487 0.396 0.977 0.926 x

Table 6: Case: Trajectories affected by noise, n = 200, b = 0.5. Estimated mean, standard deviation
of θn over 1000 MC replications and coverage of confidence intervals at level 95% for θ0 and θ0 ± 1.
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substantially truncating the tails. In such a case, the complexity is driven by the number of (non–
constant) random parameters involved in the expression (7).

In particular, the following scenarios are investigated:

A. only the first addend in (7) is considered (wi = 1 for any i), µ1i is generated according to an
AR (1) model with coefficient 0.8 on [0, 1], whereas σ1i = 1, for any i;

B. wi = 1 and µ1i = 0 for any i, whereas σ1i is generated according to a Geometric Brownian
Motion (GBM), that is σ1i = exp {B (i)}, where B (i) is a standard Brownian motion on [0, 1];

C. wi = 1 and µ1i ∼ AR(1), σ1i ∼ GBM ;

D. wi is uniformly distributed over the interval [0.4, 0.6], µ1i = 2 and µ2i = −2 for any i, whereas
σ1i and σ2i are two independent GBMs.

It is worth noticing that for scenarios A. and B. the complexity parameter is θ0 = 1, for the
scenario C. it equals 2, while θ0 = 3 for the scenario D.

Taking d as the classical L2–norm and n = 100, 200, 300 and 500, each scenario is replicated
1000 times and, as described at the beginning of Section 3, the means, the estimated standard
errors for pointwise estimates θn and the coverages of the confidence intervals are reported. The
results are collected in Table 7.

Coverage

n Scenarios θ0 θn std (θn) θ0 − 1 θ0 θ0 + 1
100 A 1 1.003 0.078 x 0.994 0

B 1 0.999 0.075 x 0.989 0
C 2 1.831 0.159 0.035 0.941 0
D 3 2.529 0.223 0.576 0.633 0.001

200 A 1 1.006 0.081 x 0.997 0
B 1 1.005 0.078 x 0.996 0
C 2 1.922 0.16 0.009 0.972 0.008
D 3 2.704 0.219 0.29 0.858 0.017

300 A 1 1.001 0.076 x 0.997 0
B 1 1.006 0.076 x 0.997 0
C 2 1.954 0.15 0.005 0.987 0.002
D 3 2.777 0.225 0.191 0.927 0.029

500 A 1 1.002 0.076 x 0.997 0
B 1 1.004 0.078 x 0.998 0
C 2 1.977 0.152 0 0.992 0.007
D 3 2.824 0.217 0.137 0.948 0.03

Table 7: Estimated mean, standard deviation of θn over 1000 MC replications and coverage of
confidence intervals at level 95% of different scenarios.

From the table, it emerges that when the complexity is low, the method produces good results
even with small sample sizes. As the complexity increases, the method tends to underestimate
for small sample sizes (similar to the finite dimensional setting, see Section 3.1): as sample sizes
become larger, the negative bias becomes less pronounced.
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To conclude this section, it is useful to remark that when data are densities, it is common to
consider d as the L2–norm between the centered log–ratio transformations (see van den Boogaart
et al., 2014). From this point of view, a simulation study has been carried out using this particular
distance in the same experimental scenarios as before: the results obtained are very similar to those
in Table 7 and are therefore omitted.

4 Applications to real data

This section illustrates an application of the proposed methodology to the real datasets presented
in the Introduction, that is the time series of load curves and log–returns densities.

4.1 Load Curves

The original dataset, available in the R package fds, consists of time series of half-hourly electricity
demand (in megawatts). The dataset is split into functional observations, each corresponding to a
particular daily load curve; the resulting functional dataset consists of 3287 observed daily curves
discretized over a mesh of 48 equispaced points

X = {Xi (tj) , i = 1, . . . , 3287, j = 1, . . . , 48} .

For practical purposes, data are divided into 9–year datasets due to a long–term trend and variation
between years:

Xy = {Xy
d (tj) , d = 1, . . . , 365 (or 366), j = 1, . . . , 48} , y = 1998, . . . , 2006.

As an instance, the daily load curves for the year 1998 are plotted in the right panel of Figure 1.
The illustrated technique is implemented on each annual dataset using the classical L2–norm as

the metric. First, the empirical estimates ϕn (h) are computed overH (selected according to the rule
provided in Section 3). The corresponding Log–volugrams, i.e., the plots of log h against log ϕn(h)
over H (see Bongiorno et al., 2018), are visualized in the left panel of Figure 3: the exhibited
linearity suggests that the observed processes belong to the monomial family. In this view, the
cosine dissimilarities ∆ between ϕn and the target ϕθ (h) = cθh

θ are calculated and depicted for
each year in the right panel of Figure 3. These functions, approximated over a fine equispaced
grid discretizing Θ = [4, 8], appear convex, and their minima provide the estimates of the unknown
dimension θ0, whose values are collected in the second column of Table 8. To complete the analysis,
the corresponding block–Jackknife standard error estimates with block length ℓ = 8 are computed
and used to build the 95% confidence interval for θ0, see the last columns of Table 8.

Interpreting this result in the context of finite dimensional representations of functions in linear
spaces, and taking into account the fact that the confidence intervals tend to systematically cover
dimensions lower than θ0 (see Section 3.1), it follows that it may be possible to model the observed
data for each year using representations based on 6 or 7 random components. Nevertheless, this
information does not indicate what kind of basis can be reasonably used or what type of random
processes are actually involved: given the exploratory nature of the approach, these latter aspects
require further investigation.
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Figure 3: Left – Log–Volugrams for each year. Right – the behavior of dissimilarities ∆(ϕn, ϕθ)
over Θ for each year.

Year θn seJ (θn) CI 95%
1998 4.84 0.52 3.83 5.86
1999 6.03 0.83 4.40 7.66
2000 5.17 0.50 4.19 6.16
2001 5.31 0.64 4.04 6.57
2002 5.13 0.49 4.17 6.09
2003 5.86 0.89 4.11 7.60
2004 6.04 0.69 4.69 7.40
2005 5.72 0.58 4.57 6.86
2006 4.96 0.57 3.84 6.07

Table 8: Estimates for θ0, their standard errors and 95% confidence intervals for each year.

4.2 Log–returns densities

The second example deals with the detection of complexity of probability densities of intradaily
log–returns. In particular, the S&P500 index is considered during the period from October 14 2016
to May 6 2017: data are collected at a frequency of 1 minute for a total of 54810 observations
during 140 market days.

The time series of log–returns are calculated from the original data and then the probability
densities of log–returns are estimated using the standard kernel approach. Thanks to the large
amount of available data, it is possible to split the set of data referring to a given day into two
disjoint parts to obtain a functional time series of 280 densities:

Xi (r) =
1

nihi

ni∑
t=1

K

(
Ri,t − r

hi

)
i = 1, . . . , 280, r ∈ R

where Ri,t is the log–return at minute t–th during the i–th half day, ni is the number of observations
during that half day, K is the Gaussian kernel, hi is a bandwidth and R is a common support for
all the densities that, due to the presence of outliers, it has been fixed as R = [q0.001, q0.999],
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where qβ stands for the quantile of order β of the observed log–returns, and discretized in 200
equispaced points. A delicate issue is the selection of the bandwidths, on which depends the degree
of smoothness of each functional observation, that affects the estimation of complexity; indeed,
the smoother the curves are, the less the influence of noise is. The solution adopted is to apply a

scale factor to Silverman’s classical rule–of–thumb, i.e., h̃i = 1.06σ̂in
−1/5
i , where σ̂i is the estimated

standard deviation for the log–returns in the i–th half day. Here, hi is set as 1, 1.5 and 2 times h̃i.
The application of the methodology performed in a similar manner as in Section 4.1, using the

classical L2–norm, Θ = [3, 8] discretized over a fine mesh of equispaced points, and ℓ = 7 for the
block–Jackknife step, produces the graphs in Figure 4, where the Log–volugrams and the cosine
dissimilarities varying the scale factor are plotted, and the numerical results in Table 9.

As a general comment, all the results confirm the intuition regarding the role of the bandwidth;
on the other hand, the variability of the estimate seems to decrease as the scale factor increases. It
also emerges that a simple specification with 2 parameters (position and variability) is not sufficient
to describe the complexity of the distributions of log–returns and that at least 4 random coefficients
must be introduced. This is coherent with the financial literature, where the Gaussian distribution
alone is considered inadequate to model the phenomenon preferring some finite mixture of densities,
which are able to reproduce the leptokurtic nature of the data and some heteroskedasticity effects
over time (see Fusai and Roncoroni, 2007, Chapter 12).

Figure 4: Left – Log–Volugrams for each scale factor (solid: 1, dashed: 1.5, dotted: 2). Right – the
behavior of dissimilarities ∆(ϕn, ϕθ) over Θ for scale factor (solid: 1, dashed: 1.5, dotted: 2).

Scale θn seJ (θn) CI 95%
1 6.73 0.93 4.92 8.54
1.5 5.31 0.68 3.97 6.65
2 4.86 0.47 3.94 5.77

Table 9: Estimates for θ0, their standard errors and 95% confidence intervals for each selected scale
factor.
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5 Concludings

The methodology presented in this work provides a nonparametric exploratory technique that leads
to measure the complexity index of functional time series. The study was carried out from both
practical and theoretical points of view with the aim of enriching the existing literature on the
topic, which has so far was limited to the i.i.d. case (see Bongiorno et al., 2018, 2019, 2020). In
particular, to frame the study in a convenient mathematical framework, the dependency concept
of the F–approximating functional on a β–mixing sequence is adopted. The present work focuses
on the monomial family and shows that the complexity index could be interpreted as the number
of independent univariate random components underlying the process, and that this number could
also coincide with the dimension of the subspace spanned by the process. From this perspective,
complexity plays a role analogous to the concept of degrees of freedom in probabilistic and statistical
modeling. The considered procedure is free of assumptions about an underlying dominant measure
and about the existence of a second–order structure for the process. In addition, consistency is
derived for the estimator of the complexity index, and although it is not made explicit, the rate
of convergence yields a direct relationship with the dependency structure in terms of beta–mixing
coefficients and approximation constants.
The present work leads to some interesting practical and theoretical issues that require further
extensive studies. First, since a systematic bias appears from the simulations, it is interesting
to quantify it theoretically in terms of h and to study the mean squared error. In this context,
a second possible research direction is to establish a theoretical justification for the selection of
the interval H in which ϕn is computed. Finally, note that in the monomial case the complexity
index can theoretically assume any real positive value. To the best of the authors’ knowledge, only
processes with integer complexity index are available. Thus, one may wonder whether it is possible
to theoretically define a process in the monomial family whose complexity index is not integer,
analogous to what is done in the literature of the degrees of freedom that can take non–integer
values.

6 Technical results

This section contains all the justifications for the theoretical results stated in Section 2.1. Many
of the techniques used here are inspired by results presented in previous works of Bongiorno et al.
(2020) but are appropriately adapted to the specific used setting.

6.1 Proof of Theorem 2.4

The proof of the consistency is divided into two steps: firstly the convergence in probability of δn to
δ uniformly over Θ is proven; secondly, the thesis is provided as a consequence of the convergence
of δ(θn) to δ(θ0).

Consider ϕ̃γ = ϕγ/ ∥ϕγ∥, the normalised version of ϕγ with γ being one among θ, θ0, n, that is
wellposed since ϕθ, ϕθ0 > 0 over (0,+∞) and ϕn > 0 over H by construction (see Section 2). Note

that by definition δ(θ) = ⟨ϕ̃θ0 , ϕ̃θ⟩2 and δn(θ) = ⟨ϕ̃n, ϕ̃θ⟩2 which are continuous functions over Θ.
Consider

|δn(θ)− δ(θ)| =
∣∣∣⟨ϕ̃θ, ϕ̃θ0⟩2 − ⟨ϕ̃θ, ϕ̃n⟩2

∣∣∣ . (8)

20



Thanks to algebraic arguments and invoking the Cauchy–Schwarz inequality twice together with
the fact that ϕ̃’s are normalized, one obtains for all θ ∈ Θ:∣∣∣⟨ϕ̃θ, ϕ̃θ0⟩2 − ⟨ϕ̃θ, ϕ̃n⟩2

∣∣∣ ≤ 2
∣∣∣⟨ϕ̃θ, ϕ̃θ0⟩ − ⟨ϕ̃θ, ϕ̃n⟩

∣∣∣
= 2

∣∣∣⟨ϕ̃θ, ϕ̃θ0 − ϕ̃n⟩
∣∣∣ ≤ 2

∥∥∥ϕ̃θ0 − ϕ̃n

∥∥∥ . (9)

Denoting by C a general positive constant, note that∥∥∥ϕ̃θ0 − ϕ̃n

∥∥∥ ≤
∥∥∥∥ ϕθ0
∥ϕθ0∥

− ϕn
∥ϕn∥

∥∥∥∥ =

∥∥∥∥ϕθ0 ∥ϕn∥ − ϕn ∥ϕθ0∥
∥ϕθ0∥ ∥ϕn∥

∥∥∥∥
≤ C ∥ ϕθ0 ∥ϕn∥ − ϕn ∥ϕθ0∥∥
= C ∥ϕθ0 ∥ϕn∥ − ϕn ∥ϕn∥+ ϕn ∥ϕn∥ − ϕn ∥ϕθ0∥∥
= C ∥(ϕθ0 − ϕn) ∥ϕn∥+ ϕn (∥ϕn∥ − ∥ϕθ0∥)∥
≤ C ∥ϕn∥ ∥ϕθ0 − ϕn∥+ C ∥ϕn∥ | ∥ϕn∥ − ∥ϕθ0∥ |

and, by reverse triangle inequality | ∥ϕn∥ − ∥ϕθ0∥ | ≤ ∥ϕθ0 − ϕn∥, it holds∥∥∥ϕ̃θ0 − ϕ̃n

∥∥∥ ≤ 2C ∥ϕn∥ ∥ϕθ0 − ϕn∥ ≤ C ∥ϕθ0 − ϕn∥ .

Then ∥∥∥ϕ̃θ0 − ϕ̃n

∥∥∥ ≤ C |H| sup
h∈H

| ϕn(h)− ϕθ0(h)| ,

where |H| is the length of H. Combining (8), (9) and using the fact that ϕn converges in probability
to ϕθ0 uniformly on H (see Lemma 6.1), it follows that

sup
θ∈Θ

| δn(θ)− δ(θ)| −→ 0,

in probability as in n −→ ∞ that concludes the first step.
For the second step, note that, thanks to the uniqueness of the minimum θ0, δ satisfies the

following property: for any ϵ > 0, there exists a ζ > 0 such that for any θ, |θ0 − θ| > ϵ implies that
|δ(θ0)− δ(θ)| ≥ ζ. In fact, suppose that this is false, then there exists an ϵ > 0 and a sequence {tn}
such that as n → ∞, δ(tn) → δ(θ0) and ∥θ0 − tn∥ ≥ ϵ. The fact that Θ is compact and the last
statement imply that tn → θ ∈ Θ\{θ0} with δ(θ) = δ(θ0) but this contradicts with the assumption
of the uniqueness of the minimum θ0. Hence to prove that θn −→ θ0 in probability, it is enough to
show that δ(θn) −→ δ(θ0) in probability.

Consider then
|δ(θn)− δ(θ0)| ≤ |δ(θn)− δn(θn)|+ |δn(θn)− δ(θ0)| ,

where
|δ(θn)− δn(θn)| ≤ sup

θ∈Θ
|δ(θ)− δn(θ)|

and, because θn and θ0 are the maximizer of δn and δ respectively,

|δn(θn)− δ(θ0)| =
∣∣∣∣sup
θ∈Θ

δn(θ)− sup
θ∈Θ

δ(θ)

∣∣∣∣ ≤ sup
θ∈Θ

|δ(θ)− δn(θ)|
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one gets
|δ(θn)− δ(θ0)| ≤ 2 sup

θ∈Θ
|δ(θ)− δn(θ)|,

which goes to zero in probability as n −→ ∞ and this provides the consistency.
For what concerns the rate of convergence, since δ (θ) ∈ C2(Θ), consider the Taylor expansion

with Lagrange remainder

δ(θn) = δ(θ0) + δ′(θ0)(θn − θ0) +
δ′′(θ⋆)

2
(θn − θ0)

2

where θ⋆ is a suitable element of the interval whose extremes are θn, θ0. Since θ0 minimize δ,
δ′(θ0) = 0, δ′′(θ⋆) > 0 and, thanks to above results one obtains

|θn − θ0| =

√∣∣∣∣2(δ(θn)− δ(θ0))

δ′′(θ⋆)

∣∣∣∣ ≤ C

(
sup
h∈H

|ϕn(h)− ϕθ0(h)|
)1/2

.

Finally, thanks to Lemma 6.1, there exist two positive sequences of positive integers L = L(n),
m = m(n) and a real valued function f such that:

|θn − θ0| = Op

(
(2αL + βm−2L + f(2αL + βm−2L))

1/2
)

and this concludes the proof.

6.2 Proof of Theorem 2.5

Compute the first and second derivatives of δ(θ) with respect to θ:

δ′(θ) = −2⟨ϕ̃θ0 , ϕ̃θ⟩
〈
ϕ̃θ0 , ϕ̃

′
θ

〉
,

δ′′(θ) = −2

(〈
ϕ̃θ0 , ϕ̃

′
θ

〉2

+ ⟨ϕ̃θ0 , ϕ̃θ⟩
〈
ϕ̃θ0 , ϕ̃

′′
θ

〉)
.

Evaluating the above expressions at θ0, one obtains:

δ′(θ0) = 0 and δ′′(θ0) = −2
〈
ϕ̃θ0 , ϕ̃

′′
θ0

〉
. (10)

The Taylor expansion of δ′n(θ) around θ0 with Lagrange remainder is

δ′n(θ) = δ′n(θ0) + δ′′n(θ
⋆)(θ − θ0), (11)

where θ⋆ is between θ and θ0.
Since δ′n(θn) = 0 and δ′′n(θ

⋆) > 0, Equation (11) can be re–expressed as:

θn − θ0 = −δ′n(θ0)/δ′′n (θ⋆) ,

where
δ′n(θ0) = −2⟨ϕ̃n, ϕ̃θ0⟩

〈
ϕ̃n, ϕ̃

′
θ0

〉
,
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and

δ′′n(θ
∗) = −2

(〈
ϕ̃n, ϕ̃

′
θ∗

〉2

+ ⟨ϕ̃n, ϕ̃θ∗⟩
〈
ϕ̃n, ϕ̃

′′
θ∗

〉)
.

Using Lemma 6.1 and (10), ⟨ϕ̃n, ϕ̃θ0⟩ and
〈
ϕ̃n, ϕ̃

′
θ0

〉
converge in probability to 1 and 0 respectively,

as n→ ∞. By the definition of θ∗, Lemma 6.1 and Theorem 2.4,
〈
ϕ̃n, ϕ̃

′
θ∗

〉
converges in probability

to 0 as n −→ ∞ and so δ′′n(θ
∗) to δ′′(θ0). Finally, by combining the previous results, one gets:

θn − θ0 −→ 2
〈
ϕ̃n, ϕ̃

′
θ0

〉
/ δ′′(θ0) ,

in probability as n −→ ∞.
Hence, to derive the asymptotic distribution of θn − θ0, it is sufficient to study the law of〈

ϕ̃n, ϕ̃
′
θ0

〉
= ⟨ϕn, ηθ0⟩ / ∥ϕn∥ ∥ϕθ0∥

3
where ηθ0 = ϕ′θ0 ∥ϕθ0∥

2 − ϕθ0
〈
ϕθ0 , ϕ

′
θ0

〉
.

Noticing that ∥ϕn∥ converges to ∥ϕθ0∥ as n −→ ∞ (thanks to Lemma 6.1), and ⟨ϕθ0 , ηθ0⟩ = 0,
it remains to study the asymptotic distribution of

√
n ⟨ϕn, ηθ0⟩ =

√
n ⟨ϕn − ϕθ0 , ηθ0⟩ .

Since ϕn is a U–statistic, then the finite dimensional distributions of
√
n(ϕn(h)− ϕθ0(h)) converge

to those of a centered Gaussian process (see Lemma 6.2), and hence
√
n ⟨ϕn, ηθ0⟩ is asymptotically

distributed as a Gaussian centered random variable.
The proof is achieved by combining the previous results and applying Slutsky Theorem.

6.3 Auxiliary lemmas

The following two lemmas provide the weak consistency of the U–statistic ϕn towards to ϕθ0 (h) and
the asymptotic normality of the U–process

√
n (ϕn(h)− ϕθ0 (h)). The first lemma exploits similar

arguments as in (Borovkova et al., 2001, Theorem 6) and Bongiorno et al. (2020), whereas the
second one is a direct consequence of (Wendler, 2012, Theorem 1 and Corollary 1). Nevertheless,
for the sake of completeness, the proofs are provided in the supplementary materials.

Lemma 6.1 Under assumptions (A-1), (A-2) and αL = (2
∑∞

l=L al)
1/2

<∞ it holds:

|ϕn(h)− ϕ(h)| = Op (2αL + βm−2L + f(2αL + βm−2L)) , ∀h ∈ H,
sup
h∈H

|ϕn(h)− ϕ(h)| = Op (2αL + βm−2L + f(2αL + βm−2L)) ,

where L = L(n) and m = m(n) are two positive sequences of positive integers and f a suitable real
valued function.

Lemma 6.2 Under assumptions (A-1) and (A-2) with βk = O(k−β) for β ≥ 8 and ak = O(k−a)
for a = max{β + 3, 12},

√
n (ϕn(h)− ϕθ0 (h)) converges to a centered Gaussian process over H as

n→ ∞.
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Supplementary materials

Proof of Lemma 6.1

Consider the U -distribution function defined as P (d (X,Y ) ≤ h) = E
[
I{d(X,Y )≤h}

]
, where Y is an

independent copy of X and whose empirical counterpart is ϕn(h). Note that, thanks to the law of
total expectation, Assumption (A-2), the identification constraint E [ψ (X)] = 1, when h is small
enough it holds:

E
[
I{d(X,Y )≤h}

]
= E

[
E
[
I{d(X,Y )≤h}|Y

]]
= E [P (X ∈ B (Y, h))]

= E [ψ (Y )ϕθ0 (h)] + o (ϕθ0 (h))

= ϕθ0 (h) (1 + o (1)) .

Thus, to prove the asymptotic behavior of ϕn (h) towards ϕθ0 (h) is equivalent to show that ϕn (h)
converges to the U -distribution function E

[
I{d(X,Y )≤h}

]
. Moreover, it is useful to note that, since

the monomial behaviour is assumed, ϕθ0 (h) is Lipschitz continuous on H and the U -distribution
as well. In fact, for h, h′ ∈ H, there exists a positive constant L that

|P (d (X,Y ) ≤ h)− P (d (X,Y ) ≤ h′)| = |ϕθ0 (h)− ϕθ0 (h
′)| (1 + o (1))

≤ L |h− h′| (1 + o (1)) . (12)

Make now the following observations.
Observation 1. ϕn(h) is a second–orderU -statistic with bounded symmetric kernel I{d(·,·)≤h}.
Observation 2. Each random variable I{d(Xi,Xj)≤h} is bounded for every i ̸= j and then the

family
{
I{d(Xi,Xj)≤h}, 1 ≤ i, j ≤ n

}
is uniformly integrable.

Observation 3. Consider X1, X
′
1, Xk, F-valued random elements that are independently and

identically distributed. If d(X1, Xk) ≤ h − η and d(X1, X
′
1) ≤ η, as a consequence of the triangle

inequality, d(X ′
1, Xk) ≤ h, and similarly if d(X1, Xk) > h+η and d(X1, X

′
1) ≤ η the reverse triangle

inequality implies that d(X ′
1, Xk) > h. Hence∣∣I{d(X1,Xk)≤h} − I{d(X′

1,Xk)≤h}
∣∣ I{d(X1,X′

1)≤η} ≤ I{h−η≤d(X1,Xk)≤h+η}

and thus when h and η are small enough:

E
[∣∣I{d(X1,Xk)≤h} − I{d(X′

1,Xk)≤h}
∣∣ I{d(X1,X′

1)≤η}
]
≤ P(h− η ≤ d(X1, Xk) ≤ h+ η)

= P(d(X1, Xk) ≤ h+ η)− P(d(X1, Xk) ≤ h− η)

≤ f(η)

where f(η) = max (supk P (h− η ≤ d(X1, Xk) ≤ h+ η) ,P (h− η ≤ d(Y1, Y2) ≤ h+ η)) and Y1, Y2
being independent with the same distribution asX1. Moreover, because of (12), the kernel I{d(·,·)≤h}
satisfies the 1-Lipschitz condition (see Borovkova et al., 2001, Equation (2.10)).

Thanks to above observations together with the assumptions (A-1) and (A-2), it emerges that
the proof of the first part of this lemma is an adaptation of (Borovkova et al., 2001, Theorem 6) and
it is reported for the benefit of the reader. The proof proceeds by considering the two preliminary
technical results and, in what follows, C denotes a universal positive constant.

First, the uniform integrability guarantees that, for a fixed ε > 0 there exists 0 < δ0 ≤ ε for
which for any measurable sets B such that P(B) < δ < δ0 then

E
[
I{d(Xi,Xj)≤h}IB

]
= E

[
I{d(Xi,Xj)≤h}∩B

]
= P({d (Xi, Xj) ≤ h} ∩B) ≤ P(B) < ε. (13)
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Second, choose three sequences of positive integers m = m(n), L = L(n), N = N(n) (in general
increasing with n) such that 

L < m/2,
m/N < δ ≤ ε
2αL + βm−2L < 1
f(δ) < ε

where δ = δ0(2αL + βm−2L). Define the integer nk = (k − 1)(m + N) and consider the blocks of
length N

ξk = (Xnk+1, . . . , Xnk+N ) .

Given (X1, . . . , Xn), p = ⌊n/(N +m)⌋ is the index of the last block ξk to be fully contained in
(X1, . . . , Xn) (where ⌊a⌋ denotes the integer part of a). By adapting the notion of nearly regular
process as in the Definition 2.6. of Borovkova et al. (2001) and as a consequence of (Borovkova
et al., 2001, Theorem 3), it is possible to find a sequence of i.i.d. N–dimensional vectors ξ′1, ξ

′
2, . . .

with the same distribution as (ξk)k such that for all k = 1, 2, . . .,

P
(
ρ
(
ξk, ξ

′

k

)
≥ δ

)
≤ δ/2,

with ρ(ξk, ξ
′

k) = maxj d
(
Xj , X

′
j

)
, where X ′

j in an independent copy of Xj . Here ρ(ξk, ξ
′

k) replaces

the L1-norm on RN and (ξ
′

k)k are independent F-valued random elements.
The idea of the proof is to decompose the global sum defining ϕn in partial sums of suitable

blocks and controlling their asymptotic behavior. To do this define the kernel Kh : FN ×FN → R
by

Kh(x,y) :=
1

N2

∑
1≤i,j≤N

I{d(xi,yj)≤h},

where x = (x1, . . . , xN ) and y = (y1, . . . , yN ). From (13), one can infer that, for k ̸= l

E [ Kh(ξk, ξl) IB ] ≤ δ (14)

for all measurable sets B with P(B) < δ. Given the independence of ξ′k and ξ′l, by Hoeffding’s
classical U -statistics law of large numbers for independent observations, it follows

1

p(p− 1)

∑
1≤k ̸=l≤p

Kh(ξ
′
k, ξ

′
l) −→ E

[
I{d(X,Y )≤h}

]
(15)

almost surely and in L1, where Y is an independent copy of X.
As a consequence of 1-Lipschitz condition, the error introduced by replacing ξi by ξ

′
i is negligible:

E

∣∣∣∣∣∣ 1

p(p− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)−
1

p(p− 1)

∑
1≤k ̸=l≤p

Kh(ξ
′
k, ξ

′
l)

∣∣∣∣∣∣
 ≤ C(δ + f(δ)). (16)

Moreover, since ∣∣∣∣ 1

p(p− 1)
− N2

n(n− 1)

∣∣∣∣ ≤ 2δ

p(p− 1)

2



for p large enough,

E

∣∣∣∣∣∣ 1

p(p− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)−
N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)

∣∣∣∣∣∣


= E

∣∣∣∣∣∣
(

1

p(p− 1)
− N2

n(n− 1)

) ∑
1≤k ̸=l≤p

Kh(ξk, ξl)

∣∣∣∣∣∣


≤
∣∣∣∣( 1

p(p− 1)
− N2

n(n− 1)

)∣∣∣∣ ∑
1≤k ̸=l≤p

E [Kh(ξk, ξl)]

≤ 2δE [Kh(ξ1, ξ2)] ≤ Cδ.

The last estimate, together with (15) and (16), shows that for n large enough

E

∣∣∣∣∣∣ N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)− E[I{d(X,X′)≤h}]

∣∣∣∣∣∣


= E

∣∣∣∣∣∣
 1

p(p− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)−
1

p(p− 1)

∑
1≤k ̸=l≤p

Kh(ξ
′
k, ξ

′
l)

 +

−

 1

p(p− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)−
N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)

∣∣∣∣∣∣
 ≤ C(δ + f(δ)). (17)

Introduce the following decomposition involving the original kernel I{d(Xi,Xj)≤h}:

n(n− 1)ϕn (h) =
∑

1≤i ̸=j≤n

I{d(Xi,Xj)≤h} =
∑

1≤k ̸=l≤p

nk+N∑
i=nk+1

nl+N∑
j=nl+1

I{d(Xi,Xj)≤h}

+

p∑
k=1

∑
nk+1≤i ̸=j≤nk+N

I{d(Xi,Xj)≤h} + 2
∑

1≤k,l≤p

nk+1∑
i=nk+N+1

nl+N∑
j=nl+1

I{d(Xi,Xj)≤h}

+
∑

1≤k ̸=l≤p

nk+1∑
i=nk+N+1

nl+1∑
j=nl+N+1

I{d(Xi,Xj)≤h} +

p∑
k=1

∑
nk+N+1≤i ̸=j≤nk+1

I{d(Xi,Xj)≤h}

+

n∑
i=np+N+1

n∑
j=1

I{d(Xi,Xj)≤h} +

np+N∑
i=1

∑
j=np+N+1

I{d(Xi,Xj)≤h}

By studying the indexes, one gets

E

∣∣∣∣∣∣n(n− 1)ϕn (h)−
∑

1≤k ̸=l≤p

nk+N∑
i=nk+1

nl+N∑
j=nl+1

I{d(Xi,Xj)≤h}

∣∣∣∣∣∣


≤ pN2 + 2p2mN + p2mN + p2m2 + 2n(m+N).
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Provided p ≤ n/N +m, one has p ≤ n/N and m ≤ δN (this shows that the random variables in
the small separating blocks of length m can be neglected). Using these facts and some algebraic
manipulation, the right hand side of the inequality obtained above is bounded by C(δ + N/n)n2

and hence,

E

∣∣∣∣∣∣ϕn (h)− N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)

∣∣∣∣∣∣
 ≤ Cδ,

for n large enough.
The above inequality combines with (17), gives

E

∣∣∣∣∣∣ϕn (h)− N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)+

+
N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)− E[I{d(X,X′)≤h}]

∣∣∣∣∣∣


≤ E

∣∣∣∣∣∣ϕn (h)− N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)

∣∣∣∣∣∣
+

+ E

∣∣∣∣∣∣ N2

n(n− 1)

∑
1≤k ̸=l≤p

Kh(ξk, ξl)− E[I{d(X,X′)≤h}]

∣∣∣∣∣∣
 ≤ C(δ + f(δ)) ≤ Cε

and, thanks to Markov inequality and for the arbitrariness of ε, ϕn converges in probability to ϕθ0
at the rate δ + f(δ) = 2αL + βm−2L + f(2αL + βm−2L).

The second part of the lemma, that is the uniform convergence in probability, is guaranteed by
Proposition 1 in Bongiorno et al. (2020) from which one can deduce that the rate of convergence
does not change and this concludes the proof.

Proof of Lemma 6.2

Given the fact that, under Assumption (A-2), the U -distribution function is Lipschitz-continuous
as shown in Equation (12), the proof is a direct consequence of (Wendler, 2012, Theorem 1 and
Corollary 1).
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Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics,
38(3):1845 – 1884.

5



Kokoszka, P. and Reimherr, M. (2017). Introduction to Functional Data Analysis. Chapman & Hall
CRC Texts in Statistical Science. Chapman and Hall CRC, 1 edition.

Li, W. and Shao, Q.-M. (2001). Gaussian processes: Inequalities, small ball probabilities and
applications. In Stochastic Processes: Theory and Methods, volume 19 of Handbook of Statistics,
pages 533–597. Elsevier.

Lifshits, M. (2012). Lectures on Gaussian Processes. Springer Briefs in Mathematics. Springer-
Verlag Berlin Heidelberg, 1 edition.

Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence.
In Exploring the limits of bootstrap (East Lansing, MI, 1990), Wiley Ser. Probab. Math. Statist.
Probab. Math. Statist., pages 225–248. Wiley, New York.

Magnano, L., Boland, J. W., and Hyndman, R. J. (2008). Generation of synthetic sequences of half-
hourly temperature. Environmetrics: The official journal of the International Environmetrics
Society, 19(8):818–835.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (Springer Series in Statis-
tics). Springer, 2nd edition.

Rychlik, T. (1994). Distributions and expectations of order statistics for possibly dependent random
variables. Journal of Multivariate Analysis, 48(1):31–42.

van den Boogaart, K. G., Egozcue, J. J., and Pawlowsky-Glahn, V. (2014). Bayes Hilbert spaces.
Aust. N. Z. J. Stat., 56(2):171–194.

Wendler, M. (2012). U-processes, u-quantile processes and generalized linear statistics of dependent
data. Stochastic Processes and their Applications, 122(3):787–807.

6


