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Abbreviations 
 

Aβ   Amyloid β 

ACM   Astrocyte conditioned medium 

AD   Alzheimer’s disease  

APP   Amyloid precursor protein 

ARP 2/3  Actin-related protein complex 2/3 

BDNF   Brain derived neurotrophic factor  

BFCN   Basal forebrain cholinergic neurons 

bFGF   Basic fibroblast growth factor 

BrdU   5-bromo-2’-deoxyuridine 

CA 1, 2  Cornu Ammonis field 1, 2 

CFC   Contextual fear conditioning 

CHD   Congenital heart disease 

CNS   Central nervous system 

CSA   Cyclosporine A 

DPN   Day post natal 

DCX   Doublecortin 

DG   Dentate gyrus 

DIV   Days in vitro 

DS   Down syndrome 

DSCR   Down syndrome critical region 

DYRK1A  Dual specificity tyrosine phosphorylation regulated 

kinase 1A 

ECD   Extracellular domain 

EdU   5-ethynyl-2’-deoxyuridine 

EGCG   Epigallocatechin-3-gallate 

EGF   Epidermal growth factor  

EU   Euploid 

GABA   Gamma-aminobutyric acid 

GAPs   GTPase-activating proteins 

GBP   Gabapentin 

GC   Glucocorticoids 

GEFs   Guanine exchange factors 

GFAP   Glial fibrillary acidic protein 

GR   Glucocorticoid receptor 

GSK3ß  Glycogen synthase kinase 3 beta 

GW   Gestation week 

Hsa21   Human chromosome 21 

IHC   Immunohistochemistry 

iPSCs   Induced pluripotent stem cells 
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IQ   Intelligence quotient 

JAK-STAT  Janus kinase-signal transducer and activator 

KO   Knockout 

LiCl   Lithium chloride 

LTD   Long-term depression  

LTP   Long-term potentiation 

LA   Linoleic acid 

MAP2   Microtubule associated protein 2 

Mmu 10,16,17 Mouse chromosome 10,16,17 

MWM   Morris water maze 

NFATc  Nuclear factor of activated T cell cytoplasmatic 

NMDA  N-methyl-D-aspartic acid 

NPC   Neural progenitor cells 

NSC   Neural stem cells 

OA   Oleic acid 

OLIG1-2  Oligodendrocyte transcription factor 1 and 2 

Ptch1   Patched 1 

PGB   Pregabalin 

PI3K   Phosphoinositide 3-kinase 

PPARs   Peroxisome-proliferator activated receptors 

Rac1   Ras-related C3 botulinum toxin substrate 1 

RCAN1  Regulator of calcineurin 1 

SGZ   Subgranular zone 

Shh   Sonic hedgehog 

SOD1   Superoxide dismutase 1 

Smo   Smoothened 

SSRI   Selective serotonin reuptake inhibitor 

SVZ   Subventricular zone 

S100ß   S100 calcium binding protein B 

TM   Trans-membrane 

TrkB   Tropomyosin receptor kinase B 

TRKs   Tyrosine receptor kinases 

TS   Trisomic 

TSP-1   Thrombospondin-1 

VWF-A  Von Willebrand factor A 

VZ   Ventricular zone 

WT   Wild type 

5-HT   5-hydroxytryptamine 

7,8-DHF  7,8-dihydroxyflavone 

β2AR    β2 adrenergic receptor 
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1.1 Down syndrome 

 

Down syndrome (DS) is the most common genetic cause of intellectual disability. 

DS was discovered and, for the first time, clinically described by John Langdon 

Down in 1866 (Langdon-Down, 1866). Only a century later, in 1959, the triad 

Lejeune–Gautier–Turpin identified that trisomy 21 (T21) was the genomic 

abnormality underlying DS (Lejeune, Gautier, & Turpin, 1959). People with DS 

have experienced an increase in their life expectancy over the past few decades, 

at least in western countries, thanks to improvements in medical cares and social 

interaction, passing from 12 years (in 1940) to 60 years (Presson et al., 2013). 

Nowadays the most invalidating aspect of the disease remains intellectual 

disability. Thus, the need to identify therapies to improve intellectual disability 

is becoming urgent (Presson et al., 2013). Despite numerous efforts, at present 

no therapies are available to rescue brain developmental alterations in DS 

individuals (Bartesaghi et al., 2011; Kazemi et al., 2016). The following chapters 

summarize DS phenotypic abnormalities, focusing on neurodevelopmental 

alterations, preclinical models used in DS research, cell types involved in DS 

pathophysiology and potential therapeutic approaches. 

 

1.1.1 Epidemiology 

DS manifests itself in people of all races and socio-economic status, with a 

prevalence of 1/700-800 live births. Data showed that the probability of giving 

birth to a child with DS increases significantly with the mother age (above 35 

years). At present the incidence of DS has not decreased despite several prenatal 

diagnosis, available since the middle of sixties, (Summers et al., 2007) and 

maternal serum screening (Smith & Visootsak, 2013). Indeed, studies have 

reported increasing trends in DS pregnancies in various parts of the world 

ascribed to increased lifespan and maternal age. As shown in Figure 1, Maternal 
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age is the biggest risk factor with an incidence of 1:1,500 births under age 25 and 

1:100 births at age 40 (Fig. 1) (Herault et al., 2017; Loane et al., 2012; McKenzie 

et al., 2016).  

 

Figure 1. Graph from the European Union showing the prevalence of Down syndrome increasing 

with maternal age (Lanzoni et al., 2019). 

1.1.2 Etiology and the genetics of Down syndrome 

The triplication of human chromosome 21 (Hsa21) observed in DS is caused by 

abnormal cell division that results in an extra full or partial copy of chromosome 

21. The most frequent form of DS is full Hsa21 trisomy: chromosome 21 is 

unable to separate during meiosis in a developing ovum, or less frequently, in 

sperm, culminating in an extra copy of the entire Hsa21 in all cell types 

(Antonarakis et al., 2004). Another cytogenetic form of DS is Robertsonian 

translocation. This condition is less prevalent than full trisomy 21 and occurs 

only in 2-4% of the cases, where a segment of the chromosome becomes fused 

to a different chromosome pair (such as chromosomes 13, 14, 15, 22 or 21) 

(Pelleri et al., 2016). Another genetic rearrangement that can occur in DS is 

mosaicism. This condition occurs in 3-4 % of DS population: in this case some 
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cells within a single tissue display a normal karyotype, while others show trisomy 

(Antonarakis et al., 2017; Rachidi & Lopes, 2011).  

 

In 2000 a consortium performed the sequencing of chromosome 21 (Hsa21). [The 

most updated and revised version is available in the web, 

(www.ncbi.nlm.nih.gov/genome/gdv/) (Strippoli et al., 2019)]. Hsa21 is the 

smallest among human autosomes, consisting of about 46 million base pairs in 

its DNA, containing 325 non‐protein encoding genes and 222 protein coding 

genes (Gupta et al., 2016). Since 1959 literature data have showed that DS is 

caused by an extra copy of chromosome 21 (Lejeune et al., 1959), however the 

mechanisms by which the trisomy disrupts development are still not well 

understood (El Hajj et al., 2016). Two hypothesis have been proposed to explain 

the effect of trisomy on brain phenotypes: the “gene-dosage effect” and the 

“amplified developmental instability”. The first one proposes that increased 

dosage of several dosage-sensitive genes and their encoded proteins determined 

DS phenotypes (Bartesaghi et al., 2011; Delabar et al., 1993; Korenberg et al., 

1994; Lyle et al., 2008). The second hypothesis asserts that trisomy 21 causes a 

general alteration in developmental homeostasis determining most 

manifestations of DS (Antonarakis et al., 2004; Bartesaghi et al., 2011; Roizen 

& Patterson, 2003). These two different theses could coexist in DS 

pathophysiology and the validity of one of the two hypothesis is still an open 

discussion (Strippoli et al., 2019). 

Furthermore, literature data suggested that the triplication of some Hsa21 genes 

is sufficient to manifest DS (Aula et al., 1973; Ilbery et al., 1961; Wahlsten et al., 

2019) supporting another hypothesis: the “Down syndrome critical region” 

(DSCR). The DSCR is a region of 3.8-6.5 Mb on 21q21.22, with approximately 

33 genes responsible for the majority of DS phenotypes that will be summarized 

in the following chapters (Asim et al., 2015; Pritchard & Kola, 1999).  
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Studies showed that also epigenetic changes can occur both in fetal brains and 

blood from newborn DS infants and contribute to the pathology (Strippoli et al., 

2019; Vacca et al., 2019).  

 

1.1.3 Phenotypic traits and clinical features observed in Down syndrome 

Down syndrome individuals are characterized by several phenotypic traits and 

clinical features that occur to some degree in every person with trisomy 21. A 

typical DS trait is the facial dysmorphology identified in microgenia, flat nasal 

bridge, oblique eye fissures, a bulging tongue and a short neck. In addition to 

these phenotypic traits, trisomy 21 is also a risk factor for other several diseases. 

One of the most invaliding is the congenital heart disease (CHD) which is the 

main cause of death for the two first years of life in individual with DS, whit a 

frequency of 40-50 % (Benhaourech et al., 2016; Ferencz et al., 1989; Roper & 

Reeves, 2006). Other phenotypic features that can affect DS individuals are 

malformations of the gastrointestinal tract, muscle hypotonia, leukemia, thyroid 

disorders, such as hypothyroidism, epilepsy and also Alzheimer’s disease (AD) 

(Amr, 2018; Barca et al., 2014; Mateos et al., 2015; Noble, 1998). 

In particular, a connection between AD and DS has been long suspected since 

50-70 % of DS individuals develop dementia by the age of 40. For this reason 

trisomy 21 is considered as the most common genetic cause of a 

neurodegenerative disease (Ballard et al., 2016; Dekker et al., 2018; Herault et 

al., 2017). An important role for this connection is partially played by the 

overexpression of amyloid precursor protein, encoded by the gene APP, which 

increases the risk of early-onset of AD. Indeed, amyloid- accumulates in the 

brain across the lifespan of people with DS. APP is not the only one AD-linked 

protein described in DS literature. Studies reported that the triplication of the 

gene that encodes for the Dual-specificity tyrosine-(Y) phosphorylation regulated 
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kinase (DYRK1A) may play an important role in this context. DYRK1A is a 

proline-directed serine/threonine kinase (Park et al., 2010) proposed as one of the 

most relevant contributors to the neurological abnormalities that will be 

summarized in the next paragraph (Dowjat et al., 2007).  

 

1.1.4 The neurological phenotype of Down syndrome 

Intellectual disability (ID) is the main feature of DS resulting in a gradually 

declining intelligence quotient (IQ) during childhood (between 6 months and 2 

years). In child IQ varies from 35 (mild) to 70 (moderate) and DS adult 

individuals usually show a mental age from 8 to 9 years old (Weijerman & De 

Winter, 2010). Beginning at an early age, DS neurological phenotype seems to 

be due to impairments in several brain regions such as the cerebellum, the medial 

temporal lobe, hippocampus and prefrontal cortex (Fig. 2) (Bartesaghi et al., 

2011; Nadel, 2003).  

In particular, ID affects the area involved in speech (poor and slower), in spatial 

memory and in long-/short-term memory performances, especially in 

maintaining phonological information over a short delay. By contrast, DS 

individuals show a relative preserved visuo-spatial memory (“where” memory) 

(Bostelmann et al., 2018; Godfrey & Lee, 2018; Vicari, 2006). Implicit memory 

is preserved in DS children, while explicit memory is impaired. In detail, implicit 

memory requires low attention and is supported by automatic processes. Explicit 

memory requires high attention, conscious learning and strategies. Infants with 

DS show also motor skill impairments: these children are unable to roll until 5-

6.4 months and to sit independently until 8.5-11.7 months (Bartesaghi et al., 

2011). Cerebellar hypoplasia and motor dysfunctions can affect learning skills in 

DS patients (Vicari, 2006).  
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Figure 2. Brain map of structures involved in the learning circuit (acquisition, processing or 

information storage). Under each brain area the status in a Down syndrome brain is specified 

(Lott & Dierssen, 2010). 

Furthermore, studies showed that both environment and genetic expression 

influence DS neurological phenotype that changes across the life span and, in 

most cases, culminate with dementia, as previously described (Bartesaghi et al., 

2011). 

 

1.2 Neurodevelopmental alterations in Down syndrome brain 

Down syndrome is a neurodevelopmental disorder in which the brain develops 

differently from an euploid child and in particular is altered in configuration and 

reduced in size (Bartesaghi et al., 2011). The widespread brain hypoplasia and 

the consequent hypocellularity are considered to be one of the main cause of 

intellectual disability (Stagni et al., 2018). 

 

1.2.1 Gross anatomy  

DS Brain morphology is characterized by reduced size (20 % smaller than 

euploid developing brain) and weight. The reduction in size is detectable in 4-5 

month fetuses and is maintained for the rest of the gestation (Engidawork & 
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Lubec, 2003; Lott, 2012). Numerous DS brain regions are smaller compared with 

control individuals (Pinter et al., 2001; Stagni et al., 2018) and volume reduction 

is pronounced for the hippocampus, cerebellum and brainstem (Guidi et al., 2014; 

Raz et al., 1995; Stagni et al., 2018).  

 

1.2.2 Cytoarchitecture 

Characteristic features of the DS brain are the diffused hypocellularity, astrocytic 

hypertrophy and decreased thickness of cortical layers (Bartesaghi et al., 2011). 

At early gestation stages cell density appears normal, but later (gestation week, 

GW, 19-23) less neurons are described and scarcity continues throughout early 

life compared to euploid fetuses (Golden & Hyman, 1994; Guidi et al., 2008). 

Compared to matched euploid fetuses at GW 17-21, DS hypocellularity is 

prominent in the dentate gyrus (DG) of hippocampus and in the parahippocampal 

gyrus (Guidi et al., 2008; Stagni et al., 2018). Also the granule cell density in the 

cerebellum is reduced in children and then adults with DS (Baxter, 2000; Guidi 

et al., 2008; Ross et al., 1984; Stagni et al., 2018).  

In addition to neuronal alterations there are also defects of other cell types, 

including glial cells. Indeed, an increased astrocyte-neuron ratio has been 

described in hippocampal structures of DS fetuses compared to euploid ones 

(Bartesaghi et al., 2011; Guidi et al., 2008). An increased astrocyte number and 

astrocytic hypertrophy have been shown in both developing and adult DS brain 

(Griffin et al., 1998).  

 

1.2.3 Neurogenesis alterations 

During the development of fetal brain, neural stem cells (NSC) proliferate, 

maturate into neural progenitor cells (NPC) and differentiate into neurons in a 

process called neurogenesis (Kitamura et al., 2009). In detail, the neural tube 
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starts to differentiate into an outer zone and an inner proliferative layer since GW 

6, at that time some neurons have already been born. At GW 7 the subventricular 

zone (SVZ) and the ventricular zone (VZ) appear. At GW 7-8 neurons migrate 

from these zones to form the cortical plate (Chan et al., 2002). By GW 24 a large 

reduction of VZ and SVZ occurs combined with a reduction in proliferation 

(Chan et al., 2002). The neurogenesis process in the dentate gyrus (DG) starts at 

GW 12 and is maintained within the first postnatal year (Rice & Barone Jr., 

2000). Neurogenesis is mainly active during brain development, but this process 

is maintained also during adulthood in two specific neurogenic niches: the 

subventricular zone (SVZ) and the subgranular zone (SGZ) of hippocampus 

(Bortolotto et al., 2019; Cvijetic et al., 2017; Martínez-Cerdeño & Noctor, 2018). 

 

The reduction of this process during early life stages is thought to be among the 

major neurodevelopmental defects leading to DS cognitive impairment (Stagni 

et al., 2018). Neurogenesis in the fetal DS brain has been little studied since the 

difficulties in obtaining fetal material. However, several studies showed that cell 

proliferation is impaired in different regions of the fetal DS brain, such as in the 

hippocampus germinal zones, DG and germinal matrix of the inferior horn of the 

lateral ventricle (Contestabile et al., 2007; Guidi et al., 2008; Stagni et al., 2018). 

This defective development determines the reduction in neuron number and 

impairment in cortical structures detected in DS fetuses and then in children 

(Contestabile et al., 2007; Pinter et al., 2001; Schmidt-Sidor et al., n.d.; Sylvester, 

1983; Winter et al., 2000). These data have been further investigated in the 

chapter about neural progenitor cells in DS. 
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1.2.4 Gliogenesis alterations 

In humans, the formation of the general architecture of brain regions and 

neurogenesis are mostly complete at birth, while maturation of the two major 

glial cell populations (astrocytes and oligodendrocytes), myelination, 

synaptogenesis and synapse pruning occur during postnatal brain 

development (Jiang & Nardelli, 2015; Lee et al., 2016), since neurogenesis 

precedes gliogenesis.  

Several studies showed an increased neurogenic-to-gliogenic modulation in DS 

brain, but the mechanisms and the relative consequences of this shift are still 

unclear. Indeed, compared to matched euploid fetuses at GW 17-21, astrocytes 

are increased in the hippocampus (Guidi et al., 2008) and in the frontal lobe, 

where they appear also more mature than the euploid counterpart (Dossi et al., 

2018)  

 

1.2.5 Dendrite, spine, synapse and neurotrophin alterations in Down 

syndrome brain 

 

Dendritic spines are structures, rich in actin, that constitutes the postsynaptic 

terminals of excitatory synapses (Lee, Zhang, & Webb, 2015). Beginning from 

infancy (3-4 months of age), typical DS hallmarks are the reduced neuronal 

complexity with atrophy of the dendritic tree, spine density reduction and 

alterations in spine shape (Bartesaghi et al., 2011). These abnormalities do not 

recover at subsequent life stages (Torres et al., 2018). 3-4-month-old DS children 

show dendritic hypotrophy in neurons of the parietal cortex (Schulz & Scholz, 

1992), motor cortex (Prinz et al., 1997) and visual cortex (Becker, Armstrong & 

Chan, 1986). Another typical DS feature, not observed in fetuses, but appearing 

in newborns and older DS infants, is the reduction and alteration in spine number 

and morphology (Takashima et al., 1981). Indeed smaller spines, with short 
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stalks, have been reported in children with DS compared with age-matched 

euploid individuals (Marin‐Padilla, 1976). 

All together dendrite and spine alterations in DS imply a reduction of the surface 

available to exchange synaptic inputs. Indeed, a defective synaptic function and 

organization are typical features of DS brain, associated with alterations of 

transmitter systems (Bartesaghi et al., 2011; Chakrabarti et al., 2007; Kurt et al., 

2000). Monoamines, such as serotonin and dopamine, has been demonstrated to 

be reduced in frontal cortex of DS fetuses compared to euploid one (Risser et al., 

1997; Whittle et al., 2007) 

 

Actin cytoskeleton rearrangements are important for the formation of dendritic 

spines and synapses (Risher & Eroglu, 2012). Different proteins involved in the 

formation of the neuronal cytoskeleton are downregulated in DS brain including 

the beta-tubulin (Pollak et al., 2003), the microtubule associated protein, MAP2 

(Ohara et al., 1999), and the actin-related protein complex 2/3 (ARP 2/3). 

ARP2/3 is a complex that controls actin remodeling and is required, as a 

downstream effector, at various stages of brain development (Chou & Wang, 

2016; Weitzdoerfer et al., 2002). Another protein downregulated in DS brain is 

moesin (Lubec et al., 2001). Moesin is involved in plasma membrane-actin 

cytoskeleton cross-linking and it is critical for the morphology of neurons and 

the formation of long-term memory (Freymuth et al., 2017). 

 

Furthermore, neurotrophin levels are impaired during DS brain development 

(Bartesaghi et al., 2011). These molecules are important to support neuronal 

differentiation, migration, synaptic plasticity and survival (Campenot & 

MacInnis, 2004; Chao et al., 1998; Chao et al., 2006; Sofroniew et al., 2001). In 

particular the brain derived neurotrophic factor (BDNF), a neurotrophin that 

binds the surface tyrosine receptor kinases (TRKs), belongs to this family. 
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Reduced expression of BDNF is observed both in hippocampus (Guedj et al., 

2009) and cerebral cortex of DS fetuses (Toiber et al., 2010).  

 

1.2.6 Specific triplicated genes with a role in Down syndrome 

neuropathology 

 

The sequencing of genes on chromosome 21 has been completed, although the 

functions of most of the encoded proteins is not still clear (Engidawork & Lubec, 

2003). Recently, Roizer et al. showed that proteins encoded by specific triplicated 

genes play a role in DS neuropathology (Fig. 3) (Roizen & Patterson, 2003). 

Below there are several examples of genes that encode proteins involved in DS 

pathology. 

 

Figure 3. A cartoon in which specific genes on the human chromosome 21 (Hsa21) triplicated in 

DS fetal brain and involved in brain development are represented, including DYRK1A, APP, 

S100B, SOD1, DSCR-1 (also known as RCAN1). DCR-1: Down syndrome chromosomal region-

1. Picture modified from Rachidi & Lopes, 2011. 

 

DYRK1A (dual specificity tyrosine phosphorylation regulated kinase 1A) 

encodes a member of the dual-specificity tyrosine phosphorylation regulated 

kinase (DYRK) family. As previously introduced it plays an important role in the 
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neurological abnormalities associated with DS. Indeed, during brain 

development DYRK1A regulates neural progenitor cell proliferation and 

neuronal differentiation (Dowjat et al., 2007). In the young adult brain DYRK1A 

can hyperphosphorylate tau, determining progressively depolymerization of actin 

microfilament, dendritic hypotrophy and neurofibrillary tangles formation. This 

aspect affects several DS brain regions, such as hippocampus, prefrontal cortex, 

midbrain, thalamus, hypothalamus and basal ganglia (Lott & Head, 2019; 

Wisniewski et al.,1985). 

APP (amyloid precursor protein) encodes the amyloid precursor protein (APP), 

a trans-membrane protein mostly expressed in neuronal synapses. This gene is 

reported to play a key role in DS neurodevelopmental alteration and, as 

previously mentioned, is involved in the development of Alzheimer-like 

pathology in DS adults. Furthermore, APP can participate to neuronal plasticity 

(Turner et al., 2003) and it can affect the formation and transmission of synapses 

in cultured hippocampal neurons (Priller et al., 2006). 

S100 (S100 calcium binding protein B) encodes for a protein member of the 

S100 family released by astroglial cells. It is highly expressed during 

development and aging. Increased levels of S100 characterize both adult DS 

and AD individuals.  

SOD1 (superoxide dismutase 1) encodes the superoxide dismutase [Cu-Zn], an 

enzyme that binds Cu and Zn to breakdown superoxide radicals and convert them 

to H2O2 to avoid cell damage. This is a constitutive enzyme which activity is 

increased by 50% in DS. Increased levels of SOD1 determine increased oxidative 

stress and lipid peroxidation in brain human DS cortical neurons (Bartesaghi et 

al., 2011). 

RCAN1 (regulator of calcineurin 1) encodes the regulator of calcineurin factor 

and it is overexpressed especially in fetal DS brain. RCAN1 protein inhibits 

calcineurin A, a serine threonine phosphatase that activates the nuclear factor of 
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activated T cell cytoplasmatic (NFATc). NFAT is involved in the regulation of 

cell proliferation, neuronal migration and survival (Serrano-Pérez et al., 2015).  

1.3 Rodent models in Down Syndrome research 

Mouse models are able to mimic, as closely as possible, human pathologies. Mice 

are important tools that can be investigated to understand the mechanisms 

underpinning a disease. In particular, in DS they can be used to: 1) investigate 

genotype-phenotype relationship; 2) identify dosage-sensitive genes involved in 

DS pathophysiology, 3) test the effect of potential drugs. Till now, a large number 

of mouse models that recapitulate the phenotypic features of DS have been 

developed in order to exploit this complex genetic disorder (Bartesaghi et al., 

2011; Herault et al., 2017). Several chromosomal rearrangements and 

modifications have occurred over the evolutionary time that separate mice and 

humans. Thus, the human chromosome 21 has three orthologous regions on 

mouse chromosomes 16, 17 and 10, as shown in Figure 4 (Herault et al., 2017). 

Most of the murine genes that are homologous to humans reside on Mmu16 

(102), Mmu17 (19) and the rest on Mmu 10 (37) (Gupta et al., 2016).  

 

 
Figure 4. The human chromosome 21 (Hsa21) is represented at the top. Below the orthologous 

regions found on mouse chromosome 16 (Mmu16, orange), 10 (Mmu10, red) and 17 (Mmu 17, 
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green) are shown. Several genes homologous to Hsa21 in the Down syndrome critical region are 

indicated below each murine chromosome. The humanized Tc1 mouse model is represented in 

dark green below the Hsa21. Below the murine chromosomes there are several examples of DS 

mouse models. For each mouse model the part of Down syndrome critical region incorporated in 

each mouse model (different color) is reported (Herault et al., 2017). 

 

The first effort in DS mouse modelling was attempted by Gropp et al. in 1975. 

Gropp et al. developed a mice with full trisomy of chr 16, Ts16, (Gropp, Kolbus 

& Giers, 1975). This model is limited due to its embryonic lethality and, 

importantly, they do not model DS phenotype because the bulk of triplicated 

genes derive from Mmu16 regions not homologous to Hsa21 (Webb, Brown & 

Anderson, 1998).  

 

The field of DS preclinical research progressed by the discovery (1990) and 

phenotypic characterization (1995) of the Ts65Dn mouse (Davisson et al., 1990; 

Reeves et al., 1995). This model shows a segmental (partial) trisomy of Chr16 

generated by a Robertsonian translocation (as a consequence of exposure to 

radiation). Ts65Dn mice bear the extra copy of chromosome 16 (Mmu 16) 

translocated onto a small Mmu17 segment. The triplicated Mmu16 includes 90 

conserved protein-coding genes that are orthologous to Hsa21 (Choong et al., 

2015; Gupta et al., 2016). Ts65Dn mice are trisomic for around the 55% of the 

orthologous genes on Hsa21, but are also trisomic for a large number of genes 

that are not orthologs of Hsa21 genes (Gupta et al., 2016). These mice 

recapitulate many features similar to DS individuals since embryonic life stages 

and then in adulthood (Stagni et al., 2018). For these reasons, in the last decades 

the Ts65Dn mouse line has been widely used to investigate DS and has provided 

many important understandings in this research field (Bartesaghi et al., 2015).  
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Ts65Dn mice phenotype is characterized by postnatal developmental delay 

starting from a reduced birth weight, skeletal malformations, muscular trembling, 

and, in adulthood, male sterility (Galdzicki & Siarey, 2003).  

Similarly to humans, the Ts65Dn mouse line shows several neurodevelopmental 

alterations, the majority summarized in Figure 5 and described in the following 

paragraph. Indeed, Ts65Dn mice exhibit a reduced brain size and a widespread 

cell paucity immediately after birth (since the post-natal day 2, P2) in the 

hippocampus, DG, SVZ, striatum, thalamus, neocortex and cerebellum 

(Belichenko et al., 2004; Bianchi et al., 2010; Giacomini et al., 2015; Guidi et al., 

2014; Lorenzi & Reeves, 2006).  

 

 
 
Figure 5. Major brain alterations in euploid and trisomic brain in the Ts65Dn animal model. 

These features recapitulate the human Down syndrome brain phenotype. Image modified from 

Bartesaghi et al., 2011. 

As in humans, the hypocellularity that characterized Ts65Dn brain is associated 

with a widespread neurogenesis impairment ascribed to an impaired proliferation 

of neural progenitor cells (Stagni et al., 2018).  
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The neurogenic-to-gliogenic shift is observed also in Ts65Dn mice. Contestabile 

et al., showed an increased number of cells with an astrocytic phenotype in the 

DG of young Ts65Dn mice (P 30) compared to age-matched euploid mice 

(Contestabile et al., 2007; Lee et al., 2016). Furthermore, in these mice an 

increased inhibitory-excitatory neuron ratio is observed in the cortex and in the 

Cornu Ammonis field 1 (CA1) of Ts65Dn mice at P8 and P15 (Chakrabarti et al., 

2010). Studies observed dendrite and spine abnormalities in density and shape in 

young Ts65Dn mice. 45-day-old Ts65Dn mice show hypotrophic dendritic trees 

in the DG granule cells compared to age-matched mice and 10-week-old Ts65Dn 

mice show fewer and shorter dendritic branches in pyramidal cells (Dierssen et 

al., 2003; Pollonini et al., 2008). In parallel, in adult Ts65Dn the synaptic density 

is significantly impaired in the DG, CA1 and CA2 of hippocampus if compared 

with euploid mice (Ayberk Kurt et al., 2004). As in humans, reduced BDNF 

levels were detected in the hippocampus of 15-day-old Ts65Dn mice (Bianchi et 

al., 2010). 

Importantly, young adult Ts65Dn mice exhibit impairment in learning and 

memory. They show abnormalities in hippocampal synaptic plasticity and 

hyperactivity under certain experimental condition. These defects are associated 

with a defective long-term potentiation (LTP), ascribed to a decrease in the 

density of N-methyl-D-aspartate (NMDA) receptors, and depression (LTD) 

(Contestabile et al., 2010). Similar to DS child, studies showed sensor and motor 

alterations in DS mice since the birth, maintained during adulthood: 4-6-month-

old Ts65Dn mice show impaired motor functions (Costa et al., 2010).  

As in humans, APP protein expression is upregulation from embryonic day 15 in 

Ts65Dn mouse cerebral cortex. In adulthood these mice exhibit the signs that are 

considered the onset of Alzheimer’s disease: degeneration of cholinergic basal 

forebrain neurons and impaired cholinergic system (Galdzicki & Siarey, 2003).  
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Despite its importance, Ts65Dn mice have some limitations. At first, as 

previously introduced, the animal bears the triplication of several genes that are 

non-DS-related (Reinholdt et al., 2011). Second, since Ts65Dn males are sterile 

(Moore et al., 2010) the colony is usually expanded only by using Ts65Dn dams. 

This aspect can affect pups determining developmental abnormalities that are 

independently from the trisomy (Bartesaghi et al., 2015, 2011; Herault et al., 

2017; Stagni et al., 2018). 

 

Another model of partial trisomy 16 is the Ts1Cje , created by Sago et al.  Ts1Cje 

are mice trisomic for a small region of Mmu 16, containing 79 gene orthologous 

to Hsa21. As for Ts65Dn mice, this model exhibits learning and behavioral 

disabilities, but these deficits are less severe than those of Ts65Dn. Studies 

showed basal forebrain cholinergic neuron degeneration also in these mice 

(Bhattacharyya & Svendsen, 2003; Villar et al., 2005).  

 

In the last two decades the field of DS mouse modelling changed significantly 

with the advent of two lines: the chromosome engineered and the 

transchromosomic mice, that are transgenic animals bearing a chromosome 

isolated from a different species. Indeed, in 2005 O’Doherty et al. published the 

first transchromosomic DS model, namely Tc1 (formally called 

Tc(Hsa21)1TybEmcf) (O’Doherty et al., 2005). These animals contain 269 genes 

of the Hsa21, including those gene orthologous located on Mmu17, 16 and 10 

that are not present in Ts65Dn and Ts1Cje (O’Doherty et al., 2005). However, 

the biggest disadvantage of Tc1 mice is that they develop mosaicism in different 

tissues (Herault et al., 2017). 
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1.4. Focus on cell types involved in Down syndrome pathophysiology 

1.4.1 Neural progenitor cells 

Stem cells are defined as “pluripotent cells able to self-renew and to differentiate 

into other cell types in tissues and organs” (Li & Zhao, 2008). The behavior and 

fate of stem cells can be affected by their location and by signals released in the 

niche, a specific microenvironment where stem cells can exist also as progenitor 

cells (Romito & Cobellis, 2016). 

In the Central Nervous System (CNS) neural progenitor cells (NPC) are able to 

self-renew and to differentiate into neurons, astrocytes and oligodendrocytes. 

NPC can be found widespread in the developing fetal brain whereas in the 

neonatal, but especially in the mature adult brain, NPC are mainly restricted into 

the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate 

gyrus of hippocampus (Bernabeu-Zornoza et al., 2019; Bortolotto et al., 2017; 

Meneghini et al., 2010; Valente et al., 2012).  

 

Several studies investigated whether trisomy 21 affects progenitor cells during 

fetal development. Liu et al. performed a systematic review of the literature, both 

in DS individuals and in DS mouse models. They showed that trisomy 21 impairs 

proliferation of different type of progenitor cells, in particular severely impaired 

are neural progenitor cells of trisomic individuals (Figure 6) (Liu et al., 2015). 

 

Figure 6. Impact of trisomy 21 on the proliferation of progenitor cells from different lineages 

during fetal development. As shown in the cartoon, different progenitors can be affected by the 
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trisomy 21 and impact on the development of craniofacial structures, hearth and, importantly, 

brain. Image adapted from Liu et al., 2015. 

Literature data showed that DS brain hypocellularity, already mentioned in 

previous chapters, is associated with a widespread reduction in the NPC 

proliferation rate in several brain regions of DS fetuses (Stagni et al., 2018): the 

ventricular germinal matrix, cerebellum and hippocampus (Contestabile et al., 

2007; Guidi et al., 2008). Studies performed on neural progenitor cells 

differentiated from trisomic induced pluripotent stem cells (iPSCs) derived from 

a DS individual exhibited a reduced proliferation compared to euploid (Murray 

et al., 2015). Moreover, Hibaoui et al. characterized iPSCs from monozygotic 

twins discordant for trisomy 21: also in this case a reduced number of NPC has 

been detected in trisomic cells compared to diploid ones (Hibaoui et al., 2014). 

 

Mice models are helpful for investigating the distribution in space and time of 

the phenotypic defects observed in the trisomic brain. Indeed, similarly to human 

brain the bulk of neurogenesis in mice happens in the VZ and SVZ before birth, 

while in the SGZ it occurs in the two postnatal weeks and continues into young 

adulthood, then decreases with age (Altman & Bayer, 1975, 1990). 

In particular, SVZ is an important postnatal niche that gives rise to granule 

neurons of the olfactory bulbs and cells of the neocortex in the first postnatal days 

(Brazel et al., 2003). In Ts65Dn pups a reduced proliferation rate have been 

detected both in the SVZ at the day post-natal 2 (P2), at P15 (representative 

picture in Figure 7B) (Bianchi et al., 2010; Guidi et al., 2014; Stagni et al., 2016) 

and in the DG at P2, P6 and P15 (representative picture in Figure 7A) 

(Contestabile et al., 2009; Giacomini et al., 2015; Stagni et al., 2018, 2019). 

Moreover, studies showed a strong decreased proliferation also in cerebellar 

precursor cells of P0, P2, P6 Ts65Dn pups (Contestabile et al., 2009; Roper et 

al., 2006). 
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Figure 7. Representative pictures of proliferation impaired in the dentate gyrus (DG, A) and 

subventricular zone (SVZ, B) of euploid and Ts65Dn mice at the post-natal day 15 (P15). A and 

B are immunostained sections for Bromodeoxyuridine (BrdU) (brown), commonly used to detect 

proliferating cells. Sections were counterstained with hematoxylin (pink). Euploid and Ts65Dn 

mice received an injection of BrdU at the day fifteen after birth and then were sacrificed after 2 

h. GR=granular cell layer; H=hilus, SVZ=subventricular zone (from Bianchi et al., 2010). 

 

1.4.1.1 Mechanisms underlying impaired neural progenitor proliferation  

The mechanisms underlying a reduction in the number of neural progenitor cells 

in DS are not totally understood (Liu et al., 2015). Evidence in literature shows 

that cell cycle alterations in DS brain are strictly involved in the impaired NPC 

proliferation (Najas et al., 2015; Salomoni & Calegari, 2010). Cell cycle is 

controlled by cyclin-dependent kinases (CDK), their inhibitors, cyclins and it is 

composed by four different phases: G1, G2, S and M phase. Impaired phases in 

the cell cycle can affect the balance between undifferentiated NPC and NPC 

addressed to a specific phenotype acquisition (Smith & Calegari, 2015). 

Literature data showed an extended G1 phase in DS human fibroblasts (Chen et 

al., 2013). Other studies detected an elongated G2 phase in DG and in ventricular 

germinal layer of DS fetuses compared to age-matched euploid fetuses 

(Contestabile et al., 2007).  

A
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In mice, NPC isolated from the hippocampus and lateral ventricle of Ts65Dn 

embryos exhibit an elongated S phase as well as of the entire cycle (Chakrabarti 

et al., 2007). G1 phase is elongated also in granule precursor cells of Ts65Dn 

neonates if compared with the euploid counterpart (Lorenzi & Reeves, 2006).  

Several data mainly ascribe these mechanisms to the triplicated genes RCAN1, 

DYRK1A, APP and the oligodendrocyte transcription factor 1 and 2 (OLIG1-2) 

(Chakrabarti et al., 2010; Najas et al., 2015; Stagni et al., 2018, 2019). As already 

mentioned, RCAN1 encodes for a protein able to interact with calcineurin A. This 

interaction inhibits the pathway calcineurin-NFATc, axis hypothesized to 

regulate SVZ-derived NPC proliferation and differentiation (Bianchi et al., 

2010). NFATc and the related transcripted genes can be regulated also by 

DYRK1A (Arron et al., 2006; Jung et al., 2011). Interestingly DYRK1A can 

phosphorylate RCAN1 and this event primes RCAN1 phosphorylation mediated 

by GSK3 (Glycogen synthase kinase 3 beta), resulting in RCAN1 increased 

activity (Coronel et al., 2019). Since GSK3 is overactivated in DS brain, in 

conjugation with DYRK1A and RCAN1, it may inhibit NFAT activity (Stagni et 

al., 2018).  

Moreover, at GW 14 and GW 18 OLIG2 is overexpressed in DS frontal cortex. 

Studies showed OLIG2 overexpression also in human NPC differentiated from 

iPSCs derived from a DS patient compared with euploid NPC (Chakrabarti et al., 

2010; Lu et al., 2012). In particular, in human trisomic NPC an impaired 

proliferation rate matches with increased OLIG2 expression (Lu et al., 2012).  

To make this picture more complex, the increased APP levels detected in DS 

brain negatively affect cell proliferation. Data suggested that this mechanism is 

due to increase in APP intracellular fragment (AICD), obtained by APP 

processing. Excessive levels of AICD may interfere with GSK3 signaling and 

Sonic Hedgehog (SHH) pathway, involved in stem cell proliferation. Thus, 
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increased AICD levels determine the consequent increase of the protein patched 

homolog 1 (PTCH1), a repressor of the mitogenic SHH (Trazzi et al., 2011). 

 

1.4.1.2 Mechanisms underlying impaired neural progenitor phenotype 

acquisition  

Neurons, astrocytes and oligodendrocytes are cells that compose the human 

forebrain, derived from the VZ and SVZ, and, at first, neurons are generated, 

followed by astrocytes and oligodendrocytes (Sauvageot & Stiles, 2002).  

As previously mentioned, in Down syndrome neuronal phenotype acquisition is 

defective, and trisomic NPC show a shift toward an astroglial phenotype, 

observed since the earliest stages of life. The quantification of the number of 

astrocytes (GFAP+) and of the mature neurons (NeuN+) in DS fetal hippocampi 

showed fewer neurons and more astrocytes compared to euploid fetuses (Guidi 

et al., 2008). Also in vitro, trisomic NPC differentiated from iPSCs spontaneously 

give rise to more astrocytes (S100 +) and fewer neurons (betaIII-Tubulin+). 

Moreover, these neurons exhibit a decreased neurite length (Chen et al., 2014a; 

Hibaoui et al., 2014). 

Even in DS mouse models the NPC phenotype acquisition is altered. Indeed, an 

imbalance between neurons and astrocytes is observed in cultures of SVZ-

derived NPC from Ts65Dn pups (Stagni et al., 2019; Trazzi et al., 2011) and in 

the DG and cerebellum of young adult Ts65Dn mice (Ishihara et al., 2010; Stagni 

et al., 2016). 

Different intracellular pathways may play a role in the DS dysregulated 

phenotype acquisition. In particular, a key role seems to be played by the Janus 

kinase-signal transducer and activator (JAK-STAT). JAK-STAT activator 

ligands and receptors are overexpressed in DS brain (Bonni et al., 1997; Trazzi 

et al., 2013). Studies suggested that the overstimulation of this pathway is linked 

to the triplicated genes DYRK1A and APP: APP enhances the activity of JAK-
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STAT and increases GFAP levels in Ts65Dn NPC derived from P2 pups (Trazzi 

et al., 2013). Further studies showed that gliogenesis may be affected by the 

interaction between JAK-STAT signaling and NOTCH (Taylor et al., 2007) 

which is activated in DS and affected by APP (Fischer et al., 2005). 

 

1.4.2 Astrocytes 

Astrocytes display several functions such as modulation of neuronal plasticity, 

synaptic maturation and pruning, ionic homeostasis and, importantly, a trophic 

function to support neuronal activity (Dossi et al., 2018; Sidoryk-Wegrzynowicz 

et al., 2011; Vasile et al., 2017). In recent years novel insights have been gained 

about the role of astrocytes in normal brain and in pathological condition, as 

summarized in Figure 8. Indeed, astrocytes in intellectual disabilities show an 

altered astrocytic morphology (increased GFAP levels), a defective secretion of 

trophic signals, impaired synaptic pruning, ionic homeostasis and an altered 

glutamate sensing and clearance (Figure 8) (Chen et al., 2014b; Cresto et al., 

2019; Vacca et al., 2019) 

 

Figure 8. Astrocytes in physiology (left, green) and in intellectual disabilities (right, orange) 

(Cresto et al., 2019) 
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In particular, DS astrocytes are not only more abundant, proliferative and mature 

in their morphology (Zdaniuk et al., 2011), but their functions are altered. Chen 

et. al studied both DS astrocytes and DS neurons obtained from iPSCs isolated 

from DS individuals, compared with euploid cells. They demonstrated that DS 

astrocytes exhibit lower levels of synaptogenic molecules and higher levels of 

reactive oxygen species (ROS). This reactive state has been hypothesized to 

disrupt astrocyte homeostasis hampering their ability to promote maturation and 

support to neurons (Chen et al., 2014). Furthermore, evidence in literature 

showed an aberrant calcium signaling (more frequent) and increased Ca2+ 

fluctuations both in astrocytes derived from DS iPSCs and in DS mouse models. 

Elevated Ca2+ levels are hypothesized to reduce neuronal excitability in DS 

(Cresto et al., 2019; Mizuno et al., 2018). 

 

1.4.2.1 Non-cell autonomous regulation of neural progenitor cells  

Astrocytes are secretory cells able to secrete a wide array of hormones, 

neurotransmitters and metabolic, trophic factors. Release occurs through several 

distinct pathways that include diffusion through channels, controlled exocytosis 

and transporter translocation (Verkhratsky et al., 2016). These molecules exhibit 

important functions such as the formation of functional synapses (Araujo et al., 

2018) or neurogenesis, mediated, for example by BDNF, S100B and 

thrombospondins (Clarke & Barres, 2013; Cvijetic et al., 2017). Cvijetic et al. 

recently revealed first evidence of the complex signaling system implicated in 

the cross-talk between NPC and astrocytes, identifying novel pathways that can 

affect progenitors in a non-cell autonomous way (Cvijetic et al., 2017). 

Taking into account this information, an important aspect that recently emerged 

is that DS astroglia presents functional alterations (Chen et al., 2014b) that may 

affect NPC and their progeny. To support this hypothesis Chen et al. showed that 

the media collected from human trisomic astrocytes (astrocyte conditioned 
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media-ACM) reduces human trisomic NPC neuronal differentiation (reduced 

levels of ßIII+ cells) and neurite length of trisomic neurons compared with 

trisomic cells treated with control media (Chen et al., 2013; Cresto et al., 2019). 

Furthermore, Garcia et al., demonstrated that a key astrocyte secreted molecule, 

thrombospondin-1 (TSP-1), is defective both in the secretome of DS human fetal 

astrocytes and in DS fetal brain (Garcia et al., 2010; Torres et al., 2018). 

Moreover, defective TSP-1 levels impair the development and morphology of 

dendritic spine in neurons from newborns rat. Indeed, addition of exogenous 

TSP-1 on neurons positively modulated astrocyte-mediated spine and corrected 

synaptic alterations (Garcia et al., 2010). All together these data highlight a 

potential role of TSP-1 in DS spine pathology (Torres et al., 2018). 

 

TSP-1 is a calcium-binding protein that participates in cellular responses to 

injury, cytokines and growth factors (Chen et al., 2000). This protein plays a role 

in adult NPC proliferation and differentiation (Lu & Kipnis, 2010), 

synaptogenesis and spine formation (Eroglu et al., 2009; Garcia et al., 2010; 

Risher & Eroglu, 2012).  

 

Figure 9. Representative structure of Thrombospondin 1. Type I, II, III are different binding 

sites. For each domain are indicated the TSP-1 interactors. The asterisk (*) indicates the number 

of bounded calcium ions (Resovi et al., 2014). 
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As shown in Figure 9, TSP-1 contains different domains involved in the 

interaction with a multiplicity of receptors and ligands (Chen et al., 2000; Resovi 

et al., 2014). Worthy of attention is the α2δ-1 subunit of neuronal voltage-

sensitive calcium channels (Dolphin, 2013). Recent evidence show that 

astrocytes control excitatory synaptogenesis by TSP-1 which functions via the 

α2δ-1 subunit independently from calcium channels (Dolphin, 2018; Eroglu et 

al., 2009). 

Furthermore, this subunit is important since the antiepileptic and neuropathic 

pain drugs pregabalin (PGB) and gabapentin (GBP) bind α2δ-1 (Eroglu et al., 

2009; Valente et al., 2012). A recent study showed that α2δ-1 is expressed on the 

surface of neural progenitor cells isolated from wild type mice and, through its 

binding, PGB and GBP are able to promote adult hippocampal neurogenesis, both 

in vitro and in vivo (Valente et al., 2012). Thus, this study gave the first evidence 

of a proneurogenic effect mediated via α2δ-1 (Valente et al., 2012).  

 

TSPs are known as molecules able to regulate the actin cytoskeleton that, as 

already mentioned, is involved in formation and remodeling of dendrites and 

synapses (Risher & Eroglu, 2012). Importantly, recent evidence showed that 

TSP-1/α2δ-1 interaction control synaptogenesis postsynaptically via Rac1. Rac1 

is a small GTPase that belongs to the Rho family GTPases, proteins that control 

spine morphology and number (Risher & Eroglu, 2012). As shown in Figure 10, 

Rac1 exists in two forms: an inactive form (GDP-bound) and an active form 

(GTP-bound). The transition between the two forms is mediated by two catalytic 

factors, the GTPase-activating proteins (GAPs) and the guanine exchange factors 

(GEFs) (Tejada-Simon, 2015). The relationship between Rac1 inactivated and 

activated state is important for proper interaction of Rac1 with other targets 

downstream the signaling pathway. As summarized in Figure 11, Rac1 is 

important for several brain functions, including learning and memory and 
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dendritic spine development. Indeed, Rac1 alterations are described in different 

neurodegenerative diseases, including Alzheirmer’s disease (Désiré et al., 2005; 

Kikuchi et al., 2019; Risher et al., 2018).  

 

 

Figure 10. Graphical representation of key players in activation and membrane translocation 

for the small GTPase Rac1. In the orange field are listed several function that are ascribed to 

Rac1 activity in the brain. (Image modified from Tejada-Simon, 2015). 

 

1.5. Potential therapeutic approaches proposed in Down syndrome 

As already introduced, DS brain, both human and mouse, shows a constellation 

of defects involved in the cognitive impairment. The investigation of these 

defects is the starting point to find the rational basis to devise therapies that may 

correct DS brain developmental defects. Indeed, in the last decades, intense 

efforts have been carried out to identify pharmacotherapies and/or 

neurobiological factors known to positively affect brain of DS individuals and to 

potentially improve one or more DS-linked brain phenotype (Stagni et al., 2015). 

Mostly of these studies have been performed using the Ts65Dn mouse model 

(Gupta et al., 2016).  

A key issue in the field is the optimum timing for drug administration in DS. 

Indeed, most of the attempts to pharmacologically correct DS-brain linked 
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defects have been made in adult mice. However, neurodevelopmental defects, 

both in human and in mice, are already detectable at fetal life stages. As 

represented in Figure 11 the bulk of neurogenesis occurs before birth, both in 

humans and mice. DG and cerebellum represent two exceptions: while in the DG 

neurogenesis continues throughout life, in the cerebellum stops after the first 

post-natal period. In this picture, adult therapies may relatively affect brain 

(hippocampal neurogenesis and circuitry), while perinatal (neonatal and prenatal) 

therapies may potential affect and correct overall brain development (Guidi et al., 

2014; Stagni et al., 2015) (see chapter about NPC alterations in DS). Overall 

these data suggest that perinatal therapies that target neural progenitor cell 

alterations may be the potential optimal interventions in DS. Indeed, proof of 

concept studies showed that DS brain defects can be pharmacologically corrected 

in the animal model, if the therapy is administered in the perinatal period (Bianchi 

et al., 2010; Guidi et al., 2014; Nakano-Kobayashi et al., 2017; Stagni et al., 

2015). These corrections can be maintained through individual life span. In the 

following chapters, some examples of drugs that have been tested in DS animal 

model will be summarized. 
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Figure 11. Timeline of brain development in mouse (A) and human (B). CB, cerebellum; CX, 

neocortex; DG, dentate gyrus; E, embryonic; F, fetal; M, month; P, post-natal; W, week  

(Stagni et al., 2015) 

1.5.1 Lithium 

Lithium chloride (LiCl) is the first-line treatment for bipolar disorder. The 

molecular mechanisms of LiCl are not known in detail, studies demonstrated that 

lithium acts in part inhibiting the activity of GSK3 and modulating Wnt/β-

catenin pathway (Pasquali et al., 2010). GSK3 antagonizes the Wnt signaling 

pathway and is upregulated in DS brain (Granno et al., 2019; Stagni et al., 2018; 

Zhang et al., 2019).  

Contestabile et al. showed that administration of a diet containing LiCO3 (2.4 

g/kg) for 1 or 4 weeks in 5-6-month-old Ts65Dn mice promotes the proliferation 

of NPC through the activation of the Wnt/-catenin pathway. The treatment is 
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able to restore neurogenesis in the DG of these mice to physiological levels, 

completely rescuing the synaptic plasticity of newborn neurons and recovering 

mice cognitive performances (Contestabile et al., 2013). In agreement with these 

findings, Bianchi et al., demonstrated that administration for 1 month of lithium 

(2.4 g/kg of LiCO3 in the food pellets) fully restores SVZ and DG proliferation 

in 12-month-old Ts65Dn mice (Bianchi et al., 2010b). Despite these interesting 

data in adult trisomic mice, in clinic the treatment with lithium is associated with 

many side effects [including gastrointestinal side effects, polyuria, tremor, 

weight gain, dermatological effects (Gitlin, 2016)]. Bartesaghi et al. tried a 

neonatal treatment with LiCl in Ts65Dn pups. In detail, they gave lithium to 

trisomic mothers in order that pups should receive the drug through the milk, but 

lithium had a lethal effect on the offspring (Bartesaghi et al., 2011).  

Despite its interesting effects in preclinical models, overall experimental data 

exclude the possibility of using lithium in patients. 

 

1.5.2 Fluoxetine 

Fluoxetine is an antidepressant that acts as a selective serotonin reuptake inhibitor 

(SSRI). This drug is largely prescribed in clinic for adult patients, but also for 

children and adolescents (Boylan et al., 2007).  

5-hydroxytryptamine (5-HT, also named serotonin) is one of the major 

neurotransmitters of the CNS. Serotonin is essential for brain development since 

the earliest fetal stages and the serotoninergic system is shown to be altered both 

in DS fetuses and mice (Whittle et al., 2007). 

Guidi et al. demonstrated that a prenatal treatment with fluoxetine in pregnant 

Ts65Dn mice (10 mg/kg, daily subcutaneous injection, from E10 to birth) is able 

to fully rescue DS brain abnormalities and behavioral deficits (Guidi et al., 2014). 

Furthermore, Bianchi et al. showed that fluoxetine modulates cell survival, 
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increases neurogenesis and dendritic development in the DG (Bianchi et al., 

2010), restores functional connectivity of hippocampal synapses and 

hippocampus-dependent learning in Ts65Dn pups treated only during the two 

postnatal weeks (5 mg/kg from P3 to P7; 10 mg/kg from P8 to P15, daily 

subcutaneous injection) (Bianchi et al., 2010; Guidi et al., 2014). In addition, 

Stagni et al. observed that the beneficial effects of a neonatal treatment with 

fluoxetine endure in 45-day-old Ts65Dn mice, rescuing cognitive impairment in 

adulthood (Stagni et al., 2015). 

These results represented a breakthrough in DS preclinical research, since they 

showed that DS neurodevelopmental impairments can be pharmacologically 

corrected by a perinatal intervention. These corrections rescue cognitive 

impairment in DS mice. Based on these findings, fluoxetine has been suggested 

as a potential prenatal therapy in rescuing fetal DS brain defects and dysfunctions 

(Kuehn, 2016). In 2014 the University of Texas Southwestern Medical Center 

approved a pilot study in pregnant mothers to investigate whether fluoxetine is 

effective in rescue cognitive impairments in DS fetuses, no information about 

this trial is yet available (Stagni et al., 2015). 

Despite the really encouraging evidence obtained in the animal model, several 

adverse effects have been reported both in patients and mouse model of 

depression after long term treatment with this drug, including dizziness, nausea, 

headache and lipid metabolism abnormalities (Pan et al., 2018; Riediger et al., 

2017). Furthermore, treatment with fluoxetine during pregnancy can affect the 

normal heart development of fetuses (Daud et al., 2016). 

 

1.5.3 Epigallocathechin-3-gallate 

In the past few years a lot of interest has been raised up in polyphenols. 

Polyphenols are phytochemicals produced by plants as secondary metabolites in 
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response to stress conditions. Epigallocatechin-3-gallate (EGCG) is a flavonoid 

of green tea extracts. The antioxidant activity and the inhibition of DYRK1A 

seems to be the potential mechanisms of action of EGCG in DS (Pons-Espinal et 

al., 2013; Thomazeau et al., 2014). Indeed, Valenti et al. showed that EGCG (20 

µM) restores mitochondrial energy deficits observed in peripheral cells isolated 

from DS individuals (Valenti et al., 2013).  

Stagni et al. demonstrated that neonatal administration of ECGC (25 mg/kg, daily 

subcutaneous injection from P3 to P15) corrects many DS-associated brain 

alterations at P15, but does not elicit durable effects in the hippocampus when 

measured at P45 (Stagni et al., 2016). 

Catuara-Solarz et al. reported that green tea extracts containing EGCG (green tea 

extract, 45% EGCG) in combination with environmental enrichment for 30 days 

in 1-2-month-old Ts65Dn mice, enhances dendritic spine density in Cornu 

Ammonis field 1 (CA1) and stabilizes the proportion between excitatory and 

inhibitory synaptic markers in the DG and CA (Catuara-Solarz et al., 2016).  

In 3-month-old Ts65Dn mice EGCG (2-3 mg/day, 30 day treatment) normalizes 

DYRK1A activity, restores brain plasticity and partially rescues learning and 

memory (De la Torre et al., 2014). EGCG (20 µM) improves proliferation of 

adult hippocampal NPC isolated from 6/8-week-old Ts65Dn mice and restores 

the defective mitochondrial biogenesis (Valenti et al., 2016).  

Despite this evidence, other scientific reports suggested that the administration 

of 10 mg/kg/day of pure stabilize ECGC failed to improve learning and memory 

in Ts65Dn young mice (treatment from P24 to 3-7 weeks after birth) (Stringer et 

al., 2015; Vacca et al., 2019b).  

However, in the recent years EGCG has been proposed as a drug candidate for 

treatment of DS (Valenti et al., 2016). This treatment appears suitable for clinical 

applications due to the positive effects detected in the animal models and the low 

toxicity measured after long term treatments (Isbrucker et al., 2006). Based on 
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these data, recently, De la Torre et al. proved that the treatment with EGCG in 

young DS individuals (9 mg/kg/day, 6 month treatment) improves adaptive 

behavior and some specific memory skills compared to placebo-treated patients 

(De la Torre et al., 2014; De la Torre & Dierssen, 2012). At present, a new clinical 

trial in young DS patients (10 mg/kg/day, 6-12 years old DS and fragile X 

patients), started in January 2018, is ongoing. This trial aims at evaluating EGCG 

safety and tolerability in DS children and young DS adolescents and investigate 

whether EGCG affects cognitive performances. Trial information are available 

at clinicaltrials.gov/show/NTC03624556 (PERSEUS).  

 

1.5.4 Diet supplementation 

In the past years diet supplementations raised up interest in the scientific 

community since several studies indicated that DS individual are deficient of 

micronutrients such as vitamins, amino acids and enzymes.  

As already mentioned, a common feature between DS individuals and DS mice 

is the degeneration of basal forebrain cholinergic neurons (BFCN) (Bartesaghi et 

al., 2011; Sago et al., 1998). Cholinergic neurons provide acetylcholine, a key 

neurotransmitter in brain (Stagni et al., 2015). Studies showed that the 

administration of choline in Ts65Dn mice during pregnancy (25 mM in drinking 

water, starting at the embryonic day, E1) and continued during lactation (up to 

P21) increases BFCN and cognitive performances in the offspring (evaluated at 

the age of 6 months) (Moon et al., 2010). Moon et al. suggested that choline 

mechanism of action should be mediated via epigenetic regulation or targeting 

the phospholipid composition of membranes (Moon et al., 2010) 

However, despite clinical trials conducted in early infants using diet 

supplementations are available, at present no one showed an improvement either 

in cognitive functions or in psychomotor development (Vacca et al., 2019). 
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1.6. Phenotypic drug screening and the drug repurposing strategy 

At present drug discovery in DS is mainly focused in early pharmaceutical 

interventions and development of appropriate outcome measures (Hart et al., 

2017), but as already introduced, there are no approved pharmacotherapies to 

treat DS brain alterations so far (Kazemi et al., 2016).  

 

The goal of drug discovery is to develop efficacious and safe therapeutics to treat 

human diseases, but develop new human therapeutics is a lengthy, costly process 

with an attrition rate > 90%. Drug screening is one of the mostly used process 

that allows the identification and the optimization of potential drug candidates to 

progress into clinical trials (Croston, 2017). In particular, there are two main 

ways to perform a screening campaign, through a target based or a phenotypic-

based approach. In the past 25 years, molecular target-based drug screening has 

become the most commonly used technology in pharmaceutical industry and 

academia. This approach is based on the knowledge of a dysfunctional molecular 

target and/or mechanism of action (Zheng et al., 2013). However, recently the 

interest in phenotypic screening has been renewed. In detail, a phenotype is 

defined as any type of observation or biochemical/physical characteristic of an 

organism, such as the heart rate in a zebrafish (Williams & Hong, 2016) or in a 

cell system, the cell proliferation rate (Yin et al., 2017). These phenotypes can be 

used as read out in the process of drug discovery. Thus, phenotypic drug 

screening, also called ‘forward pharmacology’ or ‘classical pharmacology’ 

(Takenaka, 2008; Vogt & Lazo, 2005), is an appealing strategy because it does 

not need an a priori knowledge of a target or a molecular mechanism of action 

but it is usually associated with features of the disease, that may be exploited to 

develop a cell-based assay (Aulner et al., 2019). In particular, primary cell 

cultures can be used in phenotypic drug screening campaigns in order to achieve 

more physiologically relevant results (Yin et al., 2017; Zheng et al., 2013). 
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In the past years, the pharmaceutical industry invested a lot of money in the 

search for new molecular entities, but, as mentioned before, the process of 

identification of new drugs is costly, time consuming and with high attrition rate 

(Pushpakom et al., 2018). Since 2000, some industries changed their strategies 

investing energies also in drug repurposing. Drug repurposing or repositioning 

consists in finding new pharmacological indications for approved drugs. This 

approach is useful to bypass the long, risky and really expensive preclinical 

phase. In such regard drug repurposing is a potentially successful strategy that 

may help discovering effective therapies in orphan diseases, since relying on 

approved drugs with established bioavailability/safety profiles in humans (Clout 

et al., 2019).  

This approach is particularly attractive and it could be a winning strategy when, 

in preclinical research, it is associated with a phenotypic drug screening, 

especially in the CNS therapeutic area that exhibits the lowest success rates in 

research and development (Clout et al., 2019).  

The most famous example of drug repositioned was Sildenafil in 1998, approved 

for hypertension, then repositioned for erectile dysfunction (Kim, 2015). In the 

nervous system pharmacotherapies one other example is the anticonvulsant drug 

gabapentin repositioned as analgesic in neuropathic pain (Reaume, 2011).   



  

 45 

1.7 Bibliography 

Altman, J. and Bayer, S. 1975. “Postnatal Development of the Hippocampal Dentate Gyrus Under Normal and 

Experimental Conditions.” Pp. 95–122 in The Hippocampus. Springer US. 

Altman, J.and Bayer, S.A. 1990. “Migration and Distribution of Two Populations of Hippocampal Granule Cell 

Precursors during the Perinatal and Postnatal Periods.” Journal of Comparative Neurology 301(3):365–81. 

Amr, N.H. 2018. “Thyroid Disorders in Subjects with down Syndrome: An Update.” Acta Biomedica 89(1):132–39. 

Antonarakis, S.E. 2017. “Down Syndrome and the Complexity of Genome Dosage Imbalance.” Nature Reviews Genetics 

18:147. 

Antonarakis, S.E., Lyle, R. Dermitzakis, E.T., Reymond, A., and Deutsch, S. 2004. “Chromosome 21 and Down 

Syndrome: From Genomics to Pathophysiology.” Nature Reviews Genetics 5(10):725–38. 

Araujo, B.H S., Kaid, C. De Souza, J.S., Gomes da Silva, S., Goulart, E., Caires, L.C.J., Musso, C.M., Torres, L.B., 

Ferrasa, A., Herai, R., Zatz, M., Okamoto, O.K., and Cavalheiro, E.A. 2018. “Down Syndrome IPSC-Derived 

Astrocytes Impair Neuronal Synaptogenesis and the MTOR Pathway In Vitro.” Molecular Neurobiology 

55(7):5962–75. 

Arron, J.R., Winslow, M.M., Polleri, A., Chang, C.P., Wu, H., Gao, X., Neilson, J.R., Chen, L., Heit, J.J., Kim, S.K., 

Yamasaki, N., Miyakawa, T., Francke, U., Graef, I.A.,  and Crabtree, G.R. 2006. “NFAT Dysregulation by 

Increased Dosage of DSCR1 and DYRK1A on Chromosome 21.” Nature 441(7093):595–600. 

Asim, A., Kumar, A., Muthuswamy, S., Jain,S., and Agarwal, S. 2015. “‘Down Syndrome: An Insight of the Disease.’” 

Journal of Biomedical Science 22(1):41. 

Aula, P., Leisti, J., and von Koskull, H. 1973. “Partial Trisomy 21.” Clinical Genetics 4(3):241–51. 

Aulner, N., Danckaert, A.,  Ihm, J.E., Shum, D., and Shorte, S.L. 2019. “Next-Generation Phenotypic Screening in Early 

Drug Discovery for Infectious Diseases.” Trends in Parasitology 35(7):559–70. 

Ayberk Kurt, M., Ilker Kafa, M., Dierssen, M., and Ceri Davies, D. 2004. “Deficits of Neuronal Density in CA1 and 

Synaptic Density in the Dentate Gyrus, CA3 and CA1, in a Mouse Model of Down Syndrome.” Brain Research 

1022(1–2):101–9. 

Ballard, C., Mobley, W., Hardy, J., Williams, G., and Corbett, A. 2016. “Dementia in Down’s Syndrome.” The Lancet 

Neurology 15(6):622–36. 

Barca, D., Tarta-Arsene, O., Dica, A., Iliescu, C., Budisteanu, M., Motoescu, C., Butoianu, N., and Craiu, D. 2014. 

“Intellectual Disability and Epilepsy in down Syndrome.” Maedica 9(4):344–50. 

Bartesaghi, R., Guidi, S., and Ciani, E. 2011. “Is It Possible to Improve Neurodevelopmental Abnormalities in Down 

Syndrome?” Reviews in the Neurosciences 22(4):419–55. 

Bartesaghi, R., Haydar, T.F., Delabar, J.M., Dierssen, M., Martinez-Cué, C., and Bianchi, D.W. 2015. “New Perspectives 

for the Rescue of Cognitive Disability in down Syndrome.” Journal of Neuroscience 35(41):13843–52. 

Baxter, L.L. 2000. “Discovery and Genetic Localization of Down Syndrome Cerebellar Phenotypes Using the Ts65Dn 

Mouse.” Human Molecular Genetics 9(2):195–202. 

Becker, L.E., Armstrong, D.L.and Chan, F. 1986. “Dendritic Atrophy in Children with Down’s Syndrome.” Annals of 

Neurology 20(4):520–26. 

Belichenko, P.V., Masliah, E., Kleschevnikov, A.M., Villar, A.J., Epstein, C.J., Salehi, A., and Mobley, W.C. 2004. 

“Synaptic Structural Abnormalities in the Ts65Dn Mouse Model of Down Syndrome.” Journal of Comparative 

Neurology 480(3):281–98. 

Benhaourech, S., Drighil, A., and El Hammiri, A.. 2016. “Congenital Heart Disease and down Syndrome: Various Aspects 

of a Confirmed Association.” Cardiovascular Journal of Africa 27(5):287–90. 

Bernabeu-Zornoza, A., Coronel, R., Palmer, C., Monteagudo, M., Zambrano, A., and Liste, I. 2019. “Physiological and 

Pathological Effects of Amyloid-β Species in Neural Stem Cell Biology.” Neural Regeneration Research 

14(12):2035. 

Bhattacharyya, A. and Svendsen, C.N. 2003. “Human Neural Stem Cells: A New Tool for Studying Cortical Development 

in Down’s Syndrome.” Genes, Brain and Behavior 2(3):179–86. 

Bianchi, P., Ciani, E., Contestabile, A., Guidi, S., and Bartesaghi, R. 2010. “Lithium Restores Neurogenesis in the 

Subventricular Zone of the Ts65dn Mouse, a Model for down Syndrome.” Brain Pathology 20(1):106–18. 

Bianchi, P., Ciani, E., Guidi, S., Trazzi, S., Felice, D., Grossi, G., Fernandez, M., Giuliani, A., Calzà, L., and Bartesaghi, 

R. 2010. “Early Pharmacotherapy Restores Neurogenesis and Cognitive Performance in the Ts65Dn Mouse Model 

for down Syndrome.” Journal of Neuroscience 30(26):8769–79. 

Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank, D.A., Rozovsky, I., Stahl, N., Yancopoulos, G.D., and Greenberg, 



  

 46 

M.E. 1997. “Regulation of Gliogenesis in the Central Nervous System by the JAK-STAT Signaling Pathway.” 

Science 278(5337):477–83. 

Bortolotto, V., Bondi, H., Cuccurazzu, B., Rinaldi, R., Canonico, P.L., and Grilli, M. 2019. “Salmeterol, a 2 Adrenergic 

Agonist, Promotes Adult Hippocampal Neurogenesis in a Region-Specific Manner.” Frontiers in Pharmacology 

10. 

Bortolotto, V., Mancini, F., Mangano, G., Salem, R., Xia, E., Del Grosso, E., Bianchi, M., Canonico, P.L., Polenzani, L., 

and Grilli, M. 2017. “Proneurogenic Effects of Trazodone in Murine and Human Neural Progenitor Cells.” ACS 

Chemical Neuroscience 8(9):2027–38. 

Bostelmann, M., Costanzo, F., Martorana, L., Menghini, D., Vicari, S., Lavenex, P.B., and Lavenex, P. 2018. “Low-

Resolution Place and Response Learning Capacities in Down Syndrome.” Frontiers in Psychology 9(OCT). 

Boylan, Kh., Romero, S., and Birmaher, B. 2007. “Psychopharmacologic Treatment of Pediatric Major Depressive 

Disorder.” Psychopharmacology 191(1):27–38. 

Brazel, C.Y., Romanko, M.J., Rothstein, R.P., and Levison, S.W. 2003. “Roles of the Mammalian Subventricular Zone 

in Brain Development.” Progress in Neurobiology 69(1):49–69. 

Campenot, R.B. and MacInnis, B.L. 2004. “Retrograde Transport of Neurotrophins: Fact and Function.” Journal of 

Neurobiology 58(2):217–29. 

Catuara-Solarz, S., Espinosa-Carrasco, J., Erb, I., Langohr, K., Gonzalez, J.R., Notredame, C., and Dierssen, M. 2016. 

“Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning 

Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome.” ENeuro 3(5). 

Chakrabarti, L., Best, T.K., Cramer, N.P., Carney, R.S.E., Isaac, J.T.R., Galdzicki, Z., and Haydar, T.F. 2010. “Olig1 and 

Olig2 Triplication Causes Developmental Brain Defects in Down Syndrome.” Nature Neuroscience 13(8):927–

34. 

Chakrabarti, L., Galdzicki, Z., and Haydar, T.F. 2007. “Defects in Embryonic Neurogenesis and Initial Synapse 

Formation in the Forebrain of the Ts65Dn Mouse Model of Down Syndrome.” The Journal of Neuroscience : The 

Official Journal of the Society for Neuroscience 27(43):11483–95. 

Chan, W.Y., Lorke, D.E., Cheung Tiu, S., and Yew, D.T. 2002. “Proliferation and Apoptosis in the Developing Human 

Neocortex.” Anatomical Record 267(4):261–76. 

Chao, M., Casaccia-Bonnefil, P., Carter, B., Chittka, A., Kong, H., and Yoon, S.O. 1998. “Neurotrophin Receptors: 

Mediators of Life and Death1Published on the World Wide Web on 21 October 1997.1.” Brain Research Reviews 

26(2):295–301. 

Chao, M.Y., Rajagopal, R., and Lee, F.S. 2006. “Neurotrophin Signalling in Health and Disease.” Clinical Science 

110(2):167–73. 

Chen, C., Jiang, P., Xue, H., Peterson, S.E., Tran, H.T., McCann, A.E., Parast, M.M., Li, S., Pleasure, D.E., Laurent, L.C., 

Loring, J.F., Liu, Y., and Deng, W. 2014a. “Role of Astroglia in down’s Syndrome Revealed by Patient-Derived 

Human-Induced Pluripotent Stem Cells.” Nature Communications 5:1–18. 

Chen, H., Herndon, M.E., and Lawler, J. 2000. “The Cell Biology of Thrombospondin-1.” Matrix Biology 19(7):597–

614. 

Chen, J., Lin, J., Tsai, F., and Meyer, T. 2013. “Dosage of Dyrk1a Shifts Cells within a P21-Cyclin D1 Signaling Map to 

Control the Decision to Enter the Cell Cycle.” Molecular Cell 52(1):87–100. 

Choong, X.Y., Tosh, J.L., Pulford, L.J.,  and Fisher, E.M.C. 2015. “Dissecting Alzheimer Disease in down Syndrome 

Using Mouse Models.” Frontiers in Behavioral Neuroscience 9(OCT). 

Chou, F. and Wang, P. 2016. “The Arp2/3 Complex Is Essential at Multiple Stages of Neural Development.” 

Neurogenesis 3(1):e1261653. 

Clarke, L.E. and Barres, B.B. 2013. “Emerging Roles of Astrocytes in Neural Circuit Development.” Nature Reviews 

Neuroscience 14(5):311–21. 

Clout, A.E., Della Pasqua, O., Hanna, M.G., Orlu, M., and Pitceathly, R.D.S. 2019. “Drug Repurposing in Neurological 

Diseases: An Integrated Approach to Reduce Trial and Error.” Journal of Neurology, Neurosurgery and 

Psychiatry. 

Contestabile, A., Benfenati, F., and Gasparini, L. 2010. “Communication Breaks-Down: From Neurodevelopment 

Defects to Cognitive Disabilities in Down Syndrome.” Progress in Neurobiology 91(1):1–22. 

Contestabile, A., Fila, T., Bartesaghi, R., and Ciani, E. 2009. “Cell Cycle Elongation Impairs Proliferation of Cerebellar 

Granule Cell Precursors in the Ts65Dn Mouse, an Animal Model for down Syndrome.” Brain Pathology 

19(2):224–37. 

Contestabile, A., Fila, T., Ceccarelli, C., Bonasoni, P., Bonapace, L., Santini, D., Bartesaghi, R., and Ciani, E. 2007. “Cell 



  

 47 

Cycle Alteration and Decreased Cell Proliferation in the Hippocampal Dentate Gyrus and in the Neocortical 

Germinal Matrix of Fetuses with down Syndrome and in Ts65Dn Mice.” Hippocampus 17(8):665–78. 

Contestabile, A., Greco, B., Ghezzi, D., Tucci, V., Benfenati, F., and Gasparini, L. 2013. “Lithium Rescues Synaptic 

Plasticity and Memory in Down Syndrome Mice.” Journal of Clinical Investigation 123(1):348–61. 

Coronel, R., Lachgar, M., Bernabeu-Zornoza, A., Palmer, C., Domínguez-Alvaro, M., Revilla, A., Ocaña, I., Fernández, 

A., Martínez-Serrano, A., Cano, E., and Liste, I. 2019. “Neuronal and Glial Differentiation of Human Neural Stem 

Cells Is Regulated by Amyloid Precursor Protein (APP) Levels.” Molecular Neurobiology 56(2):1248–61. 

Costa, A.C.S., Stasko, M.R., Schmidt, C., and Davisson., M.T., 2010. “Behavioral Validation of the Ts65Dn Mouse 

Model for Down Syndrome of a Genetic Background Free of the Retinal Degeneration Mutation Pde6brd1.” 

Behavioural Brain Research 206(1):52–62. 

Cresto, N., Pillet, L.E., Billuart, P. and Rouach, N. 2019. “Do Astrocytes Play a Role in Intellectual Disabilities?” Trends 

in Neurosciences 42(8):518–27. 

Croston, G.E. 2017. “The Utility of Target-Based Discovery.” Expert Opinion on Drug Discovery, May 4, 427–29. 

Cuccurazzu, B., Bortolotto, V., Valente, M.M., Ubezio, F., Koverech, A., Canonico, P.L. and Grilli, M. 2013. 

“Upregulation of mGlu2 Receptors via NF-B p65 Acetylation Is Involved in the Proneurogenic and 

Antidepressant Effects of Acetyl-L-Carnitine.” Neuropsychopharmacology 38(11):2220–30. 

Cvijetic, S., Bortolotto, V., Manfredi, M., Ranzato, E., Marengo,E., Salem, R., Canonico, P.L., and Grilli, M. 2017. “Cell 

Autonomous and Noncell-Autonomous Role of NF-B p50 in Astrocyte-Mediated Fate Specification of Adult 

Neural Progenitor Cells.” GLIA 65(1):169–81. 

Daud, A.N.A., Bergman, J.E.H., Kerstjens-Frederikse, W.S., Groen, H., and Wilffert, B. 2016. “The Risk of Congenital 

Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors—Is Pharmacogenetics the Key?” 

International Journal of Molecular Sciences 17(8). 

Davisson, M.T., Schmidt, C. and. Akeson, E.C. 1990. “Segmental Trisomy of Murine Chromosome 16: A New Model 

System for Studying Down Syndrome.” Progress in Clinical and Biological Research 360:263–80. 

Dekker, A.D., Vermeiren, Y., Carmona-Iragui, M., Benejam, B., Videla, L., Gelpi, E., Aerts, T., Van Dam, D., Fernández, 

S., Lleó, A., Videla, S., Sieben, A., Martin, J.J., Blesa, R., Fortea, J., and De Deyn, P.P. 2018. “Monoaminergic 

Impairment in Down Syndrome with Alzheimer’s Disease Compared to Early-Onset Alzheimer’s Disease.” 

Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring 10:99–111. 

Delabar, J. M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J. L., Prieur, M., Noel, B., and Sinet, P. M. 1993. 

“Molecular Mapping of Twenty-Four Features of Down Syndrome on Chromosome 21.” European Journal of 

Human Genetics : EJHG 1(2):114–24. 

Désiré, L., Bourdin, J., Loiseau, N., Peillon, H., Picard, V., De Oliveira, C., Bachelot, F., Leblond, B., Taverne, T., 

Beausoieil, E., Lacombe, S., Drouin, D., and Schweighoffer, F. 2005. “RAC1 Inhibition Targets Amyloid 

Precursor Protein Processing by γ-Secretase and Decreases Aβ Production in Vitro and in Vivo.” Journal of 

Biological Chemistry 280(45):37516–25. 

Dierssen, M., Benavides-Piccione, R., Martínez-Cué, C., Estivill, X., Flórez, J., Elston, G. N. and DeFelipe, J. 2003. 

“Alterations of Neocortical Pyramidal Cell Phenotype in the Ts65Dn Mouse Model of Down Syndrome: Effects 

of Environmental Enrichment.” Cerebral Cortex 13(7):758–64. 

Dolphin, A.C. 2013. “The Α2δ Subunits of Voltage-Gated Calcium Channels.” Biochimica et Biophysica Acta - 

Biomembranes 1828(7):1541–49. 

Dolphin, A.C. 2018. “Voltage-Gated Calcium Channel α 2 δ Subunits: An Assessment of Proposed Novel Roles [Version 

1; Referees: 2 Approved].” F1000Research 7. 

Dossi, E., asile, F., and Rouach, N.2018. “Human Astrocytes in the Diseased Brain.” Brain Research Bulletin 136:139–

56. 

Dowjat, W.K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y.W., and Wegiel, J. 2007. “Trisomy-Driven 

Overexpression of DYRK1A Kinase in the Brain of Subjects with Down Syndrome.” Neuroscience Letters 

413(1):77–81. 

Engidawork, E.and Lubec, G. 2003. “Molecular Changes in Fetal Down Syndrome Brain.” Journal of Neurochemistry 

84(5):895–904. 

Eroglu, Ç., Allen, N.J., Susman, M.W., O’Rourke, N.A., Young Park, C., Özkan, E. Chandrani Chakraborty, Mulinyawe, 

S.B., Douglas Annis, S., Huberman, A.D., Green, E.M., Lawler, J., Dolmetsch, R., Garcia, K.C., Smith, S.J., Luo, 

Z.D., Rosenthal, A., Mosher, D.F., and Barres, B., A 2009. “Gabapentin Receptor Α2δ-1 Is a Neuronal 

Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis.” Cell 139(2):380–92. 

Ferencz, C., Neill, C.A., Boughman, J.A., Rubin, J.D., Brenner, J.I., and Perry, L.W. 1989. “Congenital Cardiovascular 



  

 48 

Malformations Associated with Chromosome Abnormalities: An Epidemiologic Study.” The Journal of Pediatrics 

114(1):79–86. 

Fischer, D.F., van Dijk, R., Sluijs, J.A., Nair, S.M., Racchi, M., Levelt, C.N., van Leeuwen, F.W., and Hol, E.M. 2005. 

“Activation of the Notch Pathway in Down Syndrome: Cross-Talk of Notch and APP.” FASEB Journal : Official 

Publication of the Federation of American Societies for Experimental Biology 19(11):1451–58. 

Freymuth, P.S. and Fitzsimons, H.L. 2017. “The ERM Protein Moesin Is Essential for Neuronal Morphogenesis and 

Long-Term Memory in Drosophila.” Molecular Brain 10(1). 

Galdzicki, Z. and Siarey, R.J. 2003. “Understanding Mental Retardation in down’s Syndrome Using Trisomy 16 Mouse 

Models.” Genes, Brain and Behavior 2(3):167–78. 

Garcia, O., Torres, M., Helguera, P., Coskun, P., and Busciglio, J. 2010. “A Role for Thrombospondin-1 Deficits in 

Astrocyte-Mediated Spine and Synaptic Pathology in Down’s Syndrome” edited by M. B. Feany. PLoS ONE 

5(12):e14200. 

Giacomini, A., Stagni, F., Trazzi, S., Guidi, S., Emili, M., Brigham, E., Ciani, E., and Bartesaghi, R. 2015. “Inhibition of 

APP Gamma-Secretase Restores Sonic Hedgehog Signaling and Neurogenesis in the Ts65Dn Mouse Model of 

Down Syndrome.” Neurobiology of Disease 82:385–96. 

Gitlin, M. 2016. “Lithium Side Effects and Toxicity: Prevalence and Management Strategies.” International Journal of 

Bipolar Disorders 4(1). 

Godfrey, M. and Lee, N.R. 2018. “Memory Profiles in Down Syndrome across Development: A Review of Memory 

Abilities through the Lifespan.” Journal of Neurodevelopmental Disorders 10(1). 

Golden, J.A. and Hyman, B.T. 1994. “Development of the Superior Temporal Neocortex Is Anomalous in Trisomy 21.” 

Journal of Neuropathology and Experimental Neurology 53(5):513–20. 

Granno, S., Nixon-Abell, J., Berwick, D.C., Tosh, J., Heaton, G., Almudimeegh, S., Nagda, Z., Rain, J.C., Zanda, M., 

Plagnol, V., Tybulewicz, V.L.J., Cleverley, K., Wiseman, F.K., Fisher, E.M.C., and Harvey, K. 2019. 

“Downregulated Wnt/β-Catenin Signalling in the Down Syndrome Hippocampus.” Scientific Reports 9(1). 

Griffin, W.S.T., Sheng, J.G., McKenzie, J.E., Royston, M.C., Gentleman, S.M. , Brumback, R.A., Cork, L.C., Del Bigio, 

M.R., Roberts, G.W., and Mrak, R.E. 1998. “Life-Long Overexpression of S100β in Down’s Syndrome: 

Implications for Alzheimer Pathogenesis.” Neurobiology of Aging 19(5):401–5. 

Gropp, A., Kolbus, U., and Giers, D. 1975. “Systematic Approach to the Study of Trisomy in the Mouse. II.” Cytogenetics 

and Cell Genetics 14(1):42–62. 

Guedj, F., Sébrié, C., Rivals, I., Ledru, A., Paly, E., Bizot, J.C., Smith, D., Rubin, E., Gillet, B., Arbones, M., and Delabar, 

J.M. 2009. “Green Tea Polyphenols Rescue of Brain Defects Induced by Overexpression of DYRK1A.” PLoS 

ONE 4(2). 

Guidi, S., Bonasoni, P., Ceccarelli, C., Santini, D., Gualtieri, F., Ciani, E., and Bartesaghi, R. 2008. “Neurogenesis 

Impairment and Increased Cell Death Reduce Total Neuron Number in the Hippocampal Region of Fetuses with 

Down Syndrome.” Brain Pathology 18(2):180–97. 

Guidi, S., Stagni, F., Bianchi, P., Ciani, E., Giacomini, A., De Franceschi, M., Moldrich, R., Kurniawan, N., Mardon, K., 

Giuliani, A., Calzà, L., and Bartesaghi, R. 2014. “Prenatal Pharmacotherapy Rescues Brain Development in a 

Down’s Syndrome Mouse Model.” Brain 137(2):380–401. 

Gupta, M., Dhanasekaran, A.R. and Gardiner, K.J. 2016. “Mouse Models of Down Syndrome: Gene Content and 

Consequences.” Mammalian Genome 27(11–12):538–55. 

El H., Marcus Dittrich, N., Böck, J., Kraus, T.F.J., Nanda, I., Müller, T., Seidmann, L., Tralau, T., Galetzka, D., Schneider, 

E. and Haaf, T. 2016. “Epigenetic Dysregulation in the Developing Down Syndrome Cortex.” Epigenetics 

11(8):563–78. 

Hart, S.J., Visootsak, J., Tamburri, P., Phuong, P., Baumer, N., Hernandez, M.C., Skotko, B.G., Ochoa-Lubinoff, C., 

D’Ardhuy, X.L., Kishnani, P.S., and Spiridigliozzi, G.A. 2017. “Pharmacological Interventions to Improve 

Cognition and Adaptive Functioning in Down Syndrome: Strides to Date.” American Journal of Medical Genetics, 

Part A 173(11):3029–41. 

Herault, Y., Delabar, J.M., Fisher, E.M.C., Tybulewicz, V.L.J., Yu, E., and Brault, V. 2017. “Rodent Models in Down 

Syndrome Research: Impact and Future Opportunities.” DMM Disease Models and Mechanisms 10(10):1165–

86. 

Hibaoui, Y., Grad, I., Letourneau, A., Sailani, M.R., Dahoun, S., Santoni, F.A., Gimelli, S., Guipponi, M., Pelte, M.F., 

Béna, F., Antonarakis, S.E., and Feki, A. 2014. “Modelling and Rescuing Neurodevelopmental Defect of Down 

Syndrome Using Induced Pluripotent Stem Cells from Monozygotic Twins Discordant for Trisomy 21.” EMBO 

Molecular Medicine 6(2):259–77. 

Ilbery, P.L., Lee, C.W., and Winn, S.M. 1961. “Incomplete Trisomy in a Mongoloid Child Exhibiting Minimal Stigmata.” 



  

 49 

The Medical Journal of Australia 48(2):182–84. 

Isbrucker, R.A., Bausch, J., Edwards, J.A., and Wolz., E., 2006. “Safety Studies on Epigallocatechin Gallate (EGCG) 

Preparations. Part 1: Genotoxicity.” Food and Chemical Toxicology : An International Journal Published for the 

British Industrial Biological Research Association 44(5):626–35. 

Ishihara, K., Amano, K., Takaki, E., Shimohata, A., Sago, H., Epstein, C.J., and Yamakawa, K. 2010. “Enlarged Brain 

Ventricles and Impaired Neurogenesis in the Ts1Cje and Ts2Cje Mouse Models of down Syndrome.” Cerebral 

Cortex 20(5):1131–43. 

Jiang, X., and Nardelli, J. 2015. “Cellular and Molecular Introduction to Brain Development.” Neurobiology of Disease 

92(Part A):3–17. 

Jung, M.S., Park, J.H., Ryu, Y.S., Choi, S.H., Yoon, S.H., Kwen, M.Y., Oh, J.Y., Song, W.J., and Chung, S.H. 2011. 

“Regulation of RCAN1 Protein Activity by Dyrk1A Protein-Mediated Phosphorylation.” Journal of Biological 

Chemistry 286(46):40401–12. 

Kazemi, M., Salehi, M., and Kheirollahi, M. 2016. “Down Syndrome: Current Status, Challenges and Future 

Perspectives.” International Journal of Molecular and Cellular Medicine 5(3):125–33. 

Kikuchi, M., Sekiya, M., Hara, N., Miyashita, A., Kuwano, R., Ikeuchi, T., Iijima, K.M., and Nakaya, A. 2019. 

“Disruption of a RAC1-Centred Protein Interaction Network Is Associated with Alzheimer’s Disease Pathology 

and Causes Age-Dependent Neurodegeneration.” BioRxiv 713222. 

Kim, T.W. 2015. “Drug Repositioning Approaches for the Discovery of New Therapeutics for Alzheimer’s Disease.” 

Neurotherapeutics 12(1):132–42. 

Kitamura, T., Saitoh, Y., Takashima, N., Murayama, A., Niibori, Y., Ageta, H., Sekiguchi, M., Sugiyama, H., and 

Inokuchi, K. 2009. “Adult Neurogenesis Modulates the Hippocampus-Dependent Period of Associative Fear 

Memory.” Cell 139(4):814–27. 

Korenberg, J.R., Chen, X.N. , Schipper, R., Sun, Z., Gonsky, R., Gerwehr, S., Carpenter, N., Daumer, C., Dignan, P., and 

Disteche, C. 1994. “Down Syndrome Phenotypes: The Consequences of Chromosomal Imbalance.” Proceedings 

of the National Academy of Sciences 91(11):4997 LP – 5001. 

Kuehn, B.M. 2016. “Treating Trisomies: Prenatal Down’s Syndrome Therapies Explored in Mice.” Nature Medicine 

22(1):6–7. 

Kurt, M. Ayber., D. Cer. Davies, Michael Kidd, Mara Dierssen, and Jesús Flórez. 2000. “Synaptic Deficit in the Temporal 

Cortex of Partial Trisomy 16 (Ts65Dn) Mice.” Brain Research 858(1):191–97. 

De la Torre, Rafael and Mara Dierssen. 2012. Therapeutic Approaches in the Improvement of Cognitive Performance in 

Down Syndrome: Past, Present, and Future. Vol. 197. Elsevier Inc. 

De la Torre, R., De Sola, S., Pons, M., Duchon, A., Martínez de Lagran, M., Farré, M., Fitó, M., Benejam, B., Langohr, 

K., Rodriguez, J., Pujadas, M., Bizot, J.C., Cuenca, A., Janel, N., Catuara, S., Covas, M.I., Blehaut, H., Herault, 

Y., Delabar, J.M., and Dierssen, M. 2014. “Epigallocatechin-3-Gallate, a DYRK1A Inhibitor, Rescues Cognitive 

Deficits in Down Syndrome Mouse Models and in Humans.” Molecular Nutrition and Food Research 58(2):278–

88. 

Langdon-Down, J. 1866. Observations on an Ethnic Classification of Idiots. Vol. 3. 

Lanzoni, M., Kinsner-Ovaskainen, A., and Morris, J. 2019. “Socio-Economic Regional Microscope Series EUROCAT-

Surveillance of Congenital Anomalies in Europe: Epidemiology of Down Syndrome 1990-2014.” Publication 

Office of European Union. 

Lee, H.C., Leng Tan, K., See Cheah, P., and Ling, K.H. 2016. “Potential Role of JAK-STAT Signaling Pathway in the 

Neurogenic-to-Gliogenic Shift in Down Syndrome Brain.” Neural Plasticity 2016. 

Lee, S., Zhang, H., and Webb, D.J. 2015. “Dendritic Spine Morphology and Dynamics in Health and Disease.” Cell 

Health and Cytoskeleton 7:121–31. 

Lejeune, J., Gautier, M. and Turpin R. 1959. “[Study of Somatic Chromosomes from 9 Mongoloid Children].” Comptes 

Rendus Hebdomadaires Des Seances de l’Academie Des Sciences 248(11):1721–22. 

Li, X. and Zhao, X. 2008. “Epigenetic Regulation of Mammalian Stem Cells.” Stem Cells and Development 17(6):1043–

52. 

Liu, B., Filippi, S., Roy, A., and Roberts, I. 2015. “Stem and Progenitor Cell Dysfunction in Human Trisomies.” EMBO 

Reports 16(1):44–62. 

Loane, M., Morris, J.K., Addor, M.C., Arriola, L., Budd, J., Doray, B., Garne, E., Gatt, M., Haeusler, M., Khoshnood, 

B., Melve, K.K., Latos-Bielenska, A., McDonnell, B., Mullaney, C., O’Mahony, M., Queißer-Wahrendorf, A., 

Rankin, J., Rissmann, A., Rounding, C., Salvador, J., Tucker, D., Wellesley, D., Yevtushok, L., and Dolk, H. 

2012. “Twenty-Year Trends in the Prevalence of Down Syndrome and Other Trisomies in Europe: Impact of 

Maternal Age and Prenatal Screening.” European Journal Of Human Genetics 21:27. 



  

 50 

Lorenzi, H.A. and Reeves, R.H. 2006. “Hippocampal Hypocellularity in the Ts65Dn Mouse Originates Early in 

Development.” Brain Research 1104(1):153–59. 

Lott, I.T. 2012. “Neurological Phenotypes for Down Syndrome across the Life Span.” Pp. 101–21 in Progress in Brain 

Research. Vol. 197. Elsevier B.V. 

Lott, I.T. and Dierssen, M. 2010. “Cognitive Deficits and Associated Neurological Complications in Individuals with 

Down’s Syndrome.” The Lancet Neurology 9(6):623–33. 

Lott, I.T. and Head, E. 2019. “Dementia in Down Syndrome: Unique Insights for Alzheimer Disease Research.” Nature 

Reviews Neurology 15(3):135–47. 

Lu, J., Lian, G., Zhou, H., Esposito, G., Steardo, L., Delli-Bovi, L.C., Hecht, J.L., Lu, Q.R., and Sheen., V. 2012. “OLIG2 

Over-Expression Impairs Proliferation of Human down Syndrome Neural Progenitors.” Human Molecular 

Genetics 21(10):2330–40. 

Lu, Z. and Kipnis, J. 2010. “Thrombospondin 1 - A Key Astrocyte-Derived Neurogenic Factor.” FASEB Journal 

24(6):1925–34. 

Lubec, B., Weitzdoerfer, R., and Fountoulakis, M. 2001. “Manifold Reduction of Moesin in Fetal Down Syndrome 

Brain.” Biochemical and Biophysical Research Communications 286(5):1191–94. 

Lyle, R., Béna, F., Gagos, S., Gehrig, C., Lopez, G., Schinzel, A., Lespinasse, J., Bottani, A., Dahoun, S., Taine, L., Doco-

Fenzy, M., Cornillet-Lefèbvre, P., Pelet, A., Lyonnet, S., Toutain, A., Colleaux, L., Horst, J., Kennerknecht, I., 

Wakamatsu, N., Descartes, M.,. Franklin, J.C., Florentin-Arar, L., Kitsiou, S., Aït Yahya-Graison, E., Costantine, 

M., Sinet, P.,  Delabar, J.M., and Antonarakis, S.E. 2008. “Genotype–Phenotype Correlations in Down Syndrome 

Identified by Array CGH in 30 Cases of Partial Trisomy and Partial Monosomy Chromosome 21.” European 

Journal Of Human Genetics 17:454. 

Marin‐Padilla, M. 1976. “Pyramidal Cell Abnormalities in the Motor Cortex of a Child with Down’s Syndrome. A Golgi 

Study.” Journal of Comparative Neurology 167(1):63–81. 

Martínez-Cerdeño, V. and Noctor, S.C.2018. “Neural Progenitor Cell Terminology.” Frontiers in Neuroanatomy 12. 

Mateos, M.K., Draga Barbaric, Sally-Anne Byatt, Rosemary Sutton, and Glenn M. Marshall. 2015. “Down Syndrome 

and Leukemia: Insights into Leukemogenesis and Translational Targets.” Translational Pediatrics 4(2):76–92. 

McKenzie, K., Milton, M., Smith, G., and Ouellette-Kuntz, H. 2016. “Systematic Review of the Prevalence and Incidence 

of Intellectual Disabilities: Current Trends and Issues.” Current Developmental Disorders Reports 3(2):104–15. 

Meneghini, V., Cuccurazzu, B., Bortolotto, V., Ramazzotti, V., Ubezio, F., Tzschentke, T.M., Canonico, P.L., and Grilli, 

M. 2014. “The Noradrenergic Component in Tapentadol Action Counteracts -Opioid Receptor-Mediated 

Adverse Effects on Adult Neurogenesis.” Molecular Pharmacology 85(5):658–70. 

Meneghini, V., Francese, M.T., Carraro, L., and Grilli, M. 2010. “A Novel Role for the Receptor for Advanced Glycation 

End-Products in Neural Progenitor Cells Derived from Adult SubVentricular Zone.” Molecular and Cellular 

Neuroscience 45(2):139–50. 

Mizuno, G.O., Wang, Y., Shi, G., Wang, Y., Sun, J., Papadopoulos, S., Broussard, G.J., Unger, E.K., Deng, W., Weick, 

J., Bhattacharyya, A., Chen, C.Y., Yu, G., Looger, L.L., and Tian, L. 2018. “Aberrant Calcium Signaling in 

Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell Model.” Cell Reports 

24(2):355–65. 

Moon, J., Chen, M., Gandhy, S.U., Strawderman, M., Levitsky, D.A., Maclean, K.N., and Strupp, B.J. 2010. “Perinatal 

Choline Supplementation Improves Cognitive Functioning and Emotion Regulation in the Ts65Dn Mouse Model 

of down Syndrome.” Behavioral Neuroscience 124(3):346–61. 

Moore, C.S., Hawkins, C., Franca, A., Lawler, A., Devenney, B., Das, I., and Reeves, R.H. 2010. “Increased Male 

Reproductive Success in Ts65Dn ‘down Syndrome’ Mice.” Mammalian Genome 21(11–12):543–49. 

Murray, A., Letourneau, A., Canzonetta, C., Stathaki, E., Gimelli, S., Sloan-Bena, F., Abrehart, R., Goh, P., Lim, S., 

Baldo, C., Dagna-Bricarelli, F., Hannan, S., Mortensen, M., Ballard, D., Syndercombe Court, D., Fusaki, N., 

Hasegawa, M., Smart, T.G., Bishop, C., Antonarakis, S.E., Groet, J., and Nizetic, D. 2015. “Brief Report: Isogenic 

Induced Pluripotent Stem Cell Lines from an Adult with Mosaic down Syndrome Model Accelerated Neuronal 

Ageing and Neurodegeneration.” Stem Cells 33(6):2077–84. 

Nadel, L. 2003. “Down’s Syndrome: A Genetic Disorder in Biobehavioral Perspective.” Genes, Brain, and Behavior 

2(3):156–66. 

Najas, S., Arranz, J., Lochhead, P.A., Ashford, A.L., Oxley, D., Delabar, J.M., Cook, S.J., Barallobre, M.J., and Arbonés, 

M.L. 2015. “DYRK1A-Mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic 

Cortical Defects in Down Syndrome.” EBioMedicine 2(2):120–34. 

Nakano-Kobayashi, A., Awaya, T., Kii, I., Sumida, Y., Okuno, Y., Yoshida, S., Sumida, T., Inoue, H., Hosoya, T., and 



  

 51 

Hagiwara, M. 2017. “Prenatal Neurogenesis Induction Therapy Normalizes Brain Structure and Function in Down 

Syndrome Mice.” Proceedings of the National Academy of Sciences of the United States of America 

114(38):10268–73. 

Noble, J. 1998. “Natural History of down’s Syndrome: A Brief Review for Those Involved in Antenatal Screening.” 

Journal of Medical Screening 5(4):172–77. 

O’Doherty, A., Ruf, S., Mulligan, C., Hildreth, V., Errington, M.L., Cooke, S., Sesay, A., Modino, S., Vanes, L., 

Hernandez, D., Linehan, J.M., Sharpe, P.T., Brandner, S., Bliss, T.V.P., Henderson, D.J., Nizetic, D., Tybulewicz, 

V.L.J. and Fisher, E.M.C. 2005. “Genetics: An Aneuploid Mouse Strain Carrying Human Chromosome 21 with 

Down Syndrome Phenotypes.” Science 309(5743):2033–37. 

Ohara, S., Tsukada, M., and Ikeda, S.I. 1999. “On the Occurrence of Neuronal Sprouting in the Frontal Cortex of a Patient 

with Down’s Syndrome.” Acta Neuropathologica 97(1):85–90. 

Pan, S.J., Tan Y.L., Yao, S.W., Xin, Y., Yang, X., Liu, J., and Xiong, J. 2018. “Fluoxetine Induces Lipid Metabolism 

Abnormalities by Acting on the Liver in Patients and Mice with Depression.” Acta Pharmacologica Sinica 

39(9):1463–72. 

Park, J., Oh, Y., Yoo, L., Jung, M.S., Song, W.J., Lee, S.H., Seo, H., and Chung, K.C. 2010. “Dyrk1A Phosphorylates 

P53 and Inhibits Proliferation of Embryonic Neuronal Cells.” Journal of Biological Chemistry 285(41):31895–

906. 

Pasquali, L., Busceti, C.L., Fulceri, F., Paparelli, A., and Fornai., F. 2010. “Intracellular Pathways Underlying the Effects 

of Lithium.” Behavioural Pharmacology 21(5–6):473–92. 

Pelleri, M.C., Cicchini, E., Locatelli, C., Vitale, L., Caracausi, M., Piovesan, A., Rocca, A., Poletti, G., Seri, M., Strippoli, 

P. and Cocchi, G. 2016. “Systematic Reanalysis of Partial Trisomy 21 Cases with or without Down Syndrome 

Suggests a Small Region on 21q22.13 as Critical to the Phenotype.” Human Molecular Genetics 25(12):2525–38. 

Pinter, J. D., Eliez, S., Schmitt, J.E., Capone, G.T. and. Reiss, A.L. 2001. “Neuroanatomy of Down’s Syndrome: A High-

Resolution MRI Study.” American Journal of Psychiatry 158(10):1659–65. 

Pollak, D., Cairns, N. and Lubec, G. 2003. “Cytoskeleton Derangement in Brain of Patients with Down Syndrome, 

Alzheimer’s Disease and Pick’s Disease.” Pp. 149–58 in. 

Pollonini, G., Gao, V., Rabe, A., Palminiello, S., Albertini, G., and Alberini, C.M. 2008. “Abnormal Expression of 

Synaptic Proteins and Neurotrophin-3 in the down Syndrome Mouse Model Ts65Dn.” Neuroscience 156(1):99–

106. 

Pons-Espinal, M., De Lagran, M.M., and Dierssen, M.. 2013. “Environmental Enrichment Rescues DYRK1A Activity 

and Hippocampal Adult Neurogenesis in TgDyrk1A.” Neurobiology of Disease 60:18–31. 

Presson, A.P., Partyka, G., Jensen, K.M., Devine, O.J., Rasmussen, S.A., McCabe, L.L., and McCabe, E.R.B. 2013. 

“Current Estimate of Down Syndrome Population Prevalence in the United States.” The Journal of Pediatrics 

163(4):1163–68. 

Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H.A., and Herms, J. 2006. “Journal of Neuroscience.” J. 

Neurosci. 20(21):7951–63. 

Prinz, M., Prinz, B., and Schulz, E. 1997. “The Growth of Non-Pyramidal Neurons in the Primary Motor Cortex of Man: 

A Golgi Study.” Histology and Histopathology 12(4):895–900. 

Pritchard, M.A., and Kola, I. 1999. “The ‘Gene Dosage Effect’ Hypothesis versus the ‘Amplified Developmental 

Instability’ Hypothesis in Down Syndrome.” Pp. 293–303 in The Molecular Biology of Down Syndrome. Vienna: 

Springer Vienna. 

Pushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, 

C., Norris, A., Sanseau, P., Cavalla, D., and Pirmohamed, M. 2018. “Drug Repurposing: Progress, Challenges and 

Recommendations.” Nature Reviews Drug Discovery 18:41. 

Rachidi, M. and Lopes, C. 2011. “Mental Retardation and Human Chromosome 21 Gene Overdosage: From Functional 

Genomics and Molecular Mechanisms Towards Prevention and Treatment of the Neuropathogenesis of Down 

Syndrome.” Pp. 21–86 in. 

Raz, N., Torres, I.J., Briggs, S.D., Spencer, W.D., Thornton, A.E., Loken, W.J., Gunning, F.M., McQuain, J.D., Driesen, 

N.R., and Acker, J.D. 1995. “Selective Neuroanatomic Abnormalities in Down’s Syndrome and Their Cognitive 

Correlates: Evidence from MRI Morphometry.” Neurology 45(2):356–66. 

Reaume, A.G. 2011. “Drug Repurposing through Nonhypothesis Driven Phenotypic Screening.” Drug Discovery Today: 

Therapeutic Strategies 8(3–4):85–88. 

Reeves, R.H., Irving, N.G., Moran, T.H., Wohn, A., Kitt, C., Sisodia, S.S., Schmidt, C., Bronson, R.T., and Davisson, 

M.T. 1995. “A Mouse Model for Down Syndrome Exhibits Learning and Behaviour Deficits.” Nature Genetics 

11(2):177–84. 



  

 52 

Reinholdt, L.G., Ding, Y., Gilbert, G.T., Czechanski, A., Solzak, J.P., Roper, R.J., Johnson, M.T., Donahue, L.R., Lutz, 

C., Davisson, M.T., and Davisson, M.T. 2011. “Molecular Characterization of the Translocation Breakpoints in 

the Down Syndrome Mouse Model Ts65Dn.” Mammalian Genome 22(11–12):685–91. 

Resovi, A., Pinessi, D., Chiorino, G., and Taraboletti, G. 2014. “Current Understanding of the Thrombospondin-1 

Interactome.” Matrix Biology 37:83–91. 

Reynolds, L.E., Watson, A.R., Baker, M., Jones, T.A., D’Amico, G., Robinson, S.D., Joffre, C., Garrido-Urbani, S., 

Rodriguez-Manzaneque, J.C., Martino-Echarri, E., Aurrand-Lions, M., Sheer, D., Dagna-Bricarelli, F., Nizetic, 

D., McCabe, C.J., Turnell, A.S., Kermorgant, S., Imhof, B.A., Adams, R., Fisher, E.M.C., Tybulewicz, V.L.J., 

Hart, I.R., and Hodivala-Dilke, K.M. 2010. “Tumour Angiogenesis Is Reduced in the Tc1 Mouse Model of Downs 

Syndrome.” Nature 465(7299):813–17. 

Rice, D. and Barone S.Jr. 2000. “Critical Periods of Vulnerability for the Developing Nervous System : Evidence from 

Humans and Animal Models Critical Periods of Vulnerabilityfor the Developing Nervous System : Evidence from 

Humans and Animal Models Development of the Brain in Utero.” Environmental Health Perspectives 

108(January):511–33. 

Riediger, C., Schuster, T., Barlinn, K., Maier, S., Weitz, J., and Siepmann, T. 2017. “Adverse Effects of Antidepressants 

for Chronic Pain: A Systematic Review and Meta-Analysis.” Frontiers in Neurology 8(JUL). 

Risher, W.C., and Eroglu, C. 2012. “Thrombospondins as Key Regulators of Synaptogenesis in the Central Nervous 

System.” Matrix Biology 31(3):170–77. 

Risher, W.C., Kim, N., Koh, S., Choi, J.E., Mitev, P., Spence, E.F., Pilaz, L.J., Wang, D., Feng, G., Silver, D.L., Soderling, 

S.H., Yin, H.H., and Eroglu, C. 2018. “Thrombospondin Receptor Α2δ-1 Promotes Synaptogenesis and 

Spinogenesis via Postsynaptic Rac1.” The Journal of Cell Biology 217(10):3747–65. 

Risser, D., Lubec, G., Cairns, N., and Herrera-Marschitz, M. 1997. “Excitatory Amino Acids and Monoamines in 

Parahippocampal Gyrus and Frontal Cortical Pole of Adults with down Syndrome.” Life Sciences 60(15):1231–

37. 

Roizen, N.J., and Patterson, D. 2003. “Down’s Syndrome.” The Lancet 361(9365):1281–89. 

Romito, A., and Cobellis, G. 2016. “Pluripotent Stem Cells: Current Understanding and Future Directions.” Stem Cells 

International 2016. 

Roper, R.J., Baxter, L.L., Saran, N.G., Klinedinst, D.K., Beachy, P.A., and Reeves, R.H. 2006. “Defective Cerebellar 

Response to Mitogenic Hedgehog Signaling in Down’s Syndrome Mice.” Proceedings of the National Academy 

of Sciences of the United States of America 103(5):1452–56. 

Roper, R.J. and Reeves, R.H. 2006. “Understanding the Basis for Down Syndrome Phenotypes.” PLoS Genetics 

2(3):0231–36. 

Ross, M.H., Galaburda, A.M., and Kemper, T.L. 1984. “Down’s Syndrome: Is There a Decreased Population of 

Neurons?” Neurology 34(7):909–16. 

Sago, H., Carlson, E.J., Smith, D.J., Kilbridge, J., Rubin, E.M., Mobley, W.C., Epstein, C.J., and Huang, T.T. 1998. 

“Ts1Cje, a Partial Trisomy 16 Mouse Model for Down Syndrome, Exhibits Learning and Behavioral 

Abnormalities.” Proceedings of the National Academy of Sciences of the United States of America 95(11):6256–

61. 

Salman, M.S. 2002. “Systematic Review of the Effect of Therapeutic Dietary Supplements and Drugs on Cognitive 

Function in Subjects with Down Syndrome.” European Journal of Paediatric Neurology 6(4):213–19. 

Salomoni, P. and Calegari, F. 2010. “Cell Cycle Control of Mammalian Neural Stem Cells: Putting a Speed Limit on 

G1.” Trends in Cell Biology 20(5):233–43. 

Sauvageot, C.M. and Stiles, C.D. 2002. “Molecular Mechanisms Controlling Cortical Gliogenesis.” Current Opinion in 

Neurobiology 12(3):244–49. 

Schmidt-Sidor, B., Wisniewski, K.E., Shepard, T.H. and Sersen, E.A. n.d. “Brain Growth in Down Syndrome Subjects 

15 to 22 Weeks of Gestational Age and Birth to 60 Months.” Clinical Neuropathology 9(4):181–90. 

Schulz, E. and Scholz, B. 1992. “[Neurohistological Findings in the Parietal Cortex of Children with Chromosome 

Aberrations].” Journal Für Hirnforschung 33(1):37–62. 

Serrano-Pérez, M.C., Fernández, M., Neria, F., Berjón-Otero, M., Doncel-Pérez, E., Cano, E., and Tranque, P. 2015. 

“NFAT Transcription Factors Regulate Survival, Proliferation, Migration, and Differentiation of Neural Precursor 

Cells.” GLIA 63(6):987–1004. 

Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A.B., and Aschner, M. 2011. “Role of Astrocytes in 

Brain Function and Disease.” Toxicologic Pathology 39(1):115–23. 

Smith, I. and Calegari, F. 2015. “Cyclin D1 Again Caught in the Act: Dyrk1a Links G1 and Neurogenesis in Down 

Syndrome.” EBioMedicine 2(2):96–97. 



  

 53 

Smith, M., and Visootsak, J. 2013. “Noninvasive Screening Tools for down Syndrome: A Review.” International Journal 

of Women’s Health 5(1):125–31. 

Sofroniew, M.V., Howe, C.L., and Mobley, W.C. 2001. “Nerve Growth Factor Signaling, Neuroprotection, and Neural 

Repair.” Annual Review of Neuroscience 24(1):1217–81. 

Stagni, F., Giacomini, A., Emili, M., Guidi, S., and Bartesaghi, R. 2018. “Neurogenesis Impairment: An Early 

Developmental Defect in Down Syndrome.” Free Radical Biology & Medicine 114:15–32. 

Stagni, F., Giacomini, A., Emili, M., Trazzi, S., Guidi, S., Sassi, M., Ciani, E., Rimondini, R., and Bartesaghi, R. 2016. 

“Short- and Long-Term Effects of Neonatal Pharmacotherapy with Epigallocatechin-3-Gallate on Hippocampal 

Development in the Ts65Dn Mouse Model of Down Syndrome.” Neuroscience 333:277–301. 

Stagni, F., Giacomini, A., Guidi, S., Ciani, E., and Bartesaghi, R. 2015. “Timing of Therapies for Downsyndrome: The 

Sooner, the Better.” Frontiers in Behavioral Neuroscience 9(OCT). 

Stagni, F., Giacomini, A., Guidi, S., Ciani, E., Ragazzi, E., Filonzi, M., De Iasio, R., Rimondini, R., and Bartesaghi, R. 

2015. “Long-Term Effects of Neonatal Treatment with Fluoxetine on Cognitive Performance in Ts65Dn Mice.” 

Neurobiology of Disease 74:204–18. 

Stagni, F., Salvalai, M.E., Giacomini, A., Emili, M., Uguagliati, B., Xia, E., Grilli, M., Bartesaghi, R., and Guidi, S. 2019. 

“Neonatal Treatment with Cyclosporine A Restores Neurogenesis and Spinogenesis in the Ts65Dn Model of 

Down Syndrome.” Neurobiology of Disease 129:44–55. 

Stringer, M., Abeysekera, I., Dria, K.J., Roper, R.J., and Goodlett, C.R. 2015. “Low Dose EGCG Treatment Beginning 

in Adolescence Does Not Improve Cognitive Impairment in a Down Syndrome Mouse Model.” Pharmacology 

Biochemistry and Behavior 138:70–79. 

Strippoli, P., Pelleri, M.C., Piovesan, A., Caracausi, M., Antonaros, F., and Vitale, L. 2019. “Genetics and Genomics of 

Down Syndrome.” 

Summers, A.M., Langlois, S., Wyatt, P., Wilson, R.D. 2007. “Prenatal Screening for Fetal Aneuploidy.” Journal of 

Obstetrics and Gynaecology Canada : JOGC = Journal d’obstetrique et Gynecologie Du Canada : JOGC 

29(2):146–61. 

Sylvester, P. E. 1983. “The Hippocampus in Down’s Syndrome.” Journal of Mental Deficiency Research 27 (Pt 3):227–

36. 

Takashima, S., Becker, L.E., Armstrong, D.L., and Chan, F. 1981. “Abnormal Neuronal Development in the Visual 

Cortex of the Human Fetus and Infant with down’s Syndrome. A Quantitative and Qualitative Golgi Study.” Brain 

Research 225(1):1–21. 

Takenaka, T. 2008. “Classical vs Reverse Pharmacology in Drug Discovery.” BJU International 88:7–10. 

Taylor, M.K., Yeager, K., and Morrison, S.J. 2007. “Physiological Notch Signaling Promotes Gliogenesis in the 

Developing Peripheral and Central Nervous Systems.” Development 134(13):2435–47. 

Teipel, S.J. and Hampel, H. 2006. “Neuroanatomy of Down Syndrome in Vivo: A Model of Preclinical Alzheimer’s 

Disease.” Behavior Genetics 36(3):405–15. 

Tejada-Simon, M.V. 2015. “Modulation of Actin Dynamics by Rac1 to Target Cognitive Function.” Journal of 

Neurochemistry 133(6):767–79. 

Thomazeau, A., Lassalle, O., Iafrati, J., Souchet, B., Guedj, F., Janel, N., Chavis, P.,  Delabar, J.,  and Manzoni, O.J. 

2014. “Prefrontal Deficits in a Murine Model Overexpressing the down Syndrome Candidate Gene Dyrk1A.” 

Journal of Neuroscience 34(4):1138–47. 

Toiber, D., Azkona, G., Ben-Ari, S., Torán, N., Soreq, H., and Dierssen, M. 2010. “Engineering DYRK1A Overdosage 

Yields Down Syndrome-Characteristic Cortical Splicing Aberrations.” Neurobiology of Disease 40(1):348–59. 

Torres, M.D., Garcia, O., Tang, C., and Busciglio, J. 2018. “Dendritic Spine Pathology and Thrombospondin-1 Deficits 

in Down Syndrome.” Free Radical Biology and Medicine 114:10–14. 

Trazzi, S., Fuchs, C., Valli, E., Perini, G., Bartesaghi, R., and Ciani, E. 2013. “The Amyloid Precursor Protein (APP) 

Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different 

Domains in the Ts65dn Mouse Model for down Syndrome.” Journal of Biological Chemistry 288(29):20817–29. 

Trazzi, S., Mitrugno, V.M., Valli, E., Fuchs, C., Rizzi, S., Guidi, S., Perini, G., Bartesaghi, R., and Ciani, E. 2011. “APP-

Dependent up-Regulation of Ptch1 Underlies Proliferation Impairment of Neural Precursors in Down Syndrome.” 

Human Molecular Genetics 20(8):1560–73. 

Turner, P.R., O’Connor, K., Tate, W.P., and Abraham, W.C. 2003. “Roles of Amyloid Precursor Protein and Its 

Fragments in Regulating Neural Activity, Plasticity and Memory.” Progress in Neurobiology 70(1):1–32. 

Vacca, R.A., Bawari, S., Valenti, D., Tewari, D., Nabavi, S.F., Shirooie, S., Sah, A.N., Volpicella, M., Braidy, N., and 

Nabavi, S.M. 2019. “Down Syndrome: Neurobiological Alterations and Therapeutic Targets.” Neuroscience & 

Biobehavioral Reviews 98:234–55. 



  

 54 

Valente, M.M., Bortolotto, V., Cuccurazzu, B., Ubezio, F., Meneghini, V., Francese, M.T., Canonico, P.L., and Grilli, M. 

2012. “Αlpha2δ Ligands Act as Positive Modulators of Adult Hippocampal Neurogenesis and Prevent Depression-

like Behavior Induced by Chronic Restraint Stress.” Molecular Pharmacology 82(2):271–80. 

Valenti, D., De Bari, L., De Rasmo, D., Signorile, A., Henrion-Caude, A., Contestabile, A., and Vacca, R.A. 2016. “The 

Polyphenols Resveratrol and Epigallocatechin-3-Gallate Restore the Severe Impairment of Mitochondria in 

Hippocampal Progenitor Cells from a Down Syndrome Mouse Model.” Biochimica et Biophysica Acta - 

Molecular Basis of Disease 1862(6):1093–1104. 

Valenti, D., De Rasmo, D., Signorile, A., Rossi, L., De Bari, L., Scala, I., Granese, B., Papa, S., and Vacca, R.A. 2013. 

“Epigallocatechin-3-Gallate Prevents Oxidative Phosphorylation Deficit and Promotes Mitochondrial Biogenesis 

in Human Cells from Subjects with Down’s Syndrome.” Biochimica et Biophysica Acta - Molecular Basis of 

Disease 1832(4):542–52. 

Vasile, F., Dossi, E., and Rouach, N. 2017. “Human Astrocytes: Structure and Functions in the Healthy Brain.” Brain 

Structure and Function 222(5):2017–29. 

Verkhratsky, A., Matteoli, M., Parpura, V., Mothet, J., and Zorec, R. 2016. “Astrocytes as Secretory Cells of the Central 

Nervous System: Idiosyncrasies of Vesicular Secretion.” The EMBO Journal 35(3):239–57. 

Vicari, S. 2006. “Motor Development and Neuropsychological Patterns in Persons with Down Syndrome.” Behavior 

Genetics 36(3):355–64. 

Villar, A.J., Belichenko, P.V., Gillespie, A.M., Kozy, H.M., Mobley, W.C., and Epstein, C.J. 2005. “Identification and 

Characterization of a New Down Syndrome Model, Ts[Rb(12.1716)]2Cje, Resulting from a Spontaneous 

Robertsonian Fusion between T(171)65Dn and Mouse Chromosome 12.” Mammalian Genome : Official Journal 

of the International Mammalian Genome Society 16(2):79–90. 

Vogt, A., and Lazo, J.S. 2005. “Chemical Complementation: A Definitive Phenotypic Strategy for Identifying Small 

Molecule Inhibitors of Elusive Cellular Targets.” Pharmacology & Therapeutics 107(2):212–21. 

Wahlsten, D. 2019. “Down Syndrome.” Pp. 137–47 in Genes, Brain Function, and Behavior. Elsevier. 

Wang, X., Zhao, Y.,  Zhang,X., Badie, H., Zhou, Y., Mu, Y., Shen Loo, L., Cai, L., Thompson, R.C., Yang, B., Chen, Y., 

Johnson, P.F., Wu, C., Bu, G., Mobley, W.C., Zhang, D., Gage, F.H., Ranscht, B., Zhang, Y.W., Lipton, S.A., 

Hong, W., and Xu, H.2013. “Loss of Sorting Nexin 27 Contributes to Excitatory Synaptic Dysfunction by 

Modulating Glutamate Receptor Recycling in Down’s Syndrome.” Nature Medicine 19(4):473–80. 

Webb, S., Brown, N.A., and Anderson, R.H. 1998. “Formation of the Atrioventricular Septal Structures in the Normal 

Mouse.” Circulation Research 82(6):645–56. 

Weijerman, M.E. and De Winter, J.P. 2010. “Clinical Practice: The Care of Children with Down Syndrome.” European 

Journal of Pediatrics 169(12):1445–52. 

Weitzdoerfer, R., Fountoulakis, M., and Lubec, G. 2002. “Reduction of Actin-Related Protein Complex 2/3 in Fetal Down 

Syndrome Brain.” Biochemical and Biophysical Research Communications 293(2):836–41. 

Whittle, N., Sartori, S.B., Dierssen, M., Lubec, G., and Singewald, N. 2007. “Fetal Down Syndrome Brains Exhibit 

Aberrant Levels of Neurotransmitters Critical for Normal Brain Development.” Pediatrics 120(6):e1465-71. 

Williams, C.H. and Hong, C.C. 2016. “Zebrafish Small Molecule Screens: Taking the Phenotypic Plunge.” Computational 

and Structural Biotechnology Journal 14:350–56. 

Winter, T. C., Ostrovsky, A.A., Komarniski, C.A. and Uhrich, S.B. 2000. “Cerebellar and Frontal Lobe Hypoplasia in 

Fetuses with Trisomy 21: Usefulness as Combined US Markers.” Radiology 214(2):533–38. 

Wisniewski, K.E., Dalton, A.J., McLachlan, C., Wen, G.Y., and Wisniewski, H.M. 1985. “Alzheimer’s Disease in 

Down’s Syndrome: Clinicopathologic Studies.” Neurology 35(7):957–61. 

Yin, C., Fufa, T., Chandrasekar, G., Aeluri, M., Zaky, V., Abdelhady, S., Rodríguez, A.B., Jakobsson, F.S., 

Varnoosfaderani, J., Mahalingam, J., Liu, J., Larsson, O., Hovatta, O., Gaunitz, F., Göndör, A., Andäng, M., and 

Kitambi, S.S. 2017. “Phenotypic Screen Identifies a Small Molecule Modulating ERK2 and Promoting Stem Cell 

Proliferation.” Frontiers in Pharmacology 8(OCT). 

Zdaniuk, G., Wierzba-Bobrowicz, T., Szpak, G.M., and Stępień, T. 2011. “Astroglia Disturbances during Development 

of the Central Nervous System in Fetuses with Down’s Syndrome.” Folia Neuropathologica 49(2):109–14. 

Zhang, J., He, L., Yang, Z., Li, L., and Cai, W. 2019. “Lithium Chloride Promotes Proliferation of Neural Stem Cells in 

Vitro, Possibly by Triggering the Wnt Signaling Pathway.” Animal Cells and Systems 23(1):32–41. 

Zheng, W., Thorne, N. and McKew, J.C. 2013. “Phenotypic Screens as a Renewed Approach for Drug Discovery.” Drug 

Discovery Today 18(21–22):1067–73. 

 

  



  

 55 

 

 

 

 

Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  



  

 56 

Thesis outline 
 

Since several years, in the laboratory of Neuroplasticity at University of 

Piemonte Orientale where this thesis has been undertaken, my colleagues have 

been interested in studying adult neurogenesis and in the investigation of the 

cellular and molecular mechanisms that activate and regulate neural progenitor 

cells (NPC) in response to clinically relevant drugs (Bortolotto et al., 2017, 2019; 

Cuccurazzu et al., 2013; Meneghini et al., 2014; Valente et al., 2012). In more 

recent years the laboratory has also become interested in studying the regulation 

of neonatal neurogenesis in Down syndrome (DS), a neurodevelopmental 

disorder.  

 

DS is the main genetic cause of intellectual disability. Decreased proliferation of 

NPC, widespread neurogenesis impairment and increased astrogliogenesis are 

considered among the major determinants of brain atrophy and intellectual 

disability in DS individuals (Stagni et al., 2018). The best characterized and 

studied animal model for DS is the Ts65Dn mouse line which recapitulates most 

of the features of the human pathology, including cognitive impairment (Gupta 

et al., 2016). In the recent years it has been suggested that perinatal (prenatal and 

neonatal) therapies that target and correct NPC alterations may represent 

potential interventions in DS. Indeed, proof of concept studies showed that DS 

brain defects, including cognitive impairment, can be pharmacologically 

corrected in the Ts65Dn animal model, if the therapy is administered in the 

perinatal period (Guidi et al., 2014; Nakano-Kobayashi et al., 2017; Stagni et al., 

2015). However, at present, drugs effective in mouse models pose some 

limitations due to their side effects, reducing their possibility to be translated in 

the clinical setting. Altogether these data highlight the need for better elucidating 

the mechanisms underlying DS pathophysiology and identifying novel 
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pharmacological targets and approaches to counteract intellectual disability in 

DS patients. 

Thus, my entire PhD project was based on the idea that trisomic NPC can be a 

key pharmacological target to correct DS brain abnormalities during early life 

stages. 

Based on this hypothesis the overall goal of my PhD was to unravel novel 

mechanisms underlying trisomic NPC dysfunctions and investigate whether and 

how it was possible to identify new pharmacological approaches targeting NPC 

abnormalities during DS brain development.  

 

In detail, chapter 3 describes the results obtained from my first aim that consisted 

in the investigation of whether FDA/EMA approved drugs could correct the 

defective proliferation of trisomic (TS) NPC, profiting from a drug repurposing 

strategy. We phenotypically characterized NPC in vitro in order to confirm the 

same phenotype as in vivo. Then, through a miniaturized, reproducible and 

sensitive assay we had set up, we were able to identify 30 drugs which increased 

TS NPC proliferation. These drugs belonged to three pharmacological classes: 

glucocorticoids, 2 adrenergic agonists, immunosuppressant drugs. Among the 

most potent hits we identified the immunosuppressant cyclosporine A (CSA) 

which was further characterized in vitro and, based on its pharmacological 

properties, then tested in vivo, in collaboration with the group of Prof. Renata 

Bartesaghi at the University of Bologna, in the Ts65Dn mouse line (see chapter 

4). 

 

Chapter 4 describes the phenotypic characterization of CSA in vitro and in vivo. 

In detail, my specific aim was to investigate whether CSA promoted TS NPC 

proliferation and evaluate whether CSA affected neurogenesis, gliogenesis and 

neuronal maturation of TS NPC. Since the promising in vitro results, we then 
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tested CSA effects in vivo. The treatment in neonatal Ts65Dn and euploid pups 

with 15 mg/kg/day of drug from post-natal day 3, P3, to P15 significantly i) 

increased the number of proliferating NPC in the SGZ and SVZ, ii) positively 

impacted on neuronal density in the dentate gyrus and iii) largely increased spine 

density in granule cells of Ts65Dn-treated mice.  

 

Chapters 5 and 6 describe how we contributed to dissect the role of NPC exposed 

to specific treatments tested in vivo in Ts65Dn and euploid mice. These activities 

were done in collaboration with the group of Prof. Bartesaghi and, in Novara, we 

contributed with in vitro studies using trisomic and euploid NPC as a cellular 

model.  

 

In more details, as described in chapter 5, my goal was to investigate whether a 

flavone derivative, 7,8-dihydroxyflavone (7,8-DHF), that activates the 

tropomyosin-related kinase B (TrkB) receptor of the brain-derived neurotrophic 

factor (BDNF), was able to affect proliferation and neuronal differentiation of TS 

NPC (0.3-10 µM). In vivo neonatal treatment with 7,8-DHF (5 mg/kg/day, P3-

P15): i) increased the number of NPC in the dentate gyrus, ii) restored the number 

of granule cells and iii) increased dendritic spine density. Importantly, 7,8-DHF 

(5 mg/kg/day, P3-P45) improved memory and learning performance in treated 

Ts65Dn mice.  

 

In chapter 6 we investigated the in vitro and in vivo effects of corn oil. At first, 

we showed that in vivo 4-month-old mice treated with corn oil (10 µl/g) for 1 

month exhibited i) increased neurogenesis; ii) dendritic development and, in 

parallel, iii) increased learning and memory, exclusively in Ts65Dn mice. Based 

on the interesting in vivo results, my aim in this study was to investigate whether 

two main components of corn oil, linoleic acid (LA) and oleic acid (OA) affected 
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TS NPC proliferation in vitro (100 µM). Secondarily, we investigated whether 

LA affected NPC proliferation through the activation of the peroxisome-

proliferator activated receptors (PPARs).  

 

In the past, the laboratory of Neuroplasticity identified novel signaling pathways 

that, if disrupted, can affect NPC and their communication with niche astrocytes 

in a cell-autonomous and non-cell autonomous manner (Cvijetic et al., 2017). It 

is currently hypothesized that NPC dysfunctions and their communication with 

other cell types, including astrocytes, may also contribute to DS pathophysiology. 

(Chen et al., 2014; Mizuno et al., 2018). Indeed DS astroglia exhibit functional 

alterations that can affect NPC and their progeny, including defective release of 

soluble signals like thrombospondin-1 (TSP-1) (Garcia et al., 2010; Torres et al., 

2018), a key astrocyte-derived signal involved in neurogenesis (Lu & Kipnis, 

2010), synaptogenesis (Eroglu et al., 2009) and spine formation (Risher et al., 

2018). Despite these data, the role of TSP-1 in DS non-neuronal cells is largely 

unexplored.  

 

In the last period of my PhD activities I was also involved in the investigation of 

TSP-1 signaling in trisomic murine NPC. In chapter 7 I have summarized some 

unpublished and still preliminary results on this specific topic.  
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ABSTRACT  

Down syndrome (DS) is a neurodevelopmental disorder caused by triplication of 

chromosome 21 in which decreased Neural Progenitor Cell (NPC) proliferation 

is associated with a widespread neurogenesis impairment. NPC alterations are 

considered as major determinants of brain atrophy and intellectual disability in 

DS pathology. A well-studied preclinical model for DS is the Ts65Dn mouse line 

that recapitulates several features of the human disorder, including cognitive 

impairment. Recent findings suggest that early pharmacological treatments may 

potentially correct these defects in Ts65Dn mice, resulting in amelioration of 

cognitive performance. Unfortunately at present none of the drugs effective in 

DS animal models appear suitable for clinical applications.  

The goal of this study was to identify novel drugs able to correct proliferative 

deficits of Ts65Dn-derived trisomic NPC, which could be then tested in DS 

animal models. In detail, we aimed at developing an in vitro cell-based assay to 

screen 1,590 FDA/EMA approved drugs according to a drug repurposing 

strategy. We established all the critical assay conditions so to obtain a 

miniaturize, sensitive, reproducible and ready-to-use proliferative assay in 

trisomic NPC, using lithium chloride (LiCl) as reference drug. As result of this 

effort, we identified 30 molecules more effective than LiCl in promoting trisomic 

NPC proliferation. Among these drugs, glucocorticoids, 2 adrenergic agonists 

and the immunosuppressant CSA were identified and further characterized.  

The assay we have developed allows not only the identification of new drug 

candidates, but holds, in the future, the potential to unravel novel signaling 

pathways involved in DS pathophysiology.  
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INTRODUCTION 

 

Down syndrome (DS), a neurodevelopmental disorder resulting from the 

triplication of chromosome 21, represents the most common genetic cause of 

intellectual disability (Bartesaghi et al., 2011; Vacca et al., 2019). Despite huge 

progress has been achieved in improving life expectancy and quality in DS 

individuals, intellectual disability still remains the most invaliding aspect of the 

human disorder.  

A well characterized DS animal model is the Ts65Dn mouse line. These mice 

closely recapitulate key features of DS human brain, such as reduced 

proliferation of neural progenitor cells (NPC), impaired neurogenesis, defective 

dendrite branching and spine density, and, importantly, cognitive impairment 

(Bartesaghi et al., 2011; Gupta et al., 2016; Herault et al., 2017; Vacca et al., 

2019). Reduction in NPC proliferation and neuronal differentiation, starting from 

fetal period, are currently considered major neurodevelopmental defects leading 

to DS associated cognitive impairment (Chen et al., 2014a; Hibaoui et al., 2014; 

Stagni et al., 2018). Based on this working hypothesis, NPC may represent targets 

of novel pharmacological approaches to the human disorder. 

Recent studies have suggested that it may be possible to pharmacologically 

correct NPC proliferation, neurogenesis and, in parallel, improve cognitive 

performance in DS animal models, by administering perinatal (neonatal and 

prenatal) drug treatments (Guidi et al., 2014; Stagni et al., 2015; Stagni et al., 

2017). Unfortunately, despite this very important proof of concept achievement, 

at present none of the drugs which are effective in DS animal models appear 

suitable for clinical applications, mainly due to unfavorable tolerability and/or 

safety issues (Kazemi et al., 2016). Based on these premises, there is an urgent 

need of identifying novel drugs that may be tested in animal models, and 

eventually in patients. 
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Unfortunately, identifying and developing new human therapeutics is a lengthy 

and costly process, with an attrition rate higher than the 90%. In particular, the 

Central Nervous System (CNS) therapeutic area exhibits the lowest success rate 

in drug discovery (Gribkoff & Kaczmarek, 2017; Zheng et al., 2013). In the past, 

the most frequently pursued strategy in drug discovery was “target-based” 

(Croston, 2017): drug screening for different therapeutic areas was mainly 

performed by using cellular assays, often generated in cell lines, (over)expressing 

the target of interest in search for selective agonists/antagonists/inhibitors. In 

recent years interest in phenotypic assays has been exponentially growing in drug 

discovery (Zheng et al., 2013). Phenotypic drug screening is appealing because 

it does not require a priori knowledge of a specific target or a molecular 

mechanism implicated in a given disease (Aulner et al., 2019). According to this 

paradigm, screening campaigns aim at identifying drugs that can correct or 

attenuate a cellular phenotype which is regarded to be relevant for disease 

pathophysiology, regardless of the mechanism(s) targeted by the drugs. Although 

difficult, primary cell cultures can also be used in phenotypic drug screening 

campaigns in order to achieve more physiologically relevant results (Yin et al., 

2017; Zheng et al., 2013). Moreover phenotypic cell-based screening assays can 

also be combined with strategies of drug repurposing, the process of finding new 

applications for clinically approved drugs. As opposed to de novo drug discovery, 

when approved drugs are identified in a screening campaign, they have the 

advantage of well-established features of bioavailability, tolerability and safety 

in humans so to potentially reduce time for human translation (Clout et al., 2019). 

Several successful examples of drug repurposing in high medical need human 

disorders are available (Kim, 2015; Reaume, 2011) 

Based on these premises, the goal of this study was to develop a reliable and 

reproducible in vitro phenotypic cell-based assay which could be used to screen 

and identify, among clinically approved drugs, compounds which are able to 
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correct the proliferative defects of trisomic (TS) neural progenitor cells isolated 

from the subventricular zone of Ts65Dn mouse pups. Combined with appropriate 

secondary assays, our screening efforts confirmed the activity of several drug 

classes, some of which have been also successfully used in vitro to assess their 

effects on neuronal differentiation of TS NPC and, in vivo, to correct 

hypocellularity and neurogenesis impairment in Ts65Dn mice. Herein we 

describe in detail the set up of the phenotypic assay, its use for the screening of 

two commercial libraries of approved drugs, as well as the activities for 

confirmation and validation of identified hit molecules. Last but not least, we 

discuss the implications of these findings for ongoing and future in vivo studies 

in Ts65Dn mice.  

 

MATERIALS AND METHODS 

 

Mouse colony 

Ts65Dn mice were provided by Jackson Laboratories (Bar Harbor, ME, USA) 

and generated by mating B6EiC3Sn a/A-Ts(17^16)65Dn females with 

C57BL/6JEiJ x C3H/HeSnJ (B6EiC3Sn) F1 hybrid males (Reeves et al. 1995). 

Only first generation litters were used. Pup genotyping was performed as 

previously described (Rheinold et al., 2011). Animals had ad libitum access to 

water and food in a room with a 12:12 h light/dark cycle. Experiments were 

performed in accordance with the European Community Council Directive of 24 

November 1986 (86/609/EEC) for the use of experimental animals and were 

approved by Italian Ministry of Public Health (1033/2015-PR and 47/2019).  

 

Isolation and Culture of SVZ-derived neural progenitor cells 

Cells were isolated from the subventricular zone (SVZ) of the lateral ventricles 

of newborn (postnatal days 1-2, P 1-2) euploid (EU) and trisomic (TS) pups.  
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NPC cultures were obtained by pooling 3-6 pups and cultured as free floating 

neurospheres according to established protocols (Cvijetic et al., 2017; Meneghini 

et al., 2014). Briefly, cells were cultured in complete medium containing 

DMEM/F-12 supplemented with B27, GlutamaxTM (2 mM, Life Technologies), 

heparin sodium salt (4 μg/ml; ACROS Organics), hFGF (10 ng/ml, Peprotech), 

hEGF (20 ng/ml; Peprotech) and 100 U/100 μg/ml Penicillin/Streptomycin (Life 

Technologies). Primary (Passage 1, P1) neurospheres were dissociated using 

Stempro Accutase (Life Technologies) after 6 days in vitro (DIV). Thereafter, 

neurospheres were passaged every 5 DIV. At least seven NPC preparations from 

P2 to P12 were used for this study.  

 

Phenotypic drug screening  

Briefly, two commercial libraries were used: the Prestwick chemical library® 

(Prestwick Chemical), a recognized screening drug collection composed by 1,120 

approved drugs (Kanvatirth et al., 2019; Torres et al., 2018), and the Screen-

Well® FDA Approved Drug Library V2 composed by 770 compounds (Enzo Life 

Sciences) (Corsello et al., 2017). We developed a method based on trisomic 

neural progenitor cell proliferation (Stagni et al., 2019). Cells were seeded in a 

low proliferative condition (10 ng/ml hFGF) and incubated for 30 minutes at  

37°C, 5 % CO2. Then, the compounds were added to each well, in quadruplicates, 

at a final concentration of 1 µM with 0.05% DMSO. As pro-proliferative controls 

hEGF (20 ng/ml, Peprotech) and LiCl (2 mM, Sigma-Aldrich) were added to 

each plate in quadruplicates. Plates were incubated for 96 h in the humidity box 

and then measured using the Cell Titer Glo assay (Promega) following 

manufacturer’s instructions. The humidity chamber (18x26x8 cm) contained a 

water reservoir and a plastic layer where could be located up to six 96 well plates. 

At the bottom of the chamber there was holes ( 5 mm) where the air composed 

by 5 % CO2 could flow into the box. The drug activity was calculated as 
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percentage of change compared to basal conditions (cells in presence of 10 ng/ml 

hFGF and 0.05 % DMSO).  

In order to validate potential hits, we performed drug concentration response 

curves from 0.1 to 1000 nM (DMSO 0.05 % as vehicle), using the same 

proliferation assay. Desonide, clobetasol, betamethasone, terbutaline, formoterol 

and isoproterenol powder were supplied by MedChemExpress. 

 

Z prime calculation: 

The quality of the assay is represented by the Z-prime value, a value between 0.5 

and 1 assesses an excellent high-throughput assay (Zhang, Chung & Oldenburg, 

1999). It was calculated as previously described by Zhang et al. (Zhang et al., 

1999). Briefly, for each screened plate the Z prime were determined using the 

following formula: 

𝑍 = 1 −  
3𝑆𝐷 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 3𝑆𝐷 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

|𝑚𝑒𝑎𝑛 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙|
 

 

ATP-based cell proliferation measurement 

For assessing proliferation, trisomic SVZ-derived NPC were dissociated in a 

single cell suspension and plated onto NunclonTM Delta Surface 96-well plate 

(Thermo Fisher Scientific) in number of 4×103 cells/well in standard medium, 

composed by DMEM/F-12 medium supplemented with B27, GlutamaxTM (2 

mM, Life Technologies), heparin sodium salt (4 μg/ml; ACROS Organics), hFGF 

(10 ng/ml, Peprotech) and 100 U/100 μg/ml Penicillin/Streptomycin (Life 

Technologies). Plates were then incubated for 96 h at 37°C, 5% CO2.  

In order to detect proliferation differences in NPC we used a simple, fast and 

commercial luciferase-based method, the Cell Titer Glo assay (Promega) which 

biochemically quantified the levels of ATP as relative luminescence units (RLU) 

in each well, value directly proportional to the number of viable cells. 
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Luminescence was read on a Victor3-V plate reader (PerkinElmer). Data were 

expressed as difference over euploid NPC in basal condition (hFGF 10 ng/ml + 

0.05 % DMSO). 

 

EdU incorporation based proliferation assay 

EdU (5-ethynyl-2-deoxyuridine) incorporation was performed using the Click-

iT® EdU Alexa Fluor® 488 HCS Assay Kit (Thermo Fisher Scientific), according 

to manufacturers’ instructions. Briefly, NPC neurospheres were dissociated in a 

single cell suspension and plated onto laminin-coated 96-well plate (Falcon) in 

number of 4×103 cells/well in standard medium for 48-96 h. In the last 12 h 

period, EdU was added to each well at a final concentration of 10 μM. After that, 

cells were fixed by 4% paraformaldehyde solution in phosphate-buffered saline 

(PBS, pH 7.4) for 20 min at RT. EdU detection was performed using an InCell 

Analyzer 2200 (GE). In each experiment, 37 fields/well (corresponding to about 

50 % of the total well surface) were counted. Data were expressed as difference 

over euploid basal condition (10 ng/ml hFGF + 0.05 % DMSO). 

 

Statistical analysis 

Results were presented as mean  standard deviation of experiments run in 

triplicate. Data were analyzed with GraphPad Prism 7.0. The statistical analysis 

were performed using either a one-way ANOVA or a two-way ANOVA. Post 

hoc multiple comparison were carried out using a Tukey’s test or a Fisher’s least 

significant difference (LSD) test. Results are considered statistically relevant 

with p<0.05. 

  



  

 71 

RESULTS 

 

Proliferative defects in murine neonatal trisomic neural progenitor cells: 

pharmacological correction by LiCl. 

We isolated NPC from the SVZ of Ts65Dn (TS) and EU pups and cells were 

cultured in suspension, as neurospheres, in hEGF/hFGF containing medium. 

Initially, proliferation was measured by an ATP-based commercial kit, the Cell 

Titer Glo assay (Promega). Cells were seeded in presence of low (10 ng/ml) 

hFGF-mediated proliferative conditions and after 96 h in presence of vehicle 

(0.05 % DMSO), we detected significantly reduced proliferation in vehicle-

treated TS NPC when compared with vehicle-treated EU NPC (mean percentage 

decrease ± S.D. over vehicle-treated EU NPC: 34 ± 21; p<0.05) (Fig. 1A). 

Reduced proliferation of TS NPC was also confirmed by a distinct method based 

on incorporation of 5-ethynyl-2'-deoxyuridine (EdU; Fig. 1B), which established 

that TS NPC proliferation was significantly reduced compared with vehicle-

treated EU NPC (mean percentage decrease ± S.D. over vehicle-treated EU NPC: 

21 ± 7.2 ; p<0.001).  

 

Previous studies demonstrated that defective proliferation of TS NPC can be 

pharmacologically corrected by lithium chloride (LiCl) both in vitro (Trazzi et 

al., 2014) and in vivo (Bianchi et al., 2010, Contestabile et al., 2013). Based on 

such previous evidence, we initially tested the effect of a previously characterized 

drug concentration (2 mM). As expected, using the ATP based assay, we 

observed that LiCl promoted proliferation in EU NPC (mean percentage increase 

± S.D. over vehicle-treated EU NPC: 52 ± 43 ; p<0.01 vs EU veh) and in TS NPC 

(mean percentage increase ± S.D. over vehicle-treated TS NPC: 45 ± 34 ; p<0.05 

vs TS veh) (Fig. 1A). The effect of LiCl on TS NPC was significantly different 

compared with EU NPC (p<0.01 TS LiCl vs EU LiCl). Comparable results were 
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obtained using the EdU incorporation assay (Fig. 1B). In detail, LiCl, compared 

with vehicle promoted proliferation both in EU (mean percentage increase over 

vehicle-treated EU NPC: 35 ± 5.9; p<0.001 vs EU veh) and TS NPC ( 34 ± 1.7; 

p<0.001 vs TS veh). 

Although both biochemical assays detected a pro-proliferative effect of LiCl on 

EU and TS NPC, for further experiments and for the screening activities we 

decided to use the ATP-based assay, which is simpler and faster than the EdU 

incorporation assay. 

In the same experimental conditions, we also evaluated the effects of a wide range 

of LiCl concentrations (0.375-3.5 mM) in both EU and TS NPC and proliferation 

rate was tested by ATP intracellular content (Fig. 2A). Cells grown in presence 

of hFGF 10 ng/ml were exposed to LiCl or vehicle for a 96 h incubation period. 

Starting at 0.75 mM concentration, LiCl produced a concentration-dependent 

increase in proliferation of both EU and TS NPC (p<0.001 vs veh) with a 

maximal increase elicited at 2 mM both in EU NPC (mean percentage ± S.D. 

increase over vehicle-treated EU NPC: 101 ± 12 , p<0.001 vs EU veh) and TS 

NPC (mean percentage increase ± S.D. over vehicle-treated TS NPC: 132 ± 14 ; 

p<0.001 vs TS veh) (Fig. 2A). Based on these results, 2 mM LiCl was chosen as 

positive control in subsequent experiments.  

Then, in order to evaluate the time-dependency of drug effects, 2 mM LiCl was 

also tested at different time points in cultures of both EU and TS NPC. In these 

experiments a further positive control was added, namely human epidermal 

growth factor (hEGF), at a 20 ng/ml concentration (Meneghini et al., 2014; 

Schwindt et al., 2009). We observed an increased proliferation of both EU and 

TS NPC exposed to vehicle after 48, 72 and 96 h, if compared with 24 h (p<0.001 

vs 24 h). A multiple comparison between genotypes in presence of vehicle, at 

different time points, revealed that proliferation of TS NPC was significantly 

reduced after 48, 72 and 96 h if compared to vehicle-treated EU NPC (p<0.01, 
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p<0.05 and p<0.01, respectively). In the same experimental setting after 72 h 

LiCl significantly increased proliferation of both EU (p<0.001 vs veh) and TS 

NPC (p<0.05 vs veh), if compared with vehicle-treated cells after 24 h. After 96 

h we confirmed the pro-proliferative effect of LiCl on both genotypes (p<0.001 

vs veh 24 h) (Fig. 2B). In parallel, the positive control hEGF increased 

proliferation of both EU and TS NPC after 48, 72 and 96 h, if compared with 

vehicle 24 h (p<0.001 vs veh) (Fig. 2B).  

When drug screening is performed in cell-based assays, especially when primary 

cultures are used, reproducibility over culture passages represent a crucial and 

critical issue. In order to assess whether the proliferative effects elicited by 2 mM 

LiCl were reproducible in cultures at different passages, we exposed different TS 

NPC preparations (n=4) from passages 1-14 to the drug or vehicle. As shown in 

Fig. 2C, we observed no statistically significant difference in LiCl response from 

P2-12, when compared with response obtained at P1. Conversely, LiCl effect was 

significantly reduced starting from P13 and at P14 (mean percentage ± S.D. 

decrease over passage 1: 33 ± 6.1 and 44 ± 9.5 , respectively; p<0.05 vs passage 

1). Based on these results, library screening activities were performed with NPC 

derived from different cell preparations at P1-12.  

Altogether these experiments confirm the difference in proliferation between TS 

and EU NPC and the pro-proliferative effect of LiCl, with optimal and 

reproducible effects at 2 mM and at a 96 h time point.  
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Figure 1. Reduced cell proliferation in trisomic SVZ-derived NPC can be corrected by LiCl  

Proliferation experiments are performed on euploid (EU, grey bar) and trisomic (TS, white bar) 

SVZ-derived NPC. A. ATP based assay. EU/TS NPC are seeded in standard conditions (hFGF 

10 ng/ml) and in presence of vehicle (DMSO 0.05 %) or LiCl (2 mM). Proliferation is measured 

after 96 h and data are represented as difference in comparison with euploid NPC basal condition. 

Error bars represent the standard deviation of n=7 replicates, run in seven different experiments. 

Each dot is the mean of three replicates. B. Edu incorporation-based assay. EU/TS NPC are 

seeded in standard conditions (hFGF 10 ng/ml) and in presence of vehicle (DMSO 0.05 %) or 

LiCl (2 mM) for 48 h, EdU is added in the last 8 h both in EU and TS NPC. Data are represented 

as difference in comparison with euploid NPC basal condition. Error bars represent the standard 

deviation of n=3 replicates, run in one experiment. Each dot represents a replicate. Results are 

considered statistically relevant with p<0.05 (## p<0.01, ### p<0.001 vs. vehicle-treated EU 

cells; *p<0.05, ***p<0.001 vs. vehicle-treated TS cells, Two way Anova, followed by Tukey’s 

post hoc). The § indicate a difference in proliferation between genotypes (§ p<0.05, §§ p<0.01, 

§§§ p<0.001 vs EU, Two way Anova followed by Fisher’s LSD post hoc). 
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Figure 2. Characterization of LiCl response on SVZ-derived neonatal NPC 

Proliferation experiments are performed on euploid (EU, grey bar) and trisomic (TS, white bar) 

SVZ-derived NPC. A. EU/TS NPC are seeded in medium containing 10 ng/ml hFGF-mediated 

proliferative conditions in presence of vehicle (veh) or different concentrations of LiCl (mM) for 

96 h. Error bars represent the standard deviation of n=6 replicates, run in two different 

experiments. Each dot represents a replicate. Data are represented as difference in comparison 
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with euploid NPC basal condition. B. EU/TS NPC are seeded in medium containing 10 ng/ml 

hFGF in presence of vehicle, LiCl (2 mM) or hEGF (20 ng/ml) for 24, 48, 72 an 96 h. Data are 

represented as difference in comparison with euploid NPC basal condition. Error bars represent 

the standard deviation of n=9 replicates, run in three different experiments and each dot represents 

a replicate. C. Lithium response over NPC culture passages. TS NPC are seeded in medium 

containing 10 ng/ml hFGF in presence of LiCl (2 mM) or vehicle for 96 h. Proliferation is 

represented as difference in comparison with LiCl response at passage one. The red dotted line 

represented the effect of LiCl at passage 1. Error bars represent the standard deviation of n=4 

replicates, run in four different experiments. Each dot represents the mean of three replicates.  For 

each preparation an average of 3-6 Ts65Dn and euploid pups are pooled together. Results are 

considered statistically relevant with p<0.05 (# p<0.05; ## p<0.01; ### p<0.001 vs. vehicle-

treated EU cells; * p<0.05; ** p<0.01;*** p<0.001 vs. vehicle-treated TS cells, Two way Anova, 

followed by Tukey’s post hoc). The § indicate a difference in NPC proliferation between 

genotypes (§ p<0.05, §§ p<0.01, §§§ p<0.001 vs EU cells, Two way Anova followed by Tukey’s 

post hoc).  

 

Further validation and reproducibility of the phenotypic-NPC based assay  

A 96 hour incubation period appeared as a suitable time point for a screening 

assay development, with 2 mM LiCl and 20 ng/ml hEGF as positive controls, but 

we had to take into account evaporation as an important variable. Indeed edge 

effect caused by evaporation could negatively affect drug final concentrations 

and assay reproducibility (Maddox et al., 2008). In order to quantify edge effect 

in our experimental conditions, hypothesizing a 100 l final working volume, we 

calculated evaporation at the edge and center of 96 well-plates hosted in the CO2 

incubator inside or outside a home-made humidity chamber, as previously 

described (Walzl et al., 2012). After 96 h incubation, medium volume was 

minimally or less reduced in edge wells of plates incubated in the humidity 

chamber (mean l/well ± S.D.: 95 ± 0.89, 99.8 ± 0.3, in edge and central wells 

respectively), compared with wells of plates left outside the humidity chamber 

(mean l/well ± S.D.: 89 ± 2.3 and 95 ± 1.3, in edge and central wells, 
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respectively). Since no evaporation was observed in central wells of plates kept 

in the humidity chamber, we decided to perform the drug screening campaign 

under this experimental condition and using only the center of 96 w-plates. 

Compounds in most drug libraries are conveniently dissolved in DMSO. This 

commonly used solvent has many effects on cellular models, including NPC (Pal 

et al. 2012), and can give rise to confounding, false negative/positive results. For 

these reasons, we tested DMSO effects on TS (and EU) NPC proliferation under 

basal conditions (hFGF 10 ng/ml) over a wide range of concentrations of the 

solvent (0.01-2 %). We detected a statistically significant reduction in the 

percentage of proliferating NPC only at the highest concentration of DMSO. In 

particular, we observed a 71 % decrease of EU NPC treated with 2 % DMSO and 

a 63 % decrease of TS NPC treated with 2 % DMSO (Fig. 3A). Based on the fact 

that drug compounds were dissolved in 100% DMSO and that we planned to test 

them at 1 M final concentration, we chose 0.05% DMSO as vehicle for further 

experiments.  

In order to investigate the quality of the screening, we calculated the Z-prime 

value (Z’) for each screened drug plate (see methods). We considered four 

parameters, the means and the standard deviations of the positive (2 mM LiCl 

and DMSO 0.05 %) and the negative control (10 ng/ml hFGF and DMSO 0.05 

%). We obtained a score between 0.46 and 0.7, with a mean score of 0.55 (Fig. 

3B), supporting a reliable assay and a good separation between the positive and 

the negative controls.  

Altogether these results suggest that the best condition to reduce intra- and inter-

plates variability and the quality of the assay was to use the condition humidity 

chamber, central wells, and DMSO 0.05 %.  
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Figure 3. DMSO effect on SVZ-derived NPC and graphical representation of Z-prime value 

A. Proliferation experiments are performed on euploid (EU, grey bar) and trisomic (TS, white 

bar) SVZ-derived NPC. EU/TS NPC are seeded in medium containing 10 ng/ml hFGF and a 

range of DMSO concentrations (0.01-2%) for 96 h. Data are represented as difference in 

comparison with euploid NPC basal condition. Error bars represent the standard deviation of n=9 

replicates, run in three different experiments and each dot represents a replicate. Results are 

considered statistically relevant with p<0.05 (### p<0.001 vs. vehicle-treated EU cells (-); 

***p<0.001 vs. vehicle-treated TS cells (-), One way Anova, followed by Tukey’s post hoc). B. 

Graphical representation of the Z prime value calculated for each screening plate. Calculations 

were performed as described in the method section and on the x-axis is represented the plate 

number, on the y-axis the Z’ value for each drug plate. Red dotted lines represent the range for 

an excellent assay. 
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Drug screening and hit identification  

Two distinct commercial drug libraries were used for the screening campaign: 

the Prestwick chemical library® (Prestwick Chemical), a well-recognized drug 

collection composed by 1,120 FDA/EMA approved drugs (Kanvatirth et al., 

2019; Torres et al., 2018), and the Screen-Well® FDA Approved Drug Library 

V2, composed by 770 compounds (Enzo Life Sciences) (Corsello et al., 2017). 

Although a total of 1,890 drugs were tested, since the libraries are partially 

overlapping, altogether 1,590 chemically distinct compounds were screened. The 

complete screening workflow is schematized in Figure 4A. Trisomic SVZ-

derived NPC (P3-P12) were seeded in 96 well-plates in presence of low (10 

ng/ml) hFGF-mediated proliferative conditions and incubated at 37 °C, 5 % CO2. 

After 30 minutes, vehicle (0.05 % DMSO), positive controls (2 mM LiCl and 20 

ng/ml hEGF, both in 0.05 % DMSO) and library drugs (1 µM, 0.05 % DMSO) 

were added to wells in quadruplicates. Plates were then incubated for 96 h in the 

humidity box. At the end of the incubation period, proliferation was measured 

using the Cell Titer Glo assay kit (Promega), according to manufacturers’ 

conditions. TS NPC from P2-P12 of n=3 different preparations were used for the 

entire campaign. Data were calculated as mean percentage change over standard, 

vehicle-treated conditions (10 ng/ml hFGF, 0.05 % DMSO). The results of the 

screening are summarized in Figure 4B as a dot plot, where each dot corresponds 

to a single drug, tested in quadruplicates. The effect of LiCl (+ 39%, red dotted 

line, p<0.001 vs vehicle-treated cells) was used as threshold to identify equally 

or more effective drugs (hits). In more details, we identified 30 FDA-EMA 

approved drugs more potent than LiCl in increasing TS NPC proliferation (red 

dots, Fig. 4B). When analyzed, potential hits belonged to three pharmacological 

classes: glucocorticoids, 2-adrenergic agonists and immunosuppressant drugs. 

We recognized also a category defined as others composed by - mixed 

adrenergic ligands (dobutamine HCl, etilefrine hydrochloride,),  mixed 
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adrenergic ligands (isoproterenol HCl; isosuxprine HCl,), -adrenergic 

antagonists (pindolol) and a phosphodiesterase type 4 (PDE IV) inhibitor 

(glycopyrrolate iodide). All the potential hits and their relative percentage of 

increase over vehicle-treated cells are listed in table 1. 

 

Figure 4. Results of the drug library screening in trisomic neonatal SVZ-derived NPC 

A. Representative cartoon of the screening workflow. In the first step trisomic NPC are seeded in 

medium containing hFGF 10 ng/ml in 96 w-plates, after 30 minutes vehicle (0.05 % DMSO), 

positive controls (2 mM LiCl and 20 ng/ml hEGF, both in 0.05 % DMSO) and library drugs (1 

µM, 0.05 % DMSO) are added. Only central wells (white wells) of a 96 w-plate are used. The 

edge wells (red one) are filled with 300 µl of distilled sterile water. After 96 h in the humidity 

box plates are removed and measured using the Cell Titer Glo assay (Promega) (see methods). 

A

B
humidity box and 96w-plate
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The reaction needs ten minutes and consists in cell lysis and ATP release into the media. Luciferin 

is transformed in oxyluciferin by luciferase in presence of ATP and luminescence is measured. 

The obtained value expressed as relative luminescence unit (RLU) is directly proportional to the 

quantity of ATP contained into each well. B. Scatter plot of the screened compounds represented 

as percentage of change over vehicle-treated TS NPC (hFGF 10 ng/ml and DMSO 0.05%). In the 

x-axis is represented the number of compound tested. In the y-axis the percentage of change over 

vehicle-treated cells. Each dot is a drug screened in quadruplicates at the final concentration of 1 

M. The dotted line represents the effect of LiCl (2 mM; + 39 %), fixed as a threshold to define 

a potential hit. Drugs more potent than LiCl are represented as red dots.  

 

Hit confirmation and characterization  

In order to confirm and validate potential hits, each drug was retested in the ATP-

based proliferation assay using fresh powders from commercial suppliers. 

Concentration response curves from 0.1 to 1000 nM (DMSO 0.05 % as vehicle) 

were performed in different TS NPC preparations.  

At first, in order to confirm previous results, we investigated whether selected 

glucocorticoids promoted proliferation in EU and TS NPC. We treated both EU 

and TS NPC in a concentration range of desonide, betamethasone and clobetasol 

(0.1-1000 nM). We detected a decreased proliferation of TS NPC in presence of 

vehicle, if compared with the euploid counterpart (p<0.001; Fig. 5 A, B) (p<0.05; 

Fig.5 C).  

When EU NPC were incubated with desonide, we observed a concentration-

dependent increase in proliferation of EU NPC in presence of 1, 10, 100 and 1000 

nM desonide (mean percentage increase ± S.D. over vehicle-treated EU NPC: 17 

± 4 ; 38 ± 4.5 ; 46 ± 16 ; 51 ± 3.4 ; p<0.001 vs EU veh). In the same experimental 

setting, starting at 10 nM concentration, desonide produced an increase in 

proliferation of TS NPC at the concentrations of 10, 100, 1000 nM if compared 

with vehicle (mean percentage increase ± S.D. over vehicle-treated TS NPC: 39 

± 1.8 ; 39 ± 6.3 ; 42 ± 6.3 ; p<0.001 vs TS veh) (Fig. 5A).  
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When EU NPC were exposed to betamethasone we detected an increase in 

proliferation at the concentrations of 10, 100 and 1000 nM if compared with 

vehicle (mean percentage increase ± S.D. over vehicle-treated EU NPC: 29 ± 7.3 

; 28 ± 6.1 ; 35 ± 2.1 ; p<0.001). Comparably, betamethasone produced an increase 

in proliferation of TS NPC at the concentrations of 10, 100, 1000 nM if compared 

with vehicle (mean percentage increase ± S.D. over vehicle-treated TS NPC: 61 

± 2.6 ; 49 ± 1 ; 58 ± 6.1 ; p<0.001 vs TS veh) (Fig. 5B). 

 

When clobetasol propionate was tested on NPC, we observed at all the tested 

concentrations (0.1-1000 nM) an increase in proliferation of both EU NPC (mean 

percentage increase ± S.D. over vehicle-treated EU NPC: 40 ± 4.3 ; 49 ± 4.5 ; 49 

± 6.4 ; 46 ± 10 ; 50 ± 4.1 ; p<0.001 vs EU veh) and TS NPC (mean percentage 

increase ± S.D. over vehicle-treated TS NPC: 38 ± 7.3 ; 37 ± 7.5 ; 44 ± 3.3 ; 41 

± 4.3 ; 39 ± 2.6 ; p<0.001 vs TS veh) (Fig. 5C). 

As expected, LiCl (2 mM) significantly promoted proliferation of both genotypes 

if compared with vehicle-treated cells (p<0.001 vs veh) (Fig. 5 A-C). 

Taken together these results confirm the pro-proliferative effect of desonide, 

betamethasone and clobetasol on the proliferation rate of TS NPC. We showed 

that these compounds were effective also on EU NPC.  

 

In order to confirm whether 2-adrenergic agonists promote proliferation, we 

treated both EU and TS NPC with formoterol and terbutaline (0.1-1000 nM).  

We observed a decreased proliferation of TS NPC in presence of vehicle, if 

compared with the euploid counterpart (p<0.001 vs EU veh) (Fig. 6A-C). 

Starting at 1 nM concentration, formoterol produced a concentration-dependent 

increase in proliferation of EU NPC with a maximal effect elicited at 100 nM 

(mean percentage increase ± S.D. over vehicle-treated EU NPC: 63 ± 7; p<0.001 

vs EU veh). Comparably, in the same conditions, formoterol enhanced the 



  

 83 

proliferation of TS NPC at 10, 100 and 1000 nM concentrations (mean 

percentage increase ± S.D. over vehicle-treated TS NPC: 19 ± 3.2 ; 41 ± 3.7 ; 33 

± 2.5 ; p<0.001 vs TS veh) if compared with vehicle-treated TS cells (Fig. 6A). 

When NPC where incubated with terbutaline we observed an increase in 

proliferation of EU NPC only at 100 and 1000 nM concentrations (mean 

percentage increase ± S.D. over vehicle treated EU NPC: 21 ± 6.1 ; 41 ± 8.9 ; 

p<0.001 vs EU veh). In the same experimental conditions, terbutaline increased 

the proliferation of TS NPC only at the concentration of 1000 nM (mean 

percentage increase ± S.D. over vehicle-treated TS NPC: 39 ± 4.5 ; p<0.001 vs 

TS veh) (Fig.6B).  

We also investigated whether the non-selective -agonist isoproterenol affected 

NPC proliferation, by treating both EU and TS NPC in presence of a drug 

concentration range (0.1-1000 nM). Isoproterenol at the concentration of 10, 100, 

1000 nM produced an increase in proliferation of both EU NPC (mean percentage 

increase ± S.D. over vehicle-treated EU NPC: 47 ± 5 ; 68 ± 3 ; 52 ± 1.5 ; p<0.001 

vs EU veh) and TS NPC (mean percentage increase ± S.D. over vehicle-treated 

TS NPC: 29 ± 2.6 ; 51 ± 7.2 ; 45 ± 8.6 ; p<0.001 vs TS veh) (Fig. 6C).  

Taken together these results confirm that formoterol, terbutaline and 

isoproterenol enhance TS NPC proliferation. These drugs were effective also in 

EU NPC.  
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Figure 5. Desonide, betamethasone and clobetasol promote proliferation in euploid and 

trisomic neonatal SVZ NPC 

Proliferation experiments are performed on euploid (EU, grey bar) and trisomic (TS, white bar) 

SVZ-derived NPC. A. EU/TS NPC are seeded in medium containing 10 ng/ml hFGF in presence 

of vehicle (-, DMSO 0.05 %), a range of desonide concentrations (0.1-1000 nM) or LiCl (2 mM) 
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for 96 h. Error bars represent the standard deviation of n=6 replicates, run in two different 

experiments and each dot represents a replicate. B. EU/TS NPC are seeded in medium containing 

10 ng/ml hFGF in presence of vehicle (-; DMSO 0.05 %), a range of betamethasone 

concentrations (0.1-1000 nM) or LiCl (2 mM) for 96 h. Error bars represent the standard deviation 

of n=3 replicates, run in one experiment and each dot represents a replicate. C. EU/TS NPC are 

seeded in medium containing 10 ng/ml hFGF in presence of vehicle (-; DMSO 0.05 %), a range 

of clobetasol propionate concentrations (0.1-1000 nM) and LiCl (2 mM) for 96 h. Error bars 

represent the standard deviation of n=4 replicates, run in one experiment and each dot represents 

a replicate. Data are represented as difference in comparison with euploid NPC basal condition 

and the red dotted line represents the euploid NPC basal condition. Results are considered 

statistically relevant with p<0.05 (## p<0.01, ### p<0.001 vs. vehicle-treated EU cells; *p<0.05, 

**p<0.01, ***p<0.001 vs. vehicle-treated TS cells, Two way Anova, followed by Tukey’s post 

hoc). The § indicate a difference between genotypes in basal condition (§ p<0.05 vs. vehicle-

treated EU NPC, Two way Anova, followed by Tukey’s post hoc). 
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Figure 6. Formoterol, terbutaline and isoproterenol promote proliferation in euploid and 

trisomic neonatal SVZ-derived NPC 

Proliferation experiments are performed on euploid (EU, grey bar) and trisomic (TS, white bar) 

SVZ-derived NPC. A. EU/TS NPC are seeded in 10 ng/ml hFGF in presence of vehicle (-; DMSO 

0.05 %), a range of formoterol concentration (0.1-1000 nM) or LiCl (2 mM) for 96 h. Error bars 

represent the standard deviation of n=3 replicates, run in one experiment and each dot represents 

a replicate. B. EU/TS NPC are seeded in 10 ng/ml hFGF in presence of vehicle (-; DMSO 0.05 
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%), a range of terbutaline concentrations (0.1-1000 nM) or LiCl (2 mM) for 96 h. Error bars 

represent the standard deviation of n=3 replicates, run in one experiment and each dot represents 

a replicate. C. EU/TS NPC are seeded in 10 ng/ml hFGF in presence of vehicle (-; DMSO 0.05 

%), a range of isoproterenol concentrations (0.1-1000 nM) or LiCl (2 mM) for 96 h. Error bars 

represent the standard deviation of n=3 replicates, run in one experiment and each dot represents 

a replicate. Data are expressed as difference in comparison with euploid NPC basal condition and 

the red dotted line represents euploid NPC basal condition. Results are considered statistically 

relevant with p<0.05 (## p<0.01, ### p<0.001 vs. vehicle-treated EU cells; *p<0.05, ***p<0.001 

vs. vehicle-treated TS cells, Two way Anova, followed by Tukey’s post hoc). The § indicate a 

difference between genotypes in basal condition (§ p<0.05 vs. vehicle-treated EU NPC, Two way 

Anova, followed by Tukey’s post hoc). 

 

DISCUSSION 

 

DS brain shows several defects potentially contributing to cognitive impairment 

(Bartesaghi et al., 2011; Lott & Dierssen, 2010). One of them is a remarkable 

hypocellularity which is evident since early fetal stages. Several past and current 

lines of research in DS propose a key pathophysiological role for reduced 

proliferation of trisomic NPC (Guidi et al., 2008; Lorenzi & Reeves, 2006; 

Murray et al., 2015; Stagni et al., 2018), which is also associated with an altered 

differentiation program toward neuronal lineages (Chen et al., 2013, 2014b; 

Hibaoui et al., 2014). A few years ago a pioneer study in Ts65Dn animal model 

showed that a pharmacological perinatal (prenatal and neonatal) treatment 

targeting the serotoninergic system could correct trisomic NPC phenotypes 

(Stagni et al., 2015) and result in partial correction of cognitive impairment. Since 

then, other preclinical DS research programs have proposed potential therapies 

that may correct DS phenotype in animal models (Herault et al., 2017; De la Torre 

& Dierssen 2012; Vacca et al., 2019), but so far these efforts have failed to 

translate into clinical applications (Kazemi et al., 2016). 
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In this study, we set up a phenotypic cell-based assay using reduced proliferation 

of murine trisomic neural progenitor cells as a primary read out to screen, for 

drug repurposing, FDA-EMA approved drugs. In principle, this strategy may 

dramatically reduce the possibility to move a drug candidate into the clinical 

setting (Clout et al., 2019; Reaume, 2011). To our knowledge, this study 

represents the first attempt to identify potential DS therapies using a drug 

repurposing strategy, and a NPC-based primary assay.  

Based on these premises, we first developed and validated a phenotypic assay 

able to detect changes in the proliferation rate of neonatal trisomic, compared to 

euploid, NPC. We identified LiCl (2 mM) as a positive control drug able to 

promote NPC proliferation. LiCl has been chosen since its proneurogenic effect 

was demonstrated not only in vitro, but also in vivo in adult Ts65Dn mice 

(Bianchi et al., 2010; Contestabile et al., 2013). LiCl is a first line drug for bipolar 

disorders and it has been proposed to promote NPC proliferation through the 

inhibition of glycogen synthase kinase-3 (GSK-3) (Pasquali et al., 2010; 

Zhang et al., 2019). Unfortunately its toxicity prevents its clinical use in DS 

children. The overall goal of our study was to identify, among approved drugs, 

molecules able to increase proliferation in trisomic NPC. We optimized assay 

quality and reproducibility in order to be able to use the assay for a screening 

campaign where read out for proliferation was quantification of the intracellular 

ATP content. These data have been further confirmed by another biochemical 

proliferation assay based on EdU incorporation. Primary NPC showed a 

reproducible response to 2 mM LiCl from passage 1 to 12. This was a critical 

aspect of the assay since the screening campaign lasted months and we utilized 

several distinct NPC preparations. All drugs were screened at a final 

concentration of 1 µM, in agreement with other drug screening protocols (Hughes 

et al., 2011) and in presence of DMSO 0.05 % which did not perturbe the assay. 

As a source of drugs, we used two well-established FDA-EMA approved libraries 
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characterized by high pharmacological and chemical diversity (Corsello et al., 

2017; Kanvatirth et al., 2019; Torres et al., 2018). At the end of the efforts we 

obtained about 30 potential hits, selected based on their ability to be equally or 

more effective than LiCl. Hits belonged to several pharmacological classes and 

we focused our attention on some of them for confirmation and validation 

activities. Drugs that were reproducibly effective on proliferation in subsequent 

studies were also tested for their effects on neuronal differentiation, which is also 

defective in trisomic NPC (data not shown).  

 

Among different pharmacological classes identified through the screening 

campaign, glucocorticoids (GC) were the most unexpected ones. Usually, they 

are associated to a stress response which negatively affect NPC proliferation and, 

in general, neurogenesis (Saaltink & Vreugdenhil, 2014). During pregnancy, 

maternal stress has been proposed to affect embryonic neurogenesis and the risk 

to develop neurological disorders maybe due to excessive glucocorticoid transfer 

from the mother to the fetus (Odaka et al., 2017). Sunberg et al. showed that 

dexamethasone (1 µM, the same concentration we used) reduces neural stem cell 

proliferation (Sundberg et al., 2006). Another study demonstrated a decreased 

hippocampal volume, number of proliferating cells in SVZ and SGZ in animal 

treated with dexamethasone (0.5 mg/kg/day from P4 to P7) (Kanagawa et al., 

2006). Although the majority of the studies suggest negative effects of GC on 

NPC, at least another group reported that GC (0.005-50 µM) may increase 

proliferation of NPC derived from human induced pluripotent stem cells (iPSCs), 

reprogrammed from fetal lung fibroblasts, in a concentration-dependent manner 

(Ninomiya et al., 2014). Another study showed that NPC obtained from hiPSCs 

could synthetize glucocorticoids, promoting their proliferation and inhibiting 

their neuronal differentiation (Nürnberg et al., 2018). Glucocorticoids bind the 

glucocorticoid receptor (GR), but questions are open about GR isoforms 
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expressed in NPC and target genes that are inhibited or activated by these 

receptors (Gündisch et al., 2012; Najm et al., 2015; Saaltink & Vreugdenhil, 

2014). It should not disregarded that non-transcriptionally mediated effects of 

GC are also well known. Indeed, the response mediated by GR may be much 

more complex than expected, involving multiple parallel mechanisms which 

integrate signals from other receptors (Hapgood et al., 2016). It has been shown 

that glucocorticoids may negatively affect NPC proliferation and differentiation 

through intracellular signaling pathways such as phosphoinositide 3-kinase 

(PI3K)/Akt, sonic hedgehog (Shh) and Wnt (Nelson et al., 2001; Odaka et al., 

2017). These pathways are well known to be impaired in DS (Granno et al., 2019; 

Perluigi et al., 2014), but this appears not relevant since we observed a 

proliferative effect mediated by GC both in trisomic and euploid NPC. For 

example, in DS animal models, a reduced proliferation of cerebellar granule cell 

precursors has been associated with attenuated Shh response. This effect was 

tentatively explained by hyperactivation of the transmembrane receptor Patched1 

(Ptch1) and inhibition of the Smoothened (Smo) receptor (Giacomini et al., 2015; 

Trazzi et al., 2011), which is involved in the regulation of stem cell proliferation 

(Vicario et al., 2019). In agreement with these findings, it has been proposed that 

some glucocorticoid molecules promote NPC proliferation acting as Smo 

agonists (Wang et al., 2010). Nevertheless, none of the GC identified as hits in 

our screening activities were smo agonists. On the other hand clobetasol 

propionate, a smo agonist, was present in the library and, although less effective 

than LiCl, it promoted TS NPC proliferation. We tested clobetasol in a 

concentration response curve and we observed that the drug increased NPC 

proliferation both in trisomic and euploid cells, once again leaving us clueless 

about the mechanism behind these effects. Future studies should be undertaken 

to elucidate the pro-proliferative effect of GC on neonatal NPC. 
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Through the screening activities several 2 adrenergic agonists were also 

identified as hits. Like GC, 2AR agonists were effective both in TS and EU 

NPC. When validated in concentration response curves, formoterol was more 

potent than terbutaline, in line with its higher affinity for 2AR (Lemoine et al., 

1992; Molimard et al., 1998). Although administration of the long acting 2AR 

formoterol (2 mg/kg, i.p.) in 4-6-month-old Ts65Dn mice resulted in improved 

cognitive functions and promoted dendritic complexity (Dang et al., 2014), NPC 

were not proposed as cellular targets for mediating such effects in the DS animal 

model. Recently our group proposed a novel pharmacological property of 

salmeterol and formoterol, namely promotion of adult hippocampal neurogenesis 

both in vitro and in vivo in wild type mice (Bortolotto et al., 2019). At least in 

vitro the drugs acted by directly promoting neuronal differentiation of adult NPC, 

as proven by a lack of response in 2AR KO NPC. Interestingly, in adult 

hippocampal progenitors 2AR agonists were devoid of proliferative effects, 

suggesting a different sensitivity of neonatal versus adult NPC. Other adrenergic 

compounds were identified in the screening campaign, for example the non-

selective beta agonist isoproterenol (see table 1). Jhaveri et al. demonstrated that 

in vitro isoproterenol and norepinephrine (NE) exhibit a proliferative effect in the 

neurosphere assay via activation of the 3AR (Jhaveri et al., 2010), so at present 

we cannot exclude that this receptor subtype may also mediate the effects of 

isoprotenerol in EU/TS NPC. Interestingly, in adult wt mice 2AR drugs were 

also very effective in promoting a significant increase in dendritic length and 

complexity of DCX+ hippocampal neuroblasts (Bortolotto et al., 2019). Based on 

these results and our in vitro screening data, a currently ongoing study at the 

University of Bologna (in the Laboratory of Prof. Bartesaghi) is evaluating the 

effects of subchronic administration of 2AR agonists that pass the blood brain 
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barrier in neonatal TS and EU pups with encouraging preliminary results (data 

not shown).   

Although not characterized in this work, other interesting hits identified during 

our screening campaign were the immunosuppressants cyclosporine A (CSA) 

and tacrolimus. Based on the results of the screening and the in vitro 

characterization of its activities (Stagni et al., 2019), CSA was then tested in vivo. 

A daily treatment of Ts65Dn mice from P3 to P15 with CSA (15 mg/kg/day, s.c.) 

increased NPC proliferation in both SVZ and SGZ regions, increased neuronal 

density and dendritic arborizations in the dentate gyrus of treated mice examined 

at P45 (Stagni et al., 2019). Studies are ongoing to assess whether amelioration 

of cognitive performance also correlate with neuroanatomical effects. In the 

future, it may be important to evaluate the long-term effects of CSA treatment on 

cognitive performances of Ts65Dn mice. Unfortunately, CSA toxicity is likely 

to prevent its use in the DS clinical setting, but since the remarkable effects of 

the drug in the murine model, we believe it will be very important in the near 

future to unravel its underlying mechanism(s) of action. These type of studies 

may ultimately provide key information on novel pharmacological targets in DS 

pathophysiology.  

 

In conclusion, we were able to set up a reproducible and sensitive trisomic NPC-

based phenotypic assay. Combined with a drug repurposing strategy, this assay 

was instrumental for performing a screening campaign of 1590 approved drugs. 

The efforts allowed the identification of novel classes of compounds which could 

correct reduced proliferation of trisomic NPC. At least in one case, CSA, these 

results prompted us to test the drug in vivo with very encouraging results: the 

drug corrected brain atrophy, neurogenesis and spine defects in Ts65Dn mice 

(Stagni et al., 2019), proving once again the concept that NPC may represent 

pharmacological targets in DS. Other identified hits are currently under testing 
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in vivo in Ts65Dn mice. Since the phenotypic nature of the assay, in the future 

we may need to unravel the underlying mechanism(s) of action of the identified 

hits that are also effective in vivo. These mechanisms may also be different from 

the one(s) involved in the primary action of approved drugs. In such case, our 

experimental strategy may ultimately result in identifying novel signaling 

pathways involved in the pathophysiology of DS.    

 
Table 1. List of drugs promoting proliferation more than lithium chloride (2 mM LiCl) classified 

in pharmacological classes.  
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ABSTRACT 

Down syndrome (DS), a genetic condition due to triplication of chromosome 21, 

is characterized by reduced proliferation of neural progenitor cells (NPCs) 

starting from early life stages. This defect is worsened by a reduction of 

neurogenesis (accompanied by an increase in astrogliogenesis) and dendritic 

spine atrophy. Since this triad of defects underlies intellectual disability, it 

appears of importance to establish whether it is possible to pharmacologically 

correct these alterations. In this study, we exploited the Ts65Dn mouse model of 

DS in order to obtain an answer to this question. In the framework of an in vitro 

drug-screening campaign of FDA-approved drugs, we found that the 

immunosuppressant cyclosporine A (CSA) restored proliferation, phenotype 

acquisition and maturation of neural progenitor cells (NPCs) from the 

subventricular zone (SVZ) of the lateral ventricle of Ts65Dn mice. Based on 

these findings, we treated Ts65Dn mice with CSA in the postnatal period P3-P15. 

We found that treatment fully restored NPCs proliferation in the SVZ and in the 

hippocampal subgranular zone (SGZ) and total number of hippocampal granule 

cells. Moreover, CSA enhanced development of dendritic spines on the dendritic 

arbor of the granule cells whose density even surpassed that of euploid mice. In 

hippocampal homogenates from Ts65Dn mice we found that CSA normalized 

the excessive levels of p21 and APP, two key determinants of proliferation and 

differentiation impairment. Results show that neonatal treatment with CSA 

restores the whole triad of defects of the trisomic brain. The use of a therapy with 

CSA for DS may pose caveats because it is an immunosuppressant that may cause 

adverse effects. However, CSA analogues that mimic its effect without eliciting 

immunosuppression may represent practicable tools for ameliorating brain 

development in individuals with DS.  

 



  

 101 

Key words: Down syndrome; Neurogenesis; Spinogenesis; Pharmacotherapy; 

Cyclosporine A 

 

INTRODUCTION 

 

Intellectual disability is one of the most serious problems in Down syndrome 

(DS), a genetic condition caused by triplication of chromosome 21. The 

impairment of brain function, which is already detectable in infants with DS, is 

attributable to severe impairment of key neurodevelopmental processes. In 

particular, evidence in fetuses/infants with DS and in DS mouse models shows 

that trisomic neural precursor cells have a reduced proliferation rate and exhibit 

an altered differentiation program that causes a reduction in the number of cells 

that differentiate into neurons and an increase in the number of cells that 

differentiate into astrocytes (Dierssen, 2012; Stagni et al., 2018). Neuronal 

maturation is also altered in DS, which leads to neurons with a reduced dendritic 

arborization and a reduced density of dendritic spines. The unavoidable outcome 

of these defects is the impairment of overall brain wiring, explaining the 

alteration within a constellation of cognitive domains that characterizes DS. 

Intense efforts are currently underway in order to establish whether it is possible 

to pharmacologically ameliorate intellectual disability in DS. In this connection, 

there are two possible and not mutually exclusive approaches. One possibility is 

to use drugs that specifically target cellular pathways that are altered in the DS 

brain and that are known to regulate one or more of the neurodevelopmental 

processes mentioned above. This approach requires preliminary knowledge 

regarding the molecular alterations of the DS brain, the choice of the molecular 

pathway to be targeted, and the choice of the drug that putatively acts on this 

pathway. A second possibility is the repositioning of drugs/compounds that were 

designed and approved for other pathologies. Various studies show that drugs 
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designed for quite different purposes may actually exert some benefits in various 

brain disorders. Thus, this strategy is not simply based on an a priori assumption. 

This approach requires i) the development of a reproducible and sensitive 

phenotypic assay, based on relevant defective properties of trisomic neural 

progenitor cells (NPCs); ii) a subsequent in vitro screening of libraries of 

clinically approved drugs in the search for those that may revert that phenotype. 

In principle, cell-based screening combined with strategies of drug repurposing 

offers the opportunity to significantly reduce risks and costs associated with 

developing new therapeutics and, more importantly, may dramatically reduce 

time for human translation. By following this strategy, we aim to identify 

clinically approved drugs that are able to restore proliferative and differentiative 

defects of NPCs derived from the Ts65Dn mouse, a widely-used model of DS. 

After in vitro identification of effective molecules, our final goal is to test their 

effects in vivo in the Ts65Dn mouse. Herein we show the identification of the 

immunosuppressant and clinically relevant cyclosporine A (CSA) as a drug that 

can not only restore the proliferation rate of NPCs and their differentiation into 

neurons in vitro, but that is also effective in vivo in the Ts65Dn mouse. According 

to recent work, a dose of 15 mg/kg/day of CSA increases the pool of actively 

dividing cells in the dentate gyrus of wild type mice and also favors the 

generation of new granule neurons (Chow & Morshead, 2016). Herein we show 

that Ts65Dn neonatal treatment with 15 mg/kg/day of CSA for a short period of 

time (13 days) restores proliferation of NPCs in the two major brain neurogenic 

niches (the subventricular zone and the subgranular zone of the hippocampal 

dentate gyrus) and reinstates hippocampal development, in terms of granule cell 

number and spinogenesis. This provides evidence that CSA treatment can rescue 

the major neurodevelopmental defects of the DS brain. 
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MATERIALS AND METHODS 

 

Mouse colony 

Ts65Dn mice were generated by mating B6EiC3Sn a/A-Ts(17^16)65Dn females 

with C57BL/6JEiJ x C3H/HeSnJ (B6EiC3Sn) F1 hybrid males. This parental 

generation was provided by Jackson Laboratories (Bar Harbor, ME, USA). To 

maintain the original genetic background, the mice used were of the first 

generation of this breeding. Animals were genotyped as previously described 

(Reinholdt et al., 2011). The day of birth was designated postnatal day zero (P0). 

The animals’ health and comfort were controlled by the veterinary service. The 

animals had access to water and food ad libitum and lived in a room with a 12:12 

h light/dark cycle. Experiments were performed in accordance with the European 

Community Council Directive of 24 November 1986 (86/609/EEC) for the use 

of experimental animals and were approved by Italian Ministry of Public Health. 

In this study, all efforts were made to minimize animal suffering and to keep the 

number of animals used to a minimum. 

 

IN VITRO EXPERIMENTS 

Isolation and culture of SVZ neural progenitor cells 

Cells were isolated from the subventricular zone (SVZ) of the lateral ventricle of 

newborn (age 1-2 days) euploid and Ts65Dn mice, as previously described 

(Stagni et al., 2017). Briefly, brains were removed, the SVZ region was isolated 

and collected in ice-cold PIPES buffer pH 7.4. After centrifugation, tissue was 

digested for 10 min at 37°C using Trypsin/EDTA 0.25% (Life Technologies) 

aided by gentle mechanical dissociation. Cell suspensions from individual mice 

were pooled and plated onto 25 cm2 cell-culture flask (Thermo Fisher Scientific) 

and cultured as floating neurospheres in medium containing basic fibroblast 

growth factor (bFGF, 10 ng/ml; Peprotech) and epidermal growth factor (EGF, 
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20 ng/ml; Peprotech) using an established protocol (Meneghini et al., 2014). 

Primary (Passage 1, P1) neurospheres were dissociated using Stempro Accutase 

(Life Technologies) after 7 days in vitro (DIV); thereafter neurospheres were 

passaged every 5 DIV. For further in vitro studies cells from P3 to P12 were used.  

 

Phenotypic drug screening 

For the drug screening, two different commercial libraries (Prestwick chemical 

library®, Prestwick Chemical, and Screen-Well® FDA Approved Drug Library 

V2, Enzo Life Sciences), containing a total of 1,887 FDA/EMA-approved drugs 

were used. These libraries were chosen for their chemical and pharmacological 

diversity. Trisomic SVZ NPCs (P3-P12) pooled from at least 3-5 pups were 

dissociated in a single cell suspension and plated onto NunclonTM Delta Surface 

96-well plate (Thermo Fisher Scientific) at a density of 4×103 cells per well in 

DMEM/F-12 medium supplemented with B27, GlutamaxTM (2 mM, Life 

Technologies), heparin sodium salt (4 μg/ml; ACROS Organics), bFGF (10 

ng/ml, Peprotech) and 100 U/100 μg/ml Penicillin/Streptomycin (Life 

Technologies) for 30 min, at 37 °C. Compounds were added to each well in 

quadruplicates (1 µM final concentration, in 0.05% DMSO). In parallel, EGF (20 

ng/ml, Peprotech) and LiCl (2 mM, Sigma-Aldrich), that have been shown to 

restore proliferation of NPCs of Ts65Dn mice in vivo (Bianchi et al., 2010a, 

Contestabile et al., 2013) and in vitro (Trazzi et al., 2014), were added to each 

plate in quadruplicates as pro-proliferative controls. Lithium concentration was 

chosen based on previous evidence (Trazzi et al., 2014). Cell proliferation was 

quantified after 96 h incubation in a humidity chamber (to minimize evaporation) 

and quantified as relative luminescence units (RLU) values using a CellTiter-Glo 

ATP-based assay kit (Promega) on a Victor3-V plate reader (PerkinElmer) 

(Stagni et al., 2017). Drug activity was calculated as percentage of change 

compared to basal conditions (cells grown in presence of 10 ng/ml FGF and 0.05 
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% DMSO). The same proliferation assay was performed to assess hit 

concentration response curves (0.1-1000 nM). 

 

Neural Progenitor Cell Proliferation and Differentiation 

In order to evaluate cell proliferation in secondary assays, EdU (5-ethynyl-2-

deoxyuridine) incorporation was performed using the Click-iT® EdU Alexa 

Fluor® 488 HCS Assay Kit (Thermo Fisher Scientific). Briefly, neurospheres 

(P3-P12) were dissociated in a single cell suspension and plated onto laminin-

coated 96-well plate (Falcon) at a density of 4×103 cells per well in DMEM/F-12 

medium supplemented with B27, GlutamaxTM, heparin sodium salt (4 μg/ml; 

ACROS Organics), bFGF (10 ng/ml) and 100 U/100 μg/ml 

Penicillin/Streptomycin (Life Technologies) in presence of CSA (1000 nM; 

MedChem Express) or its vehicle (DMSO 0.05%) for 72 h. In the last 12 h period, 

EdU was added to each well at a final concentration of 10 μM. After that, cells 

were fixed for 20 min at room temperature using 4% paraformaldehyde in 

phosphate-buffered saline (PBS, pH 7.4). EdU detection was performed 

according to manufacturer’s instructions. In each experiment, 37 fields/well 

(corresponding to about 50 % of the total well surface) were counted using an 

InCell Analyzer 2200 (GE). Cell death was evaluated using the CytoTox-Glo™ 

Cytotoxicity Assay (Promega) according to the manufacturer’s instructions. 

Cells were exposed to CSA (30-1000 nM, MedChem Express) or its vehicle 

(DMSO 0.05%) for 96 h. Cytotoxicity was quantified as relative luminescence 

unit (RLU) on a Victor3-V plate reader (PerkinElmer) and expressed as 

percentage over the total number of cells. For differentiation experiments 

neurospheres from the SVZ were dissociated into single cells and plated onto 

laminin-coated Lab-Tek 8-well permanox chamber slides (Thermo Fisher 

Scientific) at a density of 35×103 per well in differentiation medium (DMEM-

F12 supplemented with B27, 2 mM Glutamax and 100 U/100 mg/ml 
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penicillin/streptomycin). NPCs were treated in presence of CSA (3–1000 nM) or 

vehicle (DMSO 0.05 %) for 96 h. After that, cells were fixed for 20 min at room 

temperature using 4% paraformaldehyde. Phenotypic characterization of NPC-

derived cells was carried out by immunolocalization for MAP2 (rabbit 

polyclonal, 1:50,000; Abcam) and Nestin (chicken monoclonal, 1:2,500; 

Neuromics). Secondary antibodies were as follows: AlexaFluor555-conjugated 

goat anti rabbit (1:1,400; MolecularProbes), and AlexaFluor488-conjugated goat 

anti chicken (1:1,400; Molecular Probes). In additional experiments, in which 

NPCs were exposed to selected concentrations of CSA (100–1000 nM) or vehicle 

for 96 h, in parallel to MAP2/nestin, GFAP immunoreactivity was evaluated 

using a mouse anti-GFAP monoclonal antibody (1:600, Millipore), and a 

secondary AlexaFluor555-conjugated goat anti mouse antibody (1:1600; 

Molecular Probes). Nuclei were counterstained with 0.8 ng/ml Hoechst (Thermo 

Fisher Scientific) diluted in PBS. In each experiment, five fields/well 

(corresponding to about 150–200 cells/well) were counted with a 60X objective 

by a Leica DMIRB inverted fluorescence microscope. Immunoreactive cells 

were counted and their percentage over total viable cells was calculated. In 

differentiating cultures exposed to CSA (3-1000 nM) for 96 h, the number of 

MAP2+ cells exhibiting neuritic processes was counted at random locations in 

three fields/well and their number was expressed as the percentage over total cell 

number in each sampled location. All experiments were run in triplicate.  

 

IN VIVO EXPERIMENTS 

Experimental protocol 

According to recent work, a dose of 15 mg/kg/day of CSA has a pro-neurogenic 

effect in the dentate gyrus of adult wild type mice (Chow & Morshead, 2016). 

Based on this evidence, we treated euploid and Ts65Dn mice with CSA 

(MedChem Express, 15 mg/kg/day in vehicle; s.c. injection) or vehicle (PBS with 
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2.5% DMSO) from postnatal day 3 (P3) to P15. Mice that received CSA will 

hereafter be called “treated mice” (treated euploid mice: n=15; treated Ts65Dn 

mice: n=14). Mice that received the vehicle will be called “untreated mice” 

(untreated euploid mice: n=21; untreated Ts65Dn mice: n=21). Each 

experimental group was composed of a similar number of males and females 

(treated euploid mice: 8 males, 7 females; treated Ts65Dn mice: 8 males, 6 

females; untreated euploid mice: 10 males, 11 females; untreated Ts65Dn mice: 

11 males, 10 females). On P15, mice received a subcutaneous injection (150 g/g 

body weight) of BrdU in TrisHCl 50 mM 2h before being killed. The brains were 

excised and cut along the midline. The left hemispheres of a group of mice were 

fixed by immersion in PFA 4% and frozen, and the right hemispheres were used 

for Golgi staining. The right hemispheres of other mice were kept at –80°C and 

used for western blotting. The body weight of mice of all groups was recorded 

prior to sacrifice and the brain weight was recorded immediately after brain 

removal. The number of animals used for each experimental procedure is 

specified in the figure legends. In order to establish whether lower doses of CSA 

have a pro-neurogenic effect in Ts65Dn mice similar to that elicited by the 15.0 

mg/kg dose (see Results), we also tested the effects of 1.5 mg/kg (n=6 mice: 3 

males, 3 females) or 7.5 mg/kg (n=4 mice: 3 males, 1 female) of CSA (same 

protocol as above).  

 

Histological procedures 

The frozen brains were cut with a freezing microtome into 30-m-thick coronal 

sections that were serially collected in anti-freezing solution (30% glycerol; 30% 

ethylen-glycol; 10% PBS 10X; sodium azide 0.02%; MilliQ to volume). 

Hoechst-staining. One out of six free-floating sections taken from the beginning 

to the end of the hippocampal formation (n=15-19 sections) were incubated for 2 

min in Hoechst nuclear dye (2 mg/ml in PBS) and mounted on slides. 
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BrdU immunohistochemistry. Immunohistochemistry was carried out as 

previously described (Contestabile et al., 2007; Bianchi et al., 2010b; Guidi et 

al., 2013; Giacomini et al., 2015). One out of six free-floating sections (n=15-19 

sections) from the hippocampal formation was incubated with rat anti-BrdU 

antibody (diluted 1:200; Biorad) and detection was performed with a Cy3-

conjugated anti rat-secondary antibody (diluted 1:200; Jackson 

Immunoresearch). Sections were then mounted on slides. 

Golgi staining. Brains were Golgi stained using the FD Rapid Golgi Stain TM Kit 

(FD Neuro Technologies, Inc.). Brains were immersed in the impregnation 

solution containing mercuric chloride, potassium dichromate and potassium 

chromate (the impregnation solution was prepared by mixing equal volumes of 

Solutions A and B of the FD Rapid Golgi StainTM Kit) and stored at room 

temperature in the dark for 2 weeks. Then, brains were transferred into Solution 

C (FD Rapid Golgi StainTM Kit) and stored at room temperature in the dark for 

at least 72 h. After these steps, hemispheres were cut with a microtome into 90-

μm-thick coronal sections that were mounted on gelatin-coated slides, and were 

air dried at room temperature in the dark for at least one day. After drying, 

sections were rinsed with distilled water and subsequently stained in a developing 

solution (FD Rapid Golgi StainTM Kit).  

Image acquisition 

Immunofluorescence images were taken with a Nikon Eclipse TE 2000-S 

inverted microscope (Nikon Corp., Kawasaki, Japan), equipped with a Nikon 

digital camera DS-Qi2. Bright field images were taken on a light microscope 

(Leitz) equipped with a motorized stage and focus control system and a 

Coolsnap-Pro color digital camera (Media Cybernetics, Silver Spring, MD, 

USA). Measurements were carried out using the software Image Pro Plus (Media 

Cybernetics, Silver Spring, MD 20910, USA). 
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Measurements 

Number of BrdU-positive cells. BrdU-positive cells in the dentate gyrus and the 

region of the SVZ that spans along the whole rostro-caudal extent of the 

hippocampal formation were detected using a fluorescence microscope (Eclipse; 

objective: x 20, 0.5 NA). Quantification of BrdU-labeled nuclei was conducted 

in every 6th section using a modified unbiased stereology protocol that has 

previously been reported to successfully quantify BrdU labeling (Malberg et al., 

2000; Kempermann & Gage, 2002; Tozuka et al., 2005). All BrdU-labeled cells 

located in the granule cell layer and subgranular zone and in the SVZ were 

counted in their entire z axis (1 µm steps) in each section. To avoid oversampling 

errors, nuclei intersecting the uppermost focal plane were excluded. The total 

number of BrdU-labeled cells per animal was determined and multiplied by six 

to obtain the total estimated number of cells per dentate gyrus and per SVZ. 

Stereology of the dentate gyrus. Unbiased stereology was performed on 

Hoechst-stained sections. The optical disector method was used to obtain density, 

and the Cavalieri principle was used to estimate volume, as previously described 

(Stagni et al., 2017). 

Spine density. In Golgi-stained sections from the dentate gyrus, spines of granule 

cells were counted using a 100x oil immersion objective lens (1.4 NA). Spine 

density values were evaluated in dendritic segments located in the inner 

(proximal dendrites) and outer (distal dendrites) half of the molecular layer. For 

each neuron, 3-4 proximal and 3-4 distal segments were analyzed. For each 

animal, spines were counted in at least 4 neurons. The length of each sampled 

dendritic segment was determined by tracing its profile and the number of spines 

was counted manually. The linear spine density was calculated by dividing the 

total number of spines by the length of the dendritic segment. Spine density was 

expressed as number of spines per 100 m dendrite. 
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Western blotting 

In homogenates of the hippocampal formation, total proteins were obtained as 

previously described (Trazzi et al., 2011) and the levels of p21 (1:200, Santa Cruz 

Biotechnology; catalog number: sc-271532) were evaluated. Densitometric 

analysis of digitized images with ChemiDoc XRS+ was performed with Image 

Lab software (Bio-Rad Laboratories, Hercules, CA, USA) and intensity for each 

band was normalized to the intensity of the Ponceau S staining. This evaluation 

has the advantage that it does not rely on a single protein for normalization, 

thereby circumventing the possibility that the chosen ‘‘housekeeping” proteins 

may vary in some conditions (Romero-Calvo et al., 2010). 

 

Statistical analysis 

Results are presented as mean ± standard error of the mean (SE). Data were 

analyzed with the IBM SPSS 22.0 software. Before running statistical analyses, 

we checked data distribution and homogeneity of variances for each variable 

using the Shapiro-Wilk test and Levene’s test respectively. Data were normally 

distributed with the exception of granule cell density. In this case, statistical 

analysis was carried out using the Kruskal-Wallis test followed by the Mann–

Whitney U test. For all other examined variables statistical analysis was carried 

out using either a one-way ANOVA or a two-way ANOVA with genotype 

(euploid, Ts65Dn) and treatment (vehicle, CSA), as factors. Post hoc multiple 

comparisons were carried out using Fisher’s least significant difference (LSD) 

test. Based on the “Box plot” tool available in SPSS Descriptive Statistics, in 

each analysis we excluded the extremes, i.e., values that were larger than 3 times 

the IQ range [x ≥ Q3 + 3 * (IQ); x ≤ Q1 – 3 * (IQ)]. The number of mice included 

in (and excluded from, if any) individual analyses is reported in the legends of 

figures and Table 1. A probability level of p ≤ 0.05 was considered to be 

statistically significant.  
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  n. Mean  SE  n. Mean  SE  

Body           p 

 Euploid+Veh 21 7.58  0.20 Euploid+CSA 15 8.72  0.38 0.015 

 Ts65Dn+Veh  21 6.65  0.37 Ts65Dn+CSA 14 6.09  0.38 0.228 

 p  0.031     0.001    

Brain           p 

 Euploid+Veh 20 0.40  0.01 Euploid+CSA 14 0.39  0.01 0.054 

 Ts65Dn+Veh  20 0.39  0.01 Ts65Dn+CSA 14 0.37  0.01 0.049 

 p  0.005     0.016    

            

Table 1. Effect of treatment with CSA on body and brain weight 

Body weight and brain weight (mean  SE) in grams, of euploid and Ts65Dn mice that received 

either vehicle (Veh) or cyclosporine A (CSA; 15.0 mg/kg) in the period P3-P15, measured on 

P15. The p value in the row below each variable refers to the comparison between untreated 

euploid (Euploid+Veh) and Ts65Dn (Ts65Dn+Veh) mice and treated euploid (Euploid+CSA) 

and Ts65Dn (Ts65Dn+CSA) mice. The column “n.” reports the number of animals included in 

the statistical analysis. For the brain weight analysis we excluded one untreated euploid mouse, 

one untreated Ts65Dn mouse and one treated euploid mouse. The p value in the column on the 

right refers to the comparison between untreated and treated mice of the same genotype (Fisher 

LSD test after two-way ANOVA). 
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RESULTS 

 

Identification and characterization of CSA effects in trisomic NPC 

phenotypic assays 

NPCs from the SVZ of neonate Ts65Dn mice exhibit impairment of proliferation 

rate, similarly to the in vivo condition (Trazzi et al., 2011; Trazzi et al., 2013; 

Stagni et al., 2017). As result of a screening effort, among 1,887 tested FDA-

EMA drugs the immunosuppressant CSA was identified as a drug promoting 

proliferation of trisomic NPCs (% increase of proliferation: +53% at 1000 nM 

vs. basal conditions) [F(2,15) = 56.10, p < 0.001] (Fig. 1A). We used as a positive 

control lithium chloride, a well-established in vivo neurogenesis enhancer in DS 

(Bianchi et al., 2010a; Contestabile et al., 2013; Trazzi et al., 2014; Stagni et al., 

2017), and found that lithium chloride at 2 mM enhanced proliferation by +39% 

vs. basal conditions [F(2,15) = 56.10, p < 0.001] (Fig. 1A).  

CSA was then tested under a wide range of concentrations (0.1-1000 nM). A one-

way ANOVA showed a significant effect of treatment [F(5,42) = 10.855, p < 

0.001]. A post hoc Fisher’s LSD test showed that CSA concentrations of 0.1-100 

nM had no significant effect on proliferation, while a concentration of 1000 nM 

increased the number of trisomic NPCs (Fig. 1B). By using a cytotoxicity assay, 

we could exclude that CSA-mediated effect on the number of NPCs was due to 

increased cell viability. Indeed, none of the tested CSA concentrations affected 

cell death rate (Fig. 1C). In order to obtain more direct evidence on the pro-

proliferative effect of CSA, we evaluated the proliferation rate based on 

incorporation of the thymidine analogue EdU (5-ethynyl-2-deoxyuridine) in 

trisomic and euploid cultures exposed to CSA (1000 nM) or vehicle. A two-way 

ANOVA showed a genotype X treatment interaction [F(1,8) = 72.531, p < 0.001], 

a main effect of genotype [F(1,8) = 277.386, p < 0.001] and a main treatment 

[F(1,8) = 262.037, p < 0.001]. A post hoc Fisher’s LSD test showed that trisomic 
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and euploid cells exposed to CSA 1000 nM underwent a proliferation increase in 

comparison with their untreated counterparts (Fig. 1D). Importantly, in response 

to CSA treatment, trisomic NPCs displayed a proliferation rate similar to 

untreated euploid NPCs.  

In addition to proliferation impairment, trisomic NPCs exhibit impairment in the 

acquisition of a neuronal phenotype and in neuronal maturation, i.e., 

development of neuritic processes (Trazzi et al., 2011; Trazzi et al., 2013; Stagni 

et al., 2017). In cultures of NPCs under differentiating conditions we evaluated 

the percentage of cells that were i) immunopositive to MAP2 (a marker of cells 

with a neuronal phenotype) and immunonegative to Nestin (a marker of 

undifferentiated NPCs); ii) double immunopositive to MAP2 and Nestin, i.e.,  

neuroblasts; iii) immunonegative to MAP2 and to Nestin (putative glial cells). A 

one-way ANOVA on the percentage of cells that were MAP2-positive and 

Nestin-negative (MAP2+/Nestin-) showed a significant effect of treatment 

[F(6,14) = 7.735, p < 0.001]. Fisher’s LSD test, carried out post hoc, showed that 

drug concentrations of 100-1000 nM caused a significant increase in the 

percentage of MAP2+/Nestin- cells in comparison with cultures treated with 

vehicle (Fig. 1E), suggesting that CSA favors the acquisition of a neuronal 

phenotype. A one-way ANOVA on the percentage of cells that were MAP2-

positive and Nestin-positive (MAP2+/Nestin+) showed no effect of treatment 

[F(6,14) = 2.182, p < 0.108] (Fig. 1F) suggesting that treatment does not affect 

the population of neuroblasts. An evaluation of the percentage of cells that were 

negative to both MAP2 and Nestin (MAP2-/Nestin-) showed a significant effect 

of treatment [F(6,14) = 5.389, p < 0.004]. A post hoc Fisher’s LSD test showed 

that concentrations of 100-1000 nM caused a reduction in the percentage of 

MAP2-/Nestin- cells (Fig. 1G). Since cells that are immunonegative to both 

MAP2 and Nestin mainly represent cells committed to glia (Cvijetic et al., 2017), 

these results suggest that CSA treatment promotes neuronal differentiation of 
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trisomic NPCs and that this effect takes place at the expense of their commitment 

toward non-neuronal lineages (glia).  

In order to obtain a more direct evidence of the glial nature of MAP2-/Nestin- 

cells, we carried out additional experiments in which we evaluated, in parallel to 

the percentage of cells that were MAP2+/Nestin- or MAP2+/Nestin+, the 

percentage of cells expressing the astrocytic marker GFAP. A one-way ANOVA 

on the percentage of MAP2+/Nestin- cells confirmed a significant effect of drug 

treatment [F(3,11) = 14.94, p = 0.001]. Fisher’s LSD test, carried out post hoc, 

confirmed that CSA 100-1000 nM caused a significant increase in the percentage 

of MAP2+/Nestin- cells in comparison with vehicle-treated trisomic cells (Fig. 

1H). A one-way ANOVA on the percentage of MAP2+/Nestin+ cells showed 

again no effect of treatment (Fig. 1I). An evaluation of the percentage of GFAP+ 

cells showed a significant effect of treatment [F(3,23) = 8.860, p = 0.001]. A post 

hoc Fisher’s LSD test showed that CSA concentrations 100-1000 nM reduced the 

percentage of GFAP+ (Fig, 1J). These results confirm our hypothesis that CSA 

promotes neuronal differentiation of trisomic NPCs at the expense of their 

commitment toward an astrocytic phenotype. A similar effect was also observed 

in euploid cultures (data shown in Supplementary Fig. 1, not shown in this 

thesis).  

In order to establish the effect of CSA on neuron maturation we evaluated the 

percentage of cells exhibiting neuritic processes in differentiating cultures of 

trisomic NPCs exposed to different concentrations of CSA. A one-way ANOVA 

on the percentage of NPCs that exhibited neuritic processes showed a significant 

effect of treatment [F(5,12) = 8.025, p = 0.002]. Fisher’s LSD test, carried out 

post hoc, showed that all tested drug concentrations increased the percentage of 

cells with neuritic processes in comparison with cultures in presence of vehicle 

(Fig. 1L). Taken together these data show that CSA increases the proliferation 

rate and fosters the process of neurogenesis and neuron maturation of trisomic 
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NPCs.  

 

Fig. 1. Effect of CSA on proliferation, differentiation and maturation of trisomic NPCs. 

A, B: Effect of CSA 1000 nM or LiCl 2.0mM (A) and of different concentrations of CSA (B) on 

the proliferation rate (evaluated as relative luminescence units, RLU; see Methods) of NPCs of 

Ts65Dn mice at 96 h in culture. Data are expressed as fold change in comparison with NPCs 
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exposed to vehicle alone (DMSO 0.05%). C: Percentage of dead cells in trisomic cultures 

exposed to different concentrations of CSA for 96 h. D: EdU-positive cells in cultures of euploid 

and trisomic NPC exposed to vehicle or to CSA 1000 nM for 72 h. Data are expressed as fold 

change in comparison with euploid NPCs exposed to vehicle alone. E-J: Percentage of 

MAP2+/Nestin− cells (E, H), MAP2+/Nestin+ cells (F, I), MAP2−/Nestin− cells (G), and GFAP+ 

cells (J) in cultures of trisomic NPC under differentiating conditions and exposed to the indicated 

concentrations of CSA for 96 h. K, L: Representative confocal microscope image (K) and 

percentage (L) of MAP2+ cells (red) exhibiting neuritic processes in cultures of NPCs from the 

SVZ of Ts65Dn mice grown under differentiating conditions and exposed to the indicated 

concentrations of CSA for 96 h. Images in (K) show MAP2+ cells that were exposed to either 

vehicle (DMSO 0.05%) or CSA 1000 nM. Nuclei were counterstained with Hoechst (blue). Scale 

bar=50 μm. Data derive from pooled (3–5) mice. The asterisks in A, B, E, G, H, J, and L indicate 

a difference in comparison with vehicle-treated cultures: * p≤.05; ** p≤.01; *** p≤.001 (Fisher's 

LSD test after ANOVA). Abbreviations: CSA, cyclosporine A; EdU, 5-ethynyl-2-deoxyuridine; 

Eu, euploid; GFAP, glial fibrillary acidic protein; LiCl, Lithium chloride; MAP2, microtubule 

associated protein 2; Veh, vehicle. 

Effect of neonatal treatment with CSA on neural precursor proliferation in 

the dentate gyrus and SVZ of Ts65Dn mice 

The early postnatal period is a critical time window for neurogenesis in the SGZ 

of the hippocampal dentate gyrus. In addition, in neonate mice a prominent 

proliferation rate is present in the SVZ of the lateral ventricle. This is a 

neurogenic niche that gives origin to the neurons of the forebrain, prenatally, and 

thereafter produces granule cells destined to the olfactory bulb, glial cells and, 

possibly, generates neurons destined to the neocortex (Brazel et al., 2003). In 

view of the relevance of these two neurogenic niches, in the current study we 

examined the impact of CSA on the proliferation rate of NPCs both in the dentate 

gyrus and SVZ of euploid and Ts65Dn mice. To this purpose, we treated mice 

with 15 mg/kg/day of CSA, because this dose has a pro-neurogenic effect in the 

dentate gyrus of adult wild type mice (Chow & Morshead, 2016).  
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A two-way ANOVA on the total number of BrdU-positive cells in the dentate 

gyrus showed a genotype x treatment interaction [F(1,16) = 8.995, p = 0.008], 

but no main effect of either genotype or treatment. A post hoc Fisher’s LSD test 

showed that, in agreement with previous evidence (Bianchi et al., 2010b, 

Giacomini et al., 2015, Stagni et al., 2016, Stagni et al., 2017), untreated Ts65Dn 

mice had notably fewer proliferating cells in comparison with untreated euploid 

mice. The number of proliferating cells in treated Ts65Dn mice underwent a large 

increase (+26%) and became similar to that of untreated euploid mice (Fig. 

2A,B). Treatment had no effect on the number of NPCs in the dentate gyrus of 

euploid mice (Fig. 2A,B). In order to establish whether doses of CSA lower than 

15 mg/kg positively affect cell proliferation, we treated Ts65Dn pups with 1.5 

mg/kg or 7.5 mg/kg of CSA in the period P3-P15 and examined the effects of 

treatment in the dentate gyrus. A one-way ANOVA on the number of BrdU-

positive cells in the dentate gyrus of Ts65Dn mice that had received vehicle or 

1.5 mg/kg, 7.5 mg/kg, and 15.0 mg/kg of CSA showed a significant effect of 

treatment [F(3,17) = 6.374, p = 0.004]. Post hoc LSD test showed that, unlike the 

dose of 15.0 mg/kg, the doses of 1.5 mg/kg and 7.5 mg/kg did not increase the 

number of BrdU-positive cells (Fig. 2C).  

A two-way ANOVA on the total number of BrdU-positive cells in the SVZ 

showed no genotype x treatment interaction, whereas a main effect of genotype 

[F(1,16) = 21.764, p < 0.001] and a main effect of treatment [F(1,16) = 38.978, 

p < 0.001] appeared. A post hoc Fisher’s LSD test showed that Ts65Dn mice had 

fewer cells in comparison with untreated euploid mice. After treatment with 

CSA, Ts65Dn mice underwent an increase in the number of proliferating cells 

(+25%) that became similar to that of untreated euploid mice (Fig. 3B). In the 

SVZ of euploid mice, treatment caused an increase in the number of proliferating 

cells that became larger (+21%) in comparison with that of their untreated 

counterparts (Fig. 3B). 
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These results show that neonatal treatment with CSA is able to restore the 

proliferation rate of NPCs in both the dentate gyrus and SVZ of Ts65Dn mice.  

 

Fig. 2. Effects of neonatal treatment with CSA on the size of the population of cells in the S-

phase of the cell cycle in the dentate gyrus of Ts65Dn and euploid mice.  

A: Representative images of sections immunostained for BrdU from the dentate gyrus of 

untreated euploid and Ts65Dn mice, and of euploid and Ts65Dn mice that were treated daily with 

15.0 mg/kg of CSA in the period P3-P15. Calibration bar=200 m. B: Total number of BrdU-

positive cells in the dentate gyrus of untreated euploid (n=5) and Ts65Dn (n=6) mice, and of 

treated euploid (n=4) and Ts65Dn (n=5) mice. 

C: Number of BrdU-positive cells in the dentate gyrus of Ts65Dn mice that received a daily 
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injection of vehicle (n=6; same mice as in B) or 1.5 mg/kg (n= 6), 7.5 mg/kg (n=4), and 15.0 

mg/kg (n=5; same mice as in B) of CSA in the period P3-P15. The number of BrdU-positive cells 

in euploid mice that received the vehicle reported in (B) is shown for comparison. Values (mean 

 SE) refer to one hemisphere. * p ≤ 0.05; *** p ≤ 0.001 (Fisher’s LSD test after two-way 

ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice 

and treated euploid mice. Abbreviation: CSA, cyclosporine A; Eu, euploid; GR, granule cell 

layer; H, hilus; SGZ, subgranular zone; Veh, vehicle. 

  

Fig. 3. Effects of neonatal treatment with CSA on the size of the population of cells in the S-

phase of the cell cycle in the SVZ zone of Ts65Dn and euploid mice.  

A: Representative images of sections immunostained for BrdU from the SVZ of untreated euploid 

and Ts65Dn mice, and of euploid and Ts65Dn mice that were treated daily with CSA in the period 

P3-P15. Calibration bar=500 m. B: Total number of BrdU-positive cells in the SVZ of untreated 

euploid (n=5) and Ts65Dn (n=6) mice, and of euploid (n=4) and Ts65Dn (n=5) mice treated with 

CSA. Values (mean  SE) refer to one hemisphere. ** p≤0.01; *** p ≤ 0.001 (Fisher’s LSD test 

after two-way ANOVA). Black asterisks in the gray bar indicate a difference between untreated 
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Ts65Dn mice and treated euploid mice. White asterisks in the black bar indicate a difference 

between treated Ts65Dn mice and treated euploid mice. Abbreviations: CSA, cyclosporine A; d, 

dorsal; Eu, euploid; DG, dentate gyrus; FI, fimbria; l, lateral; m, medial; SVZ, subventricular 

zone; v, ventral; Veh, vehicle. 

 

Effect of CSA on the stereology of the dentate gyrus of Ts65Dn mice 

In the hippocampal dentate gyrus the production of granule cells mainly takes 

place in the first two postnatal weeks (Altman & Bayer, 1975). Thus, in view of 

the treatment-induced increase in the proliferation potency of NPCs of the SGZ, 

we expected this effect to lead to improvement/restoration of the defective 

cellularity that characterizes the dentate gyrus of trisomic mice. To clarify this 

issue, we stereologically evaluated the total number of granule cells in treated 

and untreated mice. A two-way ANOVA on the volume of the dentate gyrus 

showed no genotype x treatment interaction, but a main effect of genotype 

[F(1,15) = 8.705, p = 0.010], and of treatment [F(1,15) = 8.887, p = 0.009]. 

Fisher’s LSD test, carried out post hoc, showed that the volume of the granule 

cell layer of untreated Ts65Dn mice was reduced (Fig. 4B) in comparison with 

that of euploid mice and that treatment restored the volume of the granule cell 

layer. The Kruskal-Wallis test showed a significant effect of treatment on granule 

cell density [χ2 (3) = 12.149, p < 0.007]. The Mann-Whitney test showed a 

reduced granule cell density in Ts65Dn mice compared to euploid mice (U = 

0.001, p = 0.004) and demonstrated that treatment caused an increase in granule 

cell density (U = 0.001, p = 0.006) (Fig. 4C). A two-way ANOVA on total 

number of granule cells showed no genotype x treatment interaction, but did 

demonstrate a main effect of genotype [F(1,17) = 19.301, p = 0.001], and of 

treatment [F(1,17) = 15.844, p = 0.0.001]. A post hoc Fisher’s LSD test showed 

that untreated Ts65Dn mice had a reduced number of granule cells in comparison 

with euploid mice and that treatment restored granule cell number (Fig. 4D). A 

two-way ANOVA on the thickness of the granule cell layer showed no genotype 
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x treatment interaction, whereas a main effect of genotype [F(1,16) = 4.742, p = 

0.045] was present, as was a main effect of treatment [F(1,16) = 6.039, p = 0.026]. 

A post hoc Fisher’s LSD test showed that the granule cell layer of untreated 

Ts65Dn mice had a reduced thickness in comparison with that of euploid mice 

and that this reduction was restored by treatment (Fig. 4E).  

At variance with the neocortex, the granule cell layer develops according to an 

outside-inside pattern. Therefore, the older neurons occupy the superficial part of 

the granule cell layer and the younger neurons occupy its lower portion. In 

Hoechst-stained sections, younger neurons are recognizable due to their smaller 

size and a more translucent pattern in comparison with older neurons (Fig. 4A). 

We deemed it of interest to evaluate the thickness of the region of the granule 

cell layer that was occupied by younger neurons (see the double-headed black 

arrow in Fig. 4A). A two-way ANOVA on the thickness of the inner granule cell 

layer showed a genotype x treatment interaction [F(1,17) = 7.477, p = 0.014] and 

a main effect of genotype [F(1,17) =.5.791, p = 0.028], but no main effect of 

treatment. Fisher’s LSD test, carried out post hoc, showed that the inner part of 

the granule cell layer of untreated Ts65Dn mice was reduced in thickness 

compared to that of euploid mice and that this reduction was restored by 

treatment (Fig. 4F). The expansion of the inner part of the granule cell layer in 

treated Ts65Dn mice indicates that the treatment-induced increase in the 

proliferation rate of granule cells precursors in the SGZ of Ts65Dn mice (see 

above) translates into an increase in the number of new granule neurons that are 

added to the inner part of the granule cell layer and, hence, in total granule cell 

number. Unlike in Ts65Dn mice, in euploid mice drug treatment had no effect on 

the stereology of the granule cell layer (Fig. 4B-F), which is consistent with the 

absence of effects on the proliferation rate of the granule cell precursors. 
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Fig. 4. Effects of neonatal treatment with CSA on the stereology of the granule cell layer of 

Ts65Dn and euploid mice.  

A: Representative images of Hoechst-stained sections showing the granule cell layer of an animal 

from each experimental group. The double-headed white arrow indicates the thickness of the 

granule cell layer, while the double-headed black arrow indicates the thickness of the innermost 

part of the granule cell layer. Calibration bar=50 m. B-F: Volume of the granule cell layer (B), 

granule cell density (C), total number of granule cells (D), thickness of the granule cell layer (E), 

and thickness of the innermost part of the granule cell layer (F) of untreated euploid (n=6) and 

Ts65Dn (n=6) mice, and of euploid (n=4) and Ts65Dn mice (n=5) treated with CSA. Values 

(mean  SE) refer to one dentate gyrus. * p≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 (Fisher’s LSD test 

after two-way ANOVA for data reported in B and D-F; Mann-Whitney test after Kruskal-Wallis 

test for data reported in C). Black asterisks in the gray bar indicate a difference between untreated 
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Ts65Dn mice and treated euploid mice. Abbreviations: CSA, cyclosporine A; Eu, euploid; GR, 

granule cell layer; MOL, molecular layer; SGZ, subgranular zone; Veh, vehicle. 

 

Effect of CSA on dendritic spine density in the dentate gyrus of Ts65Dn mice 

Spine density reduction is a typical feature of the trisomic brain (Benavides-

Piccione et al., 2004; Guidi et al., 2013) that, in conjunction with hypocellularity, 

is thought to be a critical determinant of intellectual disability. In order to 

establish whether CSA improves spine density, in Golgi-stained brains we 

evaluated spine density in the dendritic arbor of the granule neurons. Since the 

inputs to the dendritic tree of granule cells are organized in a laminar manner, we 

deemed it of interest to separately evaluate spine density in dendritic branches 

harbored in the outer half and inner half of the molecular layer. The examples of 

Golgi-stained dendritic branches reported in Fig. 5A clearly show that treatment 

causes a patent increase in spine density both in euploid and Ts65Dn mice. A 

two-way ANOVA on spine density in the proximal dendrites showed a genotype 

x treatment interaction [F(1,17) = 20.174, p = 0.001], a main effect of genotype 

[F(1,17) = 6.803, p = 0.018], and a main effect of treatment [F(1,17) = 180.800, 

p < 0.001]. A post hoc Fisher’s LSD test showed that the spine density of 

untreated Ts65Dn mice was significantly reduced (-24%) in comparison with that 

of untreated euploid mice (Fig. 5B,C). After treatment with CSA the number of 

spines of Ts65Dn mice underwent a notable increment (+78% vs. untreated 

Ts65Dn mice) and became larger (+36%) than that of untreated euploid mice 

(Fig. 5B,C). A large increase in spine density (+30%) also took place in treated 

euploid mice (Fig. 5B,C). A two-way ANOVA on spine density in the distal 

dendrites showed a genotype x treatment interaction [F(1,17) = 18.574, p = 

0.001], a main effect of genotype [F(1,17) = 4.748, p = 0.044], and a main effect 

of treatment [F(1,17) = 136.054, p < 0.001]. A post hoc Fisher’s LSD test showed 

a significantly reduced spine density (-21%) in untreated Ts65Dn mice compared 
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to untreated euploid mice (Fig. 5B,C). After treatment with CSA the number of 

spines of Ts65Dn mice underwent a notable increment (+64% vs. untreated 

Ts65Dn mice) and became larger (+30%) than that of euploid mice (Fig. 5B,C). 

A large increase in spine density (+23%) also took place in treated euploid mice 

(Fig. 5B,C). 

 

Fig. 5. Effects of neonatal treatment with CSA on dendritic spine density in the dentate 

gyrus of Ts65Dn and euploid mice. 

A: Photomicrographs of Golgi-stained granule cell dendrites showing spines on distal dendritic 

branches in an animal from each experimental group. Calibration bar=5 m. B,C: Spine density 

on dendritic branches in the inner (B) and outer (C) half of the dendritic tree of the granule cells 

of untreated euploid (n=6) and Ts65Dn mice (n=6) and euploid (n=4) and Ts65Dn (n=5) mice 

treated with CSA. Values in (B,C) are mean  SE. *** p ≤ 0.001 (Fisher’s LSD test after two-

way ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn 
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mice and treated euploid mice. Abbreviations: CSA, cyclosporine A; Eu, euploid; Veh, Vehicle. 

 

Effect of CSA on p21 levels in the hippocampal formation of Ts65Dn mice 

Elongation of the cell cycle and a precocious exit from the cell cycle appear to 

be key mechanisms underlying the typical impairment of neurogenesis that 

characterizes DS. Overexpression of p21 in the trisomic brain appears to be an 

important determinant involved in cell cycle alteration and, hence, in the 

reduction in proliferation rate (see (Stagni et al., 2018)). A two-way ANOVA on 

the p21 levels in the hippocampal formation showed no genotype x treatment 

interaction, and no main effect of genotype or of treatment. A post hoc Fisher’s 

LSD test showed that untreated Ts65Dn mice had higher levels of p21 in 

comparison with euploid mice and that treatment with CSA reduced p21 levels 

to an extent that they became similar to those of euploid mice (Fig. 6B). In 

euploid mice, treatment had no effect on p21 levels (Fig. 6B). 
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Fig. 6. Effects of neonatal treatment with CSA on p21 protein levels in the hippocampal 

formation of Ts65Dn and euploid mice. 

A: Representative western blots showing immunoreactivity for p21 and the Ponceau S. Protein 

levels of p21 were normalized to all proteins with molecular weight between 10 and 50 kDa, as 

indicated by the dashed rectangle. B: Levels of p21 were examined in untreated euploid mice 

(n=11), untreated Ts65Dn mice (n=12), treated euploid mice (n=10), and treated Ts65Dn mice 

(n=8). One untreated euploid mouse (yielding 10) and one untreated Ts65Dn mouse (yielding 11) 

were excluded from p21 analysis. Protein levels (mean  SE) are expressed as fold difference in 

comparison with untreated euploid mice. * p ≤ 0.05 (Fisher’s LSD test after two-way ANOVA). 

Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and treated 

euploid mice. Abbreviations: CSA, cyclosporine A; Eu, euploid; Veh, vehicle. 
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General effects of CSA   

The Ts65Dn strain is characterized by a high mortality rate during gestation and 

before weaning (Roper et al., 2006). The total number of mice used in the in vivo 

study was 81 (vehicle-treated mice: n=42; CSA-treated mice n=39). Three 

vehicle-treated (7.1%) and three CSA-treated (7.7%) mice died in the P3-P15 

period. The similarity in the mortality rate across groups suggests that treatment 

has no adverse effects on the health of mice. We evaluated the body and brain 

weight of P15 mice that received vehicle or CSA (15.0 mg/kg) in order to 

establish the outcome of treatment on growth. A two-way ANOVA on body 

weight showed a genotype x treatment interaction [F(1,64) = 6.826, p = 0.011] 

and a main effect of genotype [F(1,64) = 29.560, p < 0.001], but no main effect 

of treatment. A post hoc Fisher’s LSD test showed that untreated and treated 

Ts65Dn mice had a lower body weight compared to their euploid counterparts 

(Table 1). A comparison of the body weight of treated and untreated mice showed 

that treated Ts65Dn mice had a similar body weight in comparison with their 

untreated counterparts and that treated euploid mice had a larger body weight in 

comparison with their untreated counterparts (Table 1). These findings indicate 

that treatment has no adverse effects on somatic growth. A two-way ANOVA on 

brain weight showed no genotype x treatment interaction, while a main effect of 

genotype [F(1,64) = 14.117, p < 0.001] and a main effect of treatment [F(1,64) = 

7.899, p = 0.007] were present. A post hoc Fisher’s LSD test showed that 

untreated and treated Ts65Dn mice had a lower brain weight compared to their 

euploid counterparts (Table 1). A comparison of the brain weight of treated and 

untreated mice showed that treated euploid and Ts65Dn mice had a reduced brain 

weight in comparison with their untreated counterparts (Table 1). Observation of 

the values reported in Table 1 shows that the brain weight reduction was 4% in 

treated vs. untreated euploid mice and 5% in treated vs. untreated Ts65Dn mice. 

This evidence shows that treatment exerts a moderately negative effect on brain 
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growth. 

 

DISCUSSION 

 

CSA positively impacts on proliferation, differentiation and maturation of 

trisomic NPCs 

By exploiting cultures of NPCs from the SVZ, we found that CSA i) restores the 

reduced proliferation rate that characterizes trisomic NPCs; ii) rescues the 

aberrant differentiation program of trisomic NPCs, because it increases the 

number of cells that differentiate into neurons and, concomitantly, reduces the 

number of cells that differentiate into astrocytes; iii) restores the development of 

neuritic processes; iv) does not affect cell death. The pro-proliferative and pro-

neuronogenic effects of CSA found here in trisomic NPCs are consistent with 

evidence obtained in neurospheres from the dentate gyrus of wild type mice, 

showing that CSA increases both the number of neurospheres and the frequency 

of neuron-containing neurospheres relative to those containing glia (Chow & 

Morshead, 2016) at the same concentrations as those used here. It has been shown 

that CSA increases neurite outgrowth of cultured dorsal root gangliar cells with 

an EC50 of 50 nM (see (Hamilton & Steiner, 1998)). This is in line with the 

current findings that CSA fosters neurite outgrowth of trisomic NPCs and that 

concentrations as low as 3 nM are sufficient to elicit this effect.  

 

Neonatal treatment with CSA restores neurogenesis and spinogenesis in the 

Ts65Dn mouse 

In view of potential pharmacotherapies for DS, it is of obvious importance to 

demonstrate that the effects observed in vitro also take place in the greater 

complexity of the in vivo condition. Our results show that in Ts65Dn pups treated 

with CSA for 13 days there was full restoration of the number of BrdU-positive 
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cells in the dentate gyrus and SVZ, indicating that treatment positively impacts 

on the two major forebrain neurogenic niches. An evaluation of the pro-

neurogenic effects of three different doses of CSA showed that a dose of 15 

mg/kg/day (but not lower doses) was able to fully rescue cell proliferation in 

Ts65Dn mice. It is worthy to note, that the 15.0 mg/kg dose translates into 

approximately 1.2 mg/kg/day in the human setting (Reagan-Shaw et al., 2008). 

The finding that the lower doses tested here did not increase NPC proliferation 

suggests a threshold for the pro-neurogenic effects of CSA. 

 

The NPCs of the SGZ give origin to granule neurons and astrocytes destined to 

the dentate gyrus. In agreement with the pro-neuronogenic effect observed in 

vitro, in treated Ts65Dn mice there was an increase in the size of the innermost 

part of the granule cell layer, which harbors the newly-generated granule cells. 

This effect was accompanied by a large increase in the volume and thickness of 

the granule cell layer and total number of granule cells. The NPCs of the SVZ 

give origin to granule cells destined to the olfactory bulb and to astrocytes and 

oligodendrocytes destined to the cortex (Brazel et al., 2003). This suggests that 

the CSA-induced increase in the proliferation potency of NPCs in the SVZ may 

positively impact on postnatal development of the olfactory bulb and neocortex.  

 

In the current study, we were interested in establishing whether treatment with 

CSA can ameliorate the severe spine density reduction that characterizes the 

granule cells of the dentate gyrus of Ts65Dn mice. We found that CSA largely 

enhanced the process of spinogenesis and that Ts65Dn mice treated with CSA 

underwent a large increase in spine density that even surpassed that of euploid 

mice. The effect took place along the whole extent of the dendritic tree of the 

granule cells. The major extrinsic input to the hippocampal formation is 

constituted by the performant pathway, which takes its origin from the medial 
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and lateral divisions of the entorhinal cortex (Amaral & Witter, 1995). Both 

inputs are fundamental for the participation of the hippocampal formation in 

long-term memory functions. The medial perforant pathway terminates on the 

middle third of the dendritic tree of the granule cells, while the lateral perforant 

pathway terminates on the outer third. The treatment-induced increase in spine 

density on proximal and distal dendrites suggests that this effect may lead to 

restoration of the memory functions mediated by both divisions of the entorhinal 

cortex.  

 

There are several candidates for the molecular mechanisms underlying NPC 

proliferation impairment in DS, among which p21 may be a particularly critical 

one. The protein p21, also known as cyclin-dependent kinase inhibitor 1 or CDK-

interacting protein 1, is overexpressed in the brain of fetuses with DS and in the 

Ts65Dn model (Engidawork et al., 2001; Stagni et al., 2015). Since p21 inhibits 

the transition from the G1 to the S-phase of the cell cycle, its overexpression may 

be a key determinant of proliferation impairment in DS. We found here that 

treatment with CSA normalized the levels of p21 in the hippocampal formation 

of Ts65Dn mice, suggesting that this effect may underlie restoration of 

proliferation. CSA is classically known to inhibit in T-lymphocytes the activity 

of the calcineurin-NFAT pathway and this effect is mediated by its binding to 

cyclophilin A. For this reason, it is used in a clinical setting in order to prevent 

graft rejection in organ transplantation. CSA, however, has a high affinity for 

other cyclophilins (B, C, D) (Hamilton & Steiner, 1998) and can therefore 

modulate various signaling pathways and exert calcineurin-independent effects 

(Sachewsky et al., 2014). It is worth noting that CSA appears to block the activity 

of the p38 signaling pathway (Matsuda & Koyasu, 2000), one of the three 

subgroups of the mitogen-activated protein kinase superfamily. Activation of p38 

increases the mRNA and protein levels of the transcription factor p53 which, in 



  

 131 

turn, promotes the transcription of various genes, including p21 (Saha et al., 

2014). In the brain of individuals with DS there is an increased activation of p38 

and p53 (Swatton et al., 2004; Tramutola et al., 2016), and increased activation 

of p53 has also been detected in the brain of the Ts65Dn model (Tramutola et al., 

2016). Thus, the inhibitory effect exerted by CSA on the p38 pathway may 

account for the normalization of p21 levels found here in treated Ts65Dn mice 

and, hence, restoration of proliferation.  

Several protein kinases, including p38, are essential factors in spine growth (Tada 

& Sheng, 2006). It has been shown that inhibition of p38 activity increases the 

size and number of dendritic spines (Fernandez et al., 2012) and that in p38 

heterozygous knockdown mice there is an increase in dendritic spine density (Dai 

et al., 2016). In view of the inhibitory role of p38 in spine morphogenesis, it 

seems reasonable to hypothesize that the spine density increase observed here in 

CSA-treated mice may be attributable to a CSA-mediated inhibition of p38.  

 

Conclusions and future perspectives  

DS is characterized by impairment of NPC proliferation, acquisition of a 

neuronal phenotype, and dendritic development. An obvious question regards the 

possibility of pharmacologically restoring this whole triad of defects. While the 

gene burden is the primum movens of overall brain and somatic alterations in DS, 

it is likely that the triad of DS neurodevelopmental defects is attributable to the 

alteration of specific pathways. Therefore, it may be necessary to use co-

treatment with different drugs, in order to fully correct brain development. 

Importantly, the current study shows that treatment with a single drug, CSA, is 

able to restore the entire triad of defects of the trisomic brain.  

In view of its extensive effects, CSA may prove an ideal drug for DS. However, 

caution must be exercised because CSA is an immunosuppressant and its clinical 

use is limited by side effects that include nephrotoxicity, neurotoxicity and 
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hepatotoxicity (Matsuda & Koyasu, 2000; Bartynski et al., 2001). Regarding side 

effects of CSA, we did not find a reduction of mice viability after 13 days of 

treatment, suggesting a lack of patent adverse effects on the general health of 

Ts65Dn (and euploid) mice. A recent study shows that three children with DS 

treated with CSA (approximately 6 mg/kg/day) as therapy for idiopathic aplastic 

anemia did not experience severe or unexpected adverse events during treatment 

(Suzuki et al., 2016). Another report describes the case of a girl with DS treated 

with prednisone and CSA (about 4 mg/kg twice a day) for the treatment of 

alopecia. This report does not describe adverse effects of treatment either 

(Gensure, 2013). In both studies, the treatment lasted for months. Although these 

studies show that CSA is a safe and reasonable treatment even for individuals 

with DS, the possibility of side effects of treatment must be taken into account. 

Indeed, in mice treated with CSA we found a small (4-5%) reduction in overall 

brain weight, which is in line with similar evidence obtained in rats (Setkowicz 

and Kadulski, 2007). The causes of this brain weight reduction remain to be 

elucidated. Recent evidence shows brain protein turnover is much higher than 

previously assumed (3-4% day) which makes the brain prone to undergo 

considerable remodeling (Smeets et al., 2018). It has been shown that CSA 

inhibits protein synthesis in rat liver (Backman et al., 1988). If a similar effect 

takes place in the brain, this may explain the brain weight reduction found here 

in CSA-treated mice. There is evidence that while CSA does not change the 

overall density of Nissl-stained neurons in rats, it reduces the number of 

calretinin-and parvalbumin-positive neurons (Setkowicz and Kadulski, 2007), 

the number of glioma-infiltrating microglial cells (Gabrusiewicz et al., 2011), 

and the survival of reactive astrocytes in culture (Pyrzynska et al., 2001). It 

cannot be ruled out that the brain weight reduction observed here after treatment 

with CSA may be due to a reduction in the number of some cells populating the 

brain. An important issue that needs to be addressed in further studies will be to 
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establish whether a shorter treatment schedule can restore the 

neurodevelopmental defects of DS without affecting overall brain weight.  

 

The toxicity of CSA appears to be directly tied to its calcineurin-based 

mechanism of action. It must be remarked that various studies have shown that 

the immunosuppressive and neurotrophic actions of immunosuppressants are 

separable and that the neurotrophic properties of immunosuppressant drugs are 

not mechanistically linked to their immunosuppressive actions but operate by 

separate pathways (see(Hamilton & Steiner, 1998; Nigro et al., 2013)). Non-

immunosuppressant analogues of CSA (and of other immunosuppressant drugs 

such as FK506) have been shown to bind to their respective immunophilins and 

inhibit their activity, but they lack the ability to interact with calcineurin. For 

instance, a non-immunosuppressive analogue of CSA (MeAla-6-CsA) stimulates 

neurite outgrowth of PC12 cells, similarly to the action of CSA (Steiner et al., 

1997), and the non-immunosuppressive analogue of CSANIM811 mimics the 

pro-survival effects of CSA on NPCs in vitro (Sachewsky et al., 2014). The 

immunosuppressive effect of CSA may represent a serious liability in the context 

of treatment for DS. However, by exploiting non-immunosuppressive analogues 

of CSA it may be possible to obtain the same positive effects on brain 

development as those elicited by CSA, with none of the unwanted effects due to 

immunosuppression. We hope that our study may prompt further work to clarify 

this important issue. If CSA analogues prove to have the same positive impact as 

CSA on neurogenesis and spinogenesis they may be considered as practicable 

tools for ameliorating brain development in individuals with DS. 
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ABSTRACT 

Intellectual disability is the unavoidable hallmark of Down syndrome (DS), with 

a heavy impact on public health. Reduced neurogenesis and impaired neuron 

maturation are considered major determinants of altered brain function in DS. 

Since the DS brain starts at a disadvantage, attempts to rescue neurogenesis and 

neuron maturation should take place as soon as possible. The brain-derived 

neurotrophic factor (BDNF) is a neurotrophin that plays a key role in brain 

development by specifically binding to tropomyosin-related kinase receptor B 

(TrkB). Systemic BDNF administration is impracticable because BDNF has a 

poor blood-brain barrier penetration. Recent screening of a chemical library has 

identified a flavone derivative, 7,8-dihydroxyflavone (7,8-DHF), a small-

molecule that crosses the blood-brain barrier and binds with high affinity and 

specificity to the TrkB receptor. The therapeutic potential of TrkB agonists for 

neurogenesis improvement in DS has never been examined. The goal of our study 

was to establish whether it is possible to restore brain development in the Ts65Dn 

mouse model of DS by targeting the TrkB receptor with 7,8-DHF. Ts65Dn mice 

subcutaneously injected with 7,8-DHF in the neonatal period P3-P15 exhibited a 

large increase in the number of neural precursor cells in the dentate gyrus and 

restoration of granule cell number, density of dendritic spines and levels of the 

presynaptic proteins synaptophysin. In order to establish the functional outcome 

of treatment, mice were treated with 7,8-DHF from P3 to adolescence (P45-50) 

and were tested with the Morris Water Maze. Treated Ts65Dn mice exhibited 

improvement of learning and memory, indicating that the recovery of the 

hippocampal anatomy translated into a functional rescue. Our study in a mouse 

model of DS provides novel evidence that treatment with 7,8-DHF during the 

early postnatal period restores the major trisomy-linked neurodevelopmental 

defects, suggesting that therapy with 7,8-DHF may represent a possible 

breakthrough for Down syndrome.   
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INTRODUCTION 

 

Down syndrome (DS) is a relatively common genetic condition (1:750-1000) 

caused by the triplication of human chromosome 21. One of the most important 

consequences of trisomy 21 is a delay in neurological development, which 

manifests progressively as microcephaly and intellectual disability (reviewed by 

(Delabar et al., 2006; Bartesaghi et al., 2011; Dierssen, 2012; Haydar & Reeves, 

2012)). Neurogenesis reduction and impaired dendritic morphogenesis are the 

major neurodevelopmental defects of DS and are thought to underlie cognitive 

disability. The molecular mechanisms underlying brain development alterations 

are likely to be manifold, due to the complexity of gene imbalance in DS, and no 

therapies currently exist for the rescue of neurocognitive impairment in DS.  

Most of the brain neurons are produced in the prenatal period, with the notable 

exception of those involved in the formation of the hippocampus, where 

neurogenesis continues postnatally and throughout life (Seress et al., 2001; Rice 

& Barone, 2010; Stiles & Jernigan, 2010; Spalding et al., 2013). Unlike 

neurogenesis, neuron maturation and the establishment of brain wiring largely 

take place in the perinatal period. After the critical periods of neurogenesis and 

synaptogenesis the brain can undergo relatively limited plastic changes. Thus, 

the perinatal period represents a window of opportunity for therapies aimed at 

improving the neurodevelopmental alterations of DS. Since the DS brain starts at 

a disadvantage, attempts to rescue neurogenesis and neuron maturation should 

take place as soon as possible. Previous studies have shown that perinatal 

treatment with fluoxetine, a selective serotonin reuptake inhibitor (SSRI), fully 
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restores brain development and cognitive performance in the Ts65Dn mouse 

model of DS (Bianchi et al., 2010b; Guidi et al., 2014). This discovery provides 

the first evidence that brain defects due to the trisomic condition are reversible 

and gives new hope for therapeutic interventions in individuals with DS. 

Although fluoxetine is a widely-used antidepressant, that may also be prescribed 

in children, its use during pregnancy may cause alterations in heart development 

(Reefhuis et al., 2015). Thus, we deem it extremely important to find molecules 

that have the same positive impact as fluoxetine in the trisomic brain but that may 

pose fewer caveats for clinical application.  

The brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key 

role in brain plasticity by specifically binding to tropomyosin-related kinase 

receptor B (TrkB) (Haniu et al., 1997). This binding causes dimerization and 

autophosphorylation of the TrkB receptor, which triggers the activity of several 

intracellular pathways, thereby favoring neurogenesis, neuritogenesis and spine 

growth ((see (Vilar & Mira, 2016)). In the DS brain, BDNF levels are already 

reduced at fetal life stages (Guedj et al., 2009; Toiber et al., 2010) and reduced 

BDNF levels have been shown in various brain regions of the Ts65Dn mouse 

(Bimonte-Nelson et al., 2003; Bianchi et al., 2010b; Fukuda et al., 2010, 

Begenisic et al., 2015). Interestingly, SSRI administration increases BDNF levels 

(Malberg and Blendy, 2005), and a triangulation between neurogenesis, the 

serotonergic system, and BDNF signaling is supported by several findings, 

suggesting that BDNF-TrkB signaling may be involved in the pro-neurogenic 

effects of SSRI antidepressants, such as fluoxetine (Gardier et al., 2009; Foltran 

& Diaz, 2016). Indeed, TrkB ablation in hippocampal neural precursor cells 

blocks the increase in proliferation and neurogenesis that occurs in response to 

antidepressants (Vilar & Mira, 2016). Consistently with this evidence, fluoxetine 

increases BDNF levels in Ts65Dn mice (Bianchi et al., 2010b; Stagni et al., 
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2013), suggesting that BDNF may be involved in the beneficial effects of 

fluoxetine treatment. 

In view of the role of the BDNF-TrkB system in neurogenesis and dendritic 

morphogenesis, it is conceivable that interventions targeted to the BDNF-TrkB 

system may be exploited in order to improve these defects. Systemic 

administration of BDNF is impracticable because BDNF has a poor blood-brain 

barrier penetration. This obstacle could be circumvented by using TrkB agonists 

that can enter the brain. Recent screening of a chemical library has identified a 

flavone derivative, 7,8-dihydroxyflavone (7,8-DHF), as the first small-molecule 

compound that binds with high affinity and specificity to the TrkB receptor, 

activates its downstream signaling cascade (Liu et al., 2010), and penetrates the 

blood brain barrier (Liu et al., 2013). Administration of 7,8-DHF enhances the 

activation of phosphorylated TrkB and increases spine density in several brain 

regions (Zeng et al., 2012), promotes neurogenesis in the dentate gyrus (Liu et 

al., 2010), fosters neurite outgrowth (Tsai et al., 2013) and exerts therapeutic 

efficacy in various animal disease models that are related to deficient BDNF 

signaling (Liu et al., 2016). 

Various pharmacotherapies have been attempted in DS mouse models 

(Bartesaghi et al., 2011; Costa & Scott-McKean, 2013; Gardiner, 2015). Some of 

these studies have prompted clinical trials in children and young adults with DS 

(De la Torre et al., 2014, de la Torre et al., 2016) which emphasizes the potential 

translational impact of preclinical research. A comparison of the effects of 

different therapies in mouse models shows that many of them were effective 

(Stagni et al., 2015). It should be noted, however, that some of the used drugs 

may be not devoid of side effects, and/or have ephemeral effects, which 

diminishes their translational impact. For instance, lithium may impair the renal 

function, inhibitors of GABAA receptors may have pro-convulsant effects, 

melatonin may affect puberty in children. The therapeutic potential of TrkB 
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agonists for neurogenesis improvement in DS has never been examined. 

Considering the important role of the BDNF-TrkB receptor system on 

neurogenesis, we expect that by acting upon this system by exploiting the 

flavonoid 7,8-DHF it may be possible to positively impact the DS brain. 

Moreover, considering that flavonoids are natural substances it seems likely that 

their administration at appropriate doses may be devoid of side effects. Based on 

these premises, we deemed it important to investigate whether treatment with 

7,8-DHF is able to restore trisomy-linked neurogenesis defects. To this purpose, 

we exploited the Ts65Dn mouse, a widely-used model of DS. We focused on the 

hippocampal formation, one of the most important brain regions involved in 

pattern separation/completion and memory formation (Rolls, 2016). The 

hippocampal dentate gyrus mainly develops in the early postnatal period in 

rodents and continues to produce new neurons throughout life in all species 

examined including human beings (Altman & Bayer, 1975; Altman and Bayer, 

1990a, b; Spalding et al., 2013; Workman et al., 2013). We show here that early 

treatment with 7,8-DHF restores cellularity and neuron maturation in the 

hippocampal dentate gyrus of the Ts65Dn model of DS and that these effects are 

accompanied by restoration of hippocampus-dependent memory.  

 

MATERIALS AND METHODS 

 

Mouse colony 

Ts65Dn mice were generated by mating B6EiC3Sn a/A-Ts(17^16)65Dn females 

with C57BL/6JEiJ x C3H/HeSnJ (B6EiC3Sn) F1 hybrid males. This parental 

generation was provided by Jackson Laboratories (Bar Harbor, ME, USA). To 

maintain the original genetic background, the mice used were of the first 

generation of this breeding. Animals were genotyped as previously described 

(Reinholdt et al., 2011). Because C3H/HeSnJ mice carry a recessive mutation 
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that leads to retinal degeneration, animals used for the behavioral study were 

genotyped by standard PCR to screen out all mice carrying this gene. The day of 

birth was designated postnatal day zero (P0). The animals’ health and comfort 

were controlled by the veterinary service. The animals had access to water and 

food ad libitum and lived in a room with a 12:12 h light/dark cycle. Experiments 

were performed in accordance with the European Community Council Directive 

of 24 November 1986 (86/609/EEC) for the use of experimental animals and 

were approved by Italian Ministry of Public Health (813/2016-PR). In this study, 

all efforts were made to minimize animal suffering and to keep the number of 

animals used to a minimum. 

 

IN VITRO EXPERIMENTS 

Cultures of SVZ or SGZ neural progenitor cells 

Cells were isolated from the subventricular zone (SVZ) of the lateral ventricle 

and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) of 

newborn (P1-P2) euploid and Ts65Dn mice. Briefly, brains were removed, the 

SVZ and SGZ regions were isolated and individually collected in ice-cold PIPES 

buffer pH 7.4. After centrifugation, tissue was digested for 10 min at 37°C using 

Trypsin/EDTA 0.25% (Life Technologies) aided by gentle mechanical 

dissociation. Cell suspension from each individual mouse was plated onto 25 cm2 

cell-culture flask (Thermo Fisher Scientific) and cultured as floating 

neurospheres in medium containing basic fibroblast growth factor (bFGF, 10 

ng/ml; Peprotech) and epidermal growth factor (EGF, 20 ng/ml; Peprotech) using 

an established protocol (Meneghini et al., 2014). Primary (Passage 1, P1) 

neurospheres were dissociated using StemproAccutase (Life Technologies) after 

7 days in vitro (DIV), thereafter neurospheres were passaged every 5 DIV. For 

proliferation studies neurospheres (P3-P12) from the SVZ were dissociated in a 

single cell suspension and plated onto NunclonTM Delta Surface 96-well plate 
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(Thermo Fisher Scientific) at a density of 4×103 cells per well in DMEM/F-12 

medium supplemented with B27, GlutamaxTM, heparin sodium salt (4 μg/ml; 

ACROS Organics), bFGF (10 ng/ml) and 100 U/100 μg/ml 

Penicillin/Streptomycin (Life Technologies) in presence of 7,8-

Dihydroxyflavone (7,8-DHF; 0.3-10.0 M, Sigma Aldrich) or its vehicle (DMSO 

0.06%) for 96 h. Since lithium has been shown to restore proliferation of NPCs 

of Ts65Dn mice in vivo (Bianchi et al., 2010a; Contestabile et al., 2013) and in 

vitro (Trazzi et al., 2014), the effect of exposure to lithium 2 mM was also 

examined, as positive control. This dose was chosen based on previous evidence 

(Trazzi et al., 2014). Cell proliferation was quantified as relative luminescence 

units (RLU) values using CellTiter-Glo viability assay reagent (Promega) on a 

Victor3-V plate reader (PerkinElmer). For differentiation experiments 

neurospheres from the SVZ and SGZ were dissociated into single cells and plated 

onto laminin-coated Lab-Tek 8-well permanox chamber slides (Thermo Fisher 

Scientific) at a density of 35×103 per well in differentiation medium (DMEM-

F12 supplemented with B27, 2 mM Glutamax and 100 U/100 mg/ml 

penicillin/streptomycin). NPCs were treated in presence of 7,8-DHF (0.3–10.0 

M, Sigma Aldrich) or vehicle (DMSO 0.02 %) for 96 h. Phenotypic 

characterization of NPC-derived cells was carried out by immunolocalization for 

MAP2 (rabbit polyclonal,1:600; Millipore) and Nestin (chicken monoclonal, 1: 

1,500; Neuromics). Secondary antibodies were as follows: AlexaFluor555-

conjugated goat anti rabbit (1:1,400; MolecularProbes); AlexaFluor488-

conjugated goat anti chicken (1: 1,400; Molecular Probes). Nuclei were 

counterstained with 0.8 ng/ml Hoechst (Thermo Fisher Scientific) diluted in PBS. 

In each experiment, five fields/well (corresponding to about 150–200 cells/well) 

were counted with a 60X objective by a Leica DMIRB inverted fluorescence 

microscope. Immunoreactive cells were counted and their percentage over total 

viable cells was calculated. The number of MAP2 cells exhibiting neuritic 
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processes was counted at random locations in five fields/well and their number 

was expressed as percentage over total cell number in each sampled location. All 

experiments were run in triplicate. 

 

IN VIVO EXPERIMENTS 

In the current study, treatment with either 7,8-DHF or vehicle began on postnatal 

day 3 (P3). All mice that survived in the P0 to P3 period entered this study, with 

no specific selection criteria. A total of 185 mice entered the study (96 males and 

89 females). The number of vehicle-treated and 7,8-DHF treated mice was 96 

and 89, respectively. Seven vehicle-treated (7.3%) and five 7,8-DHF-treated 

(5.6%) mice died before weaning, in the P6-P22 period. The similarity in the 

mortality rate across groups suggests that treatment has no adverse effects on the 

health of mice.  

 

Experimental protocol 

Pilot experiment. In a pilot study we tested the effects of different doses of 7,8-

DHF on the proliferation rate in the SGZ of Ts65Dn mice. Mice received a daily 

subcutaneous injection of 7,8-DHF (2.5, 5.0, or 10.0 mg/kg in PBS with 1-2% 

DMSO) from postnatal day 3 (P3) to P15. On P15, mice received an 

intraperitoneal injection (150 g/g body weight) of BrdU (5-bromo-2-

deoxyuridine; Sigma), a marker of cells in the S-phase of the cell cycle 

(Nowakowski et al., 1989) in TrisHCl 50 mM 2h before being killed and the 

number of BrdU positive cells in the SGZ was evaluated. We found that the 

optimum dose was 5.0 mg/kg (see Fig. 3A). Therefore, this study (Experiment 1 

and Experiment 2) was carried out using a 5.0 mg/kg dose.  

Experiment 1. Euploid (n=25) and Ts65Dn (n=15) mice received a daily 

subcutaneous injection (at 9-10am) of 7,8-DHF (5.0 mg/kg in vehicle: PBS with 

1% DMSO) from P3 to P15. This timing was chosen because it corresponds to 
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that previously used to test the effects of fluoxetine and other pharmacotherapies 

in the neonate Ts65Dn mouse (Bianchi et al., 2010b; Giacomini et al., 2015; 

Stagni et al., 2016). Age-matched euploid (n=35) and Ts65Dn (n=21) mice were 

injected with the vehicle (these mice will be named here “untreated mice”). On 

P15, mice received an intraperitoneal injection (150 g/g body weight) of BrdU in 

TrisHCl 50 mM 2h before being killed (Fig. 2A). The brains were excised and 

cut along the midline. The left hemisphere of a group of mice was fixed by 

immersion in PFA 4% and frozen, and the left hemisphere of another group of 

mice was used for Golgi staining. The right hemispheres of all mice was kept at 

–80°C and used for western blotting.  

Experiment 2. Euploid (n=17) and Ts65Dn (n=16) mice received a daily 

subcutaneous injection (at 9-10am) of 7,8-DHF (5.0 mg/kg in vehicle) from 

postnatal day 3 (P3) to postnatal day P40-P55. Age-matched euploid (n=19) and 

Ts65Dn (n=14) mice were injected with the vehicle. These mice will be called 

here P45 mice. Mice were behaviorally tested in the 6 days that preceded the day 

of sacrifice (Fig. 2B).  

The body weight of mice of all groups was recorded prior to sacrifice and the 

brain weight was recorded immediately after brain removal. The number of 

animals used for each experimental procedure is specified in the figure legends 

and in Supplementary Table 2. 

 

Histological procedures 

The frozen brains were cut with a freezing microtome into 30-μm-thick coronal 

sections that were serially collected in anti-freezing solution (30% glycerol; 30% 

ethylen-glycol; 10% PBS10X; sodium azide 0.02%; MilliQ to volume). 
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Immunohistochemistry 

Immunohistochemistry (IHC) was carried out as previously described 

(Contestabile et al., 2007; Bianchi et al., 2010b; Guidi et al., 2013; Giacomini et 

al., 2015).  

BrdU immunohistochemistry. One out of six free-floating sections (n=15-18 

sections) from the hippocampal formation of P15 mice was incubated with rat 

anti-BrdU antibody. Detection was performed with a Cy3-conjugated anti rat-

secondary antibody as indicated in Table 1.  

Golgi staining  

Brains of P15 mice were Golgi stained using the FD Rapid Golgi StainTM Kit (FD 

NeuroTechnologies, Inc.). Brains were immersed in the impregnation solution 

containing mercuric chloride, potassium dichromate and potassium chromate and 

stored at room temperature in darkness for 3 weeks. Hemispheres were cut with 

a microtome in 90-μm-thick coronal sections that were mounted on gelatin-

coated slides and were air dried at room temperature in the dark for one day. After 

drying, sections were rinsed with distilled water and subsequently stained in a 

developing solution (FD Rapid Golgi Stain Kit).  

 

Measurements 

Image acquisition  

Immunofluorescence images were taken with a Nikon Eclipse TE 2000-S 

inverted microscope (Nikon Corp., Kawasaki, Japan), equipped with a Nikon 

digital camera DS 2MBWc. Measurements were carried out using the software 

Image Pro Plus (Media Cybernetics, Silver Spring, MD 20910, USA). Bright 

field images were taken on a light microscope (Leitz) equipped with a motorized 

stage and focus control system and a Coolsnap-Pro color digital camera (Media 

Cybernetics, Silver Spring, MD, USA).  
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BrdU-positive cells 

BrdU-positive cells in the DG of P15 mice were detected using a fluorescence 

microscope (Eclipse; objective: x 40, 0.75 NA; final magnification: x 400). 

Quantification of BrdU-labeled nuclei was conducted in every 6th section using a 

modified unbiased stereology protocol that has previously been reported as 

successfully quantifying BrdU labeling (Malberg et al., 2000; Kempermann and 

Gage, 2002; Tozuka et al., 2005). All BrdU labeled cells located in the granule 

cell and subgranular layers were counted in their entire z axis (1 µm steps) in 

each section. To avoid oversampling errors, nuclei intersecting the uppermost 

focal plane were excluded. The total number of BrdU labeled cells per animal 

was determined and multiplied by six to obtain the total estimated number of cells 

per DG. 

Stereology of the DG 

Unbiased stereology was performed on Hoechst-stained sections from P15 mice. 

The optical dissector method was used to obtain density, and Cavalieri principle 

was used to estimate volume (West & Gundersen, 1990). To include 15-20 

sections, one every 6th section was selected, beginning at a random position 
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within the first 6 sections. In order to obtain granule cell numerical density, 

counting frames (disectors) with a side length of 30 μm and a height of 10 μm 

spaced in a 100 μm square grid were systematically used. Granule cell nuclei 

were counted with a x 64 oil objective (1.4 NA). Granule cell nuclei intersecting 

the uppermost focal plane and intersecting the exclusion lines of the count frame 

were not counted. The neuron density (Nv) is given by NV = (Q/dis)/Vdis where 

Q is the number of particles counted in the disectors, dis is the number of 

disectors and Vdis is the volume of the disector. For calculation of Vdis the 

disector height was corrected for section shrinkage in the z-plane (Dorph Petersen 

et al., 2001) according to the formula: h=counting thickness x (original 

thickness/measured thickness). The section thickness was measured during 

neuron counting at different random locations. In the analyzed sections, the mean 

section thickness was 16 μm (range: 12-18 μm). For volume (Vref) estimation 

with the Cavalieri principle, in each sampled section, the area of the granule cell 

layer was measured by tracing its contours. The volume of the granule cell layer 

(Vref) was estimated (West & Gundersen, 1990) by multiplying the sum of the 

cross sectional areas by the spacing T between sampled sections (180 μm). The 

total number (N) of granule cells was estimated as the product of Vref and the 

numerical density (Nv). 

N= NV x Vref 

Spine density 

In Golgi-stained sections from the DG of P15 mice, spines of granule cells were 

counted using a 100x oil immersion objective lens (1.4 NA). Spine density values 

were obtained from dendritic segments in the inner and outer half of the 

molecular layer. For each neuron, 2-3 segments were analyzed in the outer and 

inner half of the molecular layer, respectively. For each animal, spines were 

counted in at least 8 neurons. The length of each sampled dendritic segment was 

determined by tracing its profile and the number of spines was counted manually. 
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The linear spine density was calculated by dividing the total number of spines by 

the length of the dendritic segment. Spine density was expressed as number of 

spines per 100 μm dendrite. 

 

Western blotting 

In homogenates of the hippocampal formation of P15 mice, total proteins were 

obtained as previously described (Trazzi et al., 2011) and the levels of the 

following proteins were evaluated: BDNF, TrkB full length (TrkB-FL), 

phosphorylated TrkB (p-TrkB), the truncated form 1 of the TrkB receptor (TrkB-

T1), phosphorylated ERK1 (p-ERK1), phosphorylated ERK2 (p-ERK2), ERK1, 

ERK2, synaptophysin (SYN), GAPDH and α-Tubulin using the antibodies 

reported in Supplementary Table 1. Densitometric analysis of digitized images 

with ChemiDoc XRS+ was performed with Image Lab software (Bio-Rad 

Laboratories, Hercules, CA, USA) and intensity for each band was normalized 

to the intensity of the corresponding GAPDH or α-Tubulin band.  

 

Behavioral testing 

Morris Water Maze (MWM). Mice were trained in the MWM task to locate a 

hidden escape platform in a circular pool, using a previously used protocol 

(Stagni et al., 2016), that was altogether based on a published protocol (Vorhees, 

2006). The apparatus consisted of a large circular water tank (1.00 m diameter, 

50 cm height) with a transparent round escape platform (10 cm2). The pool was 

virtually divided into four equal quadrants identified as northeast, northwest, 

southeast, and southwest. The tank was filled with tap water at a temperature of 

22±1.0ºC. Mice are more prone to undergo hypothermia than rats and in the 

MWM hypothermia may cause a reduction in swimming speed (Iivonen et al., 

2003). Evaluation of the swimming speed showed no speed differences across 

consecutive trials, suggesting that at this temperature mice did not undergo 
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hypothermia (Supplementary Fig. 1, not shown in this thesis). This is consistent 

with evidence that a temperature of 22°C is “high enough” to reduce stress and 

potential hypothermia and “low enough” to maintain the animals’ motivation to 

escape the pool (Costa et al., 2010). The tank was filled with water up to 0.5 cm 

above the top of the platform and the water was made opaque with milk. The 

platform was placed in the tank in a fixed position (in the middle of the south-

west quadrant). The pool was placed in a large room with various intra- (squares, 

triangles, circles and stars) and extra-maze visual cues. Each mouse was tested in 

one session of 4 trial on the first day and in two sessions of 4 trials in the 

following 4 days with an inter-session interval of 45 min. A video camera was 

placed above the center of the pool and connected to a videotracking system 

(Ethovision 3.1; Noldus Information Technology B.V., Wageningen, 

Netherlands). Mice were released facing the wall of the pool from one of the 

following starting points: North, East, South, or West and allowed to search for 

up to 60 s for the platform. If a mouse did not find the platform, it was gently 

guided to it and allowed to remain there for 15 s. During the inter-trail time (10 

s) mice were placed in an empty cage. For the learning phase, we evaluated the 

latency to find the hidden platform, time in periphery, percentage of time in 

periphery, path length, proximity to the platform, and swimming speed. 

Retention was assessed with one trial (probe trial), on the sixth day, 24 h after the 

last acquisition trial, using the same starting point for all mice. Mice were allowed 

to search for up to 60 s for the platform. For the probe trial, the latency of the first 

entrance in the former platform zone, the frequency of entrances in the former 

quadrant, the proximity to the former platform position (Gallagher’s test), the 

percentage of time spent at the periphery (thigmotaxis), the swimming speed and 

the percentage of time spent in each quadrant were employed as measures of 

retention of acquired spatial preference. All experimental sessions were carried 

out between 9.00am and 5.00pm. The mice used for the MWM did not carry a 
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recessive mutation that leads to retinal degeneration. The following number of 

mice were tested. Untreated euploid mice: n=19; untreated Ts65Dn mice: n=14; 

7,8-DHF-treated euploid mice: n=17; 7,8-DHF-treated Ts65Dn mice: n=16. 

Three untreated euploid mice (yielding n=16), one 7,8-DHF-treated euploid 

mouse (yielding n=16) and one 7,8-DHF-treated Ts65Dn mouse (yielding n=15) 

were excluded from MWM analysis due to thigmotaxis for a whole recording 

session.  

 

Statistical analysis 

Results are presented as mean ± standard error of the mean (SE). Data were 

analyzed with the IBM SPSS 22.0 software. Statistical analysis was carried out 

using either a one-way ANOVA or a two-way ANOVA with genotype (euploid, 

Ts65Dn) and treatment (vehicle, 7,8-DHF), as factors. Post hoc multiple 

comparisons were carried out using the Fisher least significant difference (LSD) 

test. For the learning phase of the MWM test, statistical analysis was performed 

using a three-way mixed ANOVA, with genotype and treatment as grouping 

factors and days as a repeated measure. For the probe test of MWM, we used a 

two-way ANOVA with genotype and treatment as factors followed by the Fisher 

LSD post hoc test. Based on the “Box plot” tool available in SPSS Descriptive 

Statistics we excluded from each analysis the extremes, i.e. values that were 

larger than 3 times the IQ range [x ≥ Q3 + 3 * (IQ); x ≤ Q1 – 3 * (IQ)]. The 

number of mice included and excluded in individual analyses is reported in 

Supplementary Table 2. Figure legends report the number of mice used for 

statistical analysis. Supplementery Tables 3-8 report the p values of the post-hoc 

LSD test for each analysis. A probability level of p ≤ 0.05 was considered to be 

statistically significant.  
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RESULTS 

 

Effect of treatment with 7,8-DHF on proliferation, differentiation and 

maturation of trisomic NPCs 

Confirming previous evidence (Trazzi et al., 2011; Trazzi et al., 2013), neural 

progenitor cells (NPCs) from the subventricular zone (SVZ) of neonate Ts65Dn 

mice exhibit impairment of proliferation rate (Fig. 1A). Cultures of trisomic 

NPCs were exposed to standard medium (vehicle) or standard medium plus 

different concentrations of 7,8-DHF, in order to establish whether treatment 

increases their proliferation rate. A one-way ANOVA showed a significant effect 

of treatment [F(5,12) = 81.364, p ≤ 0.001]. A post hoc LSD test showed that none 

of the tested concentrations was able to increase the proliferation rate of trisomic 

NPCs and that the highest concentration (10.0 µM) even reduced proliferation 

(Fig. 1B). In contrast, cells were highly responsive to the pro-proliferative action 

of 2 mM lithium (Fig. 1B). In addition to proliferation impairment, trisomic 

NPCs exhibit impairment in the acquisition of a neuronal phenotype and 

maturation, i.e. development of neuritic processes (Trazzi et al., 2011; Trazzi et 

al., 2013). In order to establish whether treatment favors neurogenesis, in cultures 

of NPCs under differentiating conditions we evaluated the percentage of cells 

positive to MAP2, a marker of cells with a neuronal phenotype, and of cells 

positive to Nestin, a marker of neural stem cells. A one-way ANOVA on the 

percentage of cells that were MAP2 positive and Nestin negative (MAP2+/Nestin-

) showed a significant effect of treatment [F(5,12) = 9.354, p ≤ 0.001]. A post-

hoc LSD test showed that all drug concentrations caused a large increase in the 

percentage of MAP2+/Nestin- cells in comparison with cultures in the standard 

medium (Fig. 1C). Consistently with the lack of effect of treatment on the 

proliferation rate of NPCs (Fig. 1B) we found no change in the percentage of 

cells that were Nestin positive and MAP2 negative (Nestin+/MAP2-; Fig. 1D). 
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This evidence suggests that treatment does not affect the proliferation rate of 

neural stem cells but enhances the differentiation of their progeny into neurons. 

In order to establish the effect of 7,8-DHF on neuron maturation we evaluated 

the percentage of cells exhibiting neuritic processes in differentiating cultures of 

trisomic NPCs from the SVZ and from the subgranular zone (SGZ) of the dentate 

gyrus (DG), exposed to different concentrations of 7,8-DHF. A one-way 

ANOVA on the percentage of NPCs from the SGZ that exhibited neuritic 

processes showed a significant effect of treatment [F(5,12) = 4.336, p = 0.017]. 

A post-hoc LSD test showed that concentrations higher than 1.0 μM increased 

the percentage of differentiating cells in comparison with cultures in the standard 

medium (Fig. 1E,F). A one-way ANOVA on the percentage of NPCs from the 

SVZ that exhibited neuritic processes showed a significant effect of treatment 

[F(5,12) = 12.364, p ≤ 0.001]. A post-hoc LSD test showed that doses higher than 

0.3 μM increased the percentage of differentiating cells in comparison with 

cultures in the standard medium (Fig. 1G,H). Observation of Fig. 1F,H shows 

that effect of treatment on neuron maturation increased in a concentration-

dependent manner. Evaluation of the number of apoptotic cells showed no effect 

of treatment (data not shown). Taken together these data show that 7,8-DHF does 

not increase the proliferation rate but fosters the process of neurogenesis and 

neuron maturation in cultures of NPCs.  
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Fig. 1. Effect of 7,8-DHF on proliferation, differentiation and maturation of trisomic NPCs. 

A: Number of proliferating cells in cultures of neural progenitor cells (NPCs) from the SVZ of 

euploid and Ts65Dn mice. Data are expressed as fold change in comparison with euploid NPCs. 

*** p ≤ 0.001, two-tailed t-test. B: Effect of different concentrations of 7,8-DHF or LiCl 2.0 mM 

on the proliferation rate of NPCs from the SVZ of Ts65Dn mice. Data are expressed as fold 

change in comparison with NPCs exposed to vehicle alone (DMSO 0.06%). C,D: Percentage of 

MAP2+/Nestin- cells (C) and of Nestin+/MAP2- cells (D) in cultures of NPCs from the SVZ of 
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Ts65Dn mice grown under differentiating conditions and exposed to different concentrations of 

7,8-DHF for 96 h. E-H: Percentage of cells exhibiting neuritic processes (red) in cultures of NPCs 

from the SGZ (F) and SVZ (H) of Ts65Dn mice grown under differentiating conditions and 

exposed to different doses of 7,8-DHF for 96 h. Images in (E,G) show cells from the SGZ (E) 

and SVZ (G) of Ts65Dn mice that were exposed to either vehicle (DMSO 0.02%) or 7,8-DHF 

5.0 µM. Scale bar=50 µm. Data in A-H were obtained in pooled cultures from euploid (n=4) and 

Ts65Dn (n=3) mice. The asterisks in (A, B, C, F, H) indicate a difference in comparison with 

untreated cultures exposed to DMSO alone [(*) p ≤ 0.06; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 

(Fisher LSD test after ANOVA)]. The symbol # in (B) indicates a difference between cultures 

exposed to lithium and cultures exposed to vehicle alone (### p ≤ 0.001, two-tailed t test). 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid ; LiCl, Lithium chloride; MAP2, 

microtubule associated protein 2; SGZ, subgranular zone; SVZ, subventricular zone. 

 

Effect of treatment with 7,8-DHF in vivo: general results 

The Ts65Dn strain is characterized by a high mortality rate during gestation 

(Roper et al., 2006). For this reason, the number of Ts65Dn pups in a litter results 

approximately 30% instead of the theoretical value of 50%. Moreover, Ts65Dn 

mice exhibit a high mortality rate before weaning (Roper et al., 2006). This means 

that numerous litters are needed in order to obtain a sufficiently large number of 

Ts65Dn mice. In view of the fragility of this strain, we deemed it important to 

establish whether treatment with 7,8-DHF has adverse effects on the viability and 

growth of Ts65Dn mice. In the current study, treatment with either 7,8-DHF or 

vehicle began on postnatal day 3 (P3). All mice that survived in the P0 to P3 

period entered this study, with no specific selection criteria. A total of 185 mice 

entered the study (96 males and 89 females). The number of vehicle-treated and 

7,8-DHF treated mice was 96 and 89, respectively. Seven vehicle-treated (7.3%) 

and five 7,8-DHF-treated (5.6%) mice died before weaning, in the P6-P22 period. 

The similarity in the mortality rate across groups suggests that treatment has no 

adverse effects on the health of mice.  
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We evaluated the body and brain weight of P15 and P45 mice in order to establish 

the effect treatment on gross growth parameters. A two-way ANOVA on the 

body weight of P15 mice showed no genotype x treatment interaction [F(1,92) = 

0.63, p = 0.431], no main effect of treatment but a main effect of genotype 

[F(1,92) = 14.78, p ≤ 0.001]. Post hoc LSD test confirmed well established 

evidence that Ts65Dn mice have a reduced body weight in comparison with 

euploid mice and showed that treatment did not further reduce the body weight 

of Ts65Dn mice (Fig. 2C). A two-way ANOVA on the brain weight of P15 mice 

showed no genotype x treatment interaction [F(1,92) = 1.09, p = 0.300], a main 

effect of genotype [F(1,92) = 7.73, p = 0.007] and a main effect of treatment 

[F(1,92) = 6.18,  p = 0.015]. Post hoc LSD test showed that Ts65Dn mice had a 

reduced brain weight in comparison with euploid mice and that treatment did not 

cause a further brain weight reduction (Fig. 2D). On the contrary, treated euploid 

mice underwent a slight but significant brain weight reduction in comparison 

with their untreated counterparts (Fig. 2D).  

A two-way ANOVA on the body weight of P45 mice showed no genotype x 

treatment interaction [F(1,62) = 1.57, p = 0.215], no main effect of treatment but 

a main effect of genotype [F(1,62) = 4.98, p = 0.029]. Post hoc LSD test showed 

that Ts65Dn mice retained a reduced body weight in comparison with euploid 

mice and that treatment did not further reduce their body weight (Fig. 2E). In 

contrast, treated euploid mice underwent a body weight reduction in comparison 

with their untreated counterparts (Fig. 2E). A two-way ANOVA on the brain 

weight of P45 mice showed no genotype x treatment interaction [F(1,62) = 2.06, 

p = 0.156], no main effect of either genotype or treatment. Post hoc LSD test 

showed that untreated Ts65Dn mice had a reduced brain weight in comparison 

with untreated euploid mice and that this difference disappeared in Ts65Dn mice 

treated with 7,8-DHF (Fig. 2F). Taken together these findings show that 
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treatment with 7,8-DHF has no adverse effects on viability and body weight of 

Ts65Dn mice and that it has a positive impact on their brain weight . 

 

 

Fig. 2. Experimental protocol and general results of the in vivo experiments. 

A: Euploid and Ts65Dn pups received one daily injection of either vehicle or 7,8-DHF from 

postnatal day 3 (P3) to P15. At P15, mice received one injection of BrdU, and were killed after 2 

h in order to evaluate the number of cells in the S-phase of the cell cycle. B: Euploid and Ts65Dn 

mice received one daily injection of either vehicle or 7,8-DHF from postnatal day P3 to P45-50. 

These mice were tested with the Morris Water Maze test 6 days before being killed. C,D: Body 

(C) and brain (D) weight (mean  SE) in grams of P15 euploid (n=35) and Ts65Dn (n=21) mice 

that received vehicle and euploid (n=25) and Ts65Dn (n=15) mice that received 7,8-DHF (5 

mg/kg) in the period P3-P15. E,F: Body (E) and brain (F) weight (mean  SE) in grams of P45 

euploid (n=19) and Ts65Dn (n=14) mice that received vehicle and euploid (n=17) and Ts65Dn 

(n=16) mice that received 7,8-DHF (5.0 mg/kg) in the period P3-P45. * p ≤ 0.05; ** p ≤0.01; *** 
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p ≤ 0.001 (Fisher LSD test after two-way ANOVA). Black asterisk in the gray bar indicate a 

difference between untreated Ts65Dn mice and treated euploid mice.  White asterisks in the black 

bar indicate a difference between treated Ts65Dn mice and treated euploid mice. Abbreviations: 

7,8-DHF, 7,8-dihydroxyflavone; BrdU, bromodeoxyuridine; Eu, euploid; MWM, Morris Water 

Maze, P, postnatal. 

 

Effect of neonatal treatment with 7,8-DHF on neural precursor proliferation 

in the hippocampal dentate gyrus of Ts65Dn mice 

Recent work has examined the effect of 7,8-DHF in models of Alzheimer disease. 

A dose of 5.0 mg/kg has been shown to have no toxic effects and to restore 

cognitive performance (Liu et al., 2010). In addition, this dose increases the 

proliferation rate of neural precursor cells of the DG (Liu et al., 2010). In order 

to establish whether this is the optimal dose for proliferation enhancement in 

Ts65Dn mice, we treated pups with vehicle, 2.5 mg/kg, 5.0 mg/kg or 10.0 mg/kg 

of 7,8-DHF in the period P3-P15. At the end of treatment, mice received one 

injection of BrdU and were killed after 2 h in order to examine the effect of 

treatment on proliferation rate. A one-way ANOVA on the number of BrdU-

positive cells in the DG of Ts65Dn pups showed a significant effect of treatment 

[F(3,20) = 4.15, p = 0.019]. Post hoc LSD test showed that the lowest dose had 

no effect in comparison with vehicle-treated mice and that both the 5.0 mg/kg 

and the 10.0 mg/kg doses increased the number of BrdU-positive cells in Ts65Dn 

mice. In absolute terms, the 5.0 mg/kg dose had a higher pro-proliferative effect 

than the 10.0 mg/kg dose (Fig. 3A).  

Based on the results reported above, all following experiments in vivo were 

carried out using a 5.0 mg/kg dose. In order to establish the effects of 7,8-DHF 

on proliferation rate of NPCs of the DG, Ts65Dn mice and their euploid 

littermates were daily injected with 5 mg/kg of 7,8-DHF in the period P3-P15. 

At the end of treatment, mice were injected with BrdU and the number of BrdU-

positive cells in the SGZ of the DG was evaluated. A two-way ANOVA on the 
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total number of BrdU positive cells showed a genotype x treatment interaction 

[F(1,19) = 8.53, p = 0.009], a main effect of genotype [F(1,19) = 21.25, p ≤ 

0.001], but no effect of treatment. A post hoc Fisher LSD test showed that, in 

agreement with previous evidence (Bianchi et al., 2010b), untreated Ts65Dn 

mice had notably fewer proliferating cells in comparison with untreated euploid 

mice (total number per DG in Ts65Dn mice: n=7166±337, in euploid mice: 

n=10281±111). The number of proliferating cells in treated Ts65Dn mice 

underwent an increase (n=8963±449) and became statistically greater than that 

of their untreated counterparts, although it remained slightly lower in comparison 

with untreated euploid mice (Fig. 3B,C). Treatment had no effect on the number 

of NPCs in euploid mice (Fig. 3B,C). These results show that treatment in vivo, 

unlike in vitro, greatly enhances cell proliferation in trisomic mice, although the 

number of proliferating cells does not reach the same value as euploid mice.  
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Fig. 3. Effects of neonatal treatment with 7,8-DHF on the size of the population of cells in 

the S-phase of the cell cycle in the dentate gyrus of P15 Ts65Dn and euploid mice.  

A: In pilot experiments Ts65Dn mice received a daily injection of vehicle (n=8) or 7,8-DHF (2.5 

mg/kg, n=4; 5.0 mg/kg, n=5; 10.0 mg/kg, n=7) in the period P3-P15. At P15, they were injected 

with BrdU and killed after 2 h. The histograms show the number of BrdU-positive cells in the 

DG of Ts65Dn mice treated with either vehicle or the indicated doses of 7,8-DHF. The number 

of BrdU-positive cells in euploid mice reported in (C) that received the vehicle is shown for 

comparison. B: Representative images of sections immunostained for BrdU from the DG of 

untreated euploid and Ts65Dn mice and euploid and Ts65Dn mice that were daily treated with 

5.0 mg/kg of 7,8-DHF in the period P3-P15. Calibration bar=200 μm. The insets show zoomed 

images of the boxed area with examples of individual BrdU-positive cells. Calibration bar=20 

μm. C: Total number of BrdU-positive cells in the DG of untreated euploid (n=7) and Ts65Dn 

(n=8) mice and euploid (n=3) and Ts65Dn (n=5) mice treated with 5.0 mg/kg of 7,8-DHF. Values 

(mean  SE) in (A) and (C) refer to one hemisphere. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 (Fisher 
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LSD test after two-way ANOVA). Black asterisks in the gray bar indicate a difference between 

untreated Ts65Dn mice and treated euploid mice. Abbreviation: 7,8-DHF, 7,8-dihydroxyflavone; 

Eu, euploid. 

 

Effect of 7,8-DHF on the number of granule neurons in the dentate gyrus of 

Ts65Dn mice 

In view of the treatment-induced increase in the proliferation potency of neural 

precursor cells of the DG, we expected this effect to lead to 

improvement/restoration of the defective cellularity that characterizes the DG of 

trisomic mice (Bianchi et al., 2010b). To clarify this issue, we stereologically 

evaluated the total number of granule cells in treated and untreated mice. A two-

way ANOVA on total number of granule cells showed a genotype x treatment 

interaction [F(1,13) = 6.71, p = 0.022], but no main effect of either genotype or 

treatment. A post hoc Fisher LSD test showed that untreated Ts65Dn mice had 

fewer granule neurons in comparison with euploid mice and that treatment caused 

a large increase in their number. Consequently, in treated Ts65Dn mice the 

number of granule cells became similar to that of untreated euploid mice (Fig. 

4A,B). Unlike in Ts65Dn mice, in euploid mice treatment had no effect on total 

number of granule cells (Fig. 4A,B). These results show that neonatal treatment 

with 7,8-DHF restores the typical hypocellularity that characterizes the DG of 

trisomic mice. 
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Fig. 4. Effects of neonatal treatment with 7,8-DHF on granule cell number in the dentate 

gyrus of P15 Ts65Dn and euploid mice.  

A: Representative images of Hoechst-stained sections showing the granule cell layer of an animal 

from each experimental group. Calibration bar=100 µm. B: Total number of granule cells of 

untreated euploid (n=4) and Ts65Dn (n=4) mice and euploid (n=4) and Ts65Dn mice (n=5) 

treated with 5.0 mg/kg 7,8-DHF. Values (mean  SE) refer to one DG. * p ≤ 0.05 (Fisher LSD test 

after two-way ANOVA). Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; GR, 

granule cell layer; SGZ, subgranular zone. 

 

Effect of 7,8-DHF on dendritic spine density in the dentate gyrus of Ts65Dn 

mice 

Spine density reduction is a typical feature of the trisomic brain (Benavides-

Piccione et al., 2004; Guidi et al., 2013) that, in conjunction with hypocellularity, 
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is thought to be a critical determinant of intellectual disability. In order to 

establish whether 7,8-DHF improves this defect, in Golgi stained brains we 

evaluated spine density in the dendritic arbor of granule neurons. Since no 

differences between spine density on proximal and distal dendritic branches were 

found data were pooled together. A two-way ANOVA on spine density showed 

a genotype x treatment interaction [F(1,12) = 13.23, p = 0.003], a main effects of 

genotype [F(1,12) = 19.93, p = 0.001] and a main effects of treatment [F(1,12) = 

42.30, p ≤ 0.001]. A post hoc Fisher LSD test showed that untreated Ts65Dn had 

a considerably reduced spine density in comparison with untreated euploid mice 

(Fig. 5C). After treatment with 7,8-DHF the number of spines of Ts65Dn mice 

underwent a notable increment and became similar to that of euploid mice (Fig. 

5C), indicating that treatment fully rescues spine development. In euploid mice 

treatment had no effect on spine density (Fig. 5C). 
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Fig. 5. Effects of neonatal treatment with 7,8-DHF on dendritic spine density and 

synaptophysin levels in the dentate gyrus of P15 Ts65Dn and euploid mice. 

A: The photomicrograph shows a Golgi-stained granule cell. Dendritic spines were counted in 

the inner and outer half of the dendritic arbor of the granule cells. Calibration bar=10 µm. B: 

Photomicrograph of Golgi-stained granule cell dendrites showing spines on distal dendritic 

branches in an animal from each experimental groups. Calibration bar=5 µm. C: Spine density 

on the dendritic arbor of the granule cells of untreated euploid (n=4) and Ts65Dn mice (n=4) and 

euploid (n=4) and Ts65Dn (n=4) mice treated with 7,8-DHF. D: Western blot analysis of the 

expression levels of synaptophysin (SYN) in hippocampal homogenates of untreated euploid 

(n=10) and Ts65Dn (n=10) mice and treated euploid (n=5) and Ts65Dn (n=6) mice. SYN levels 

were normalized to GAPDH and expressed as fold difference in comparison with untreated 

euploid mice. Representative western blots are shown on the right. Values in (C,D) are mean  SE. 

(*) p ≤ 0.06; * p ≤ 0.05; *** p ≤ 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks 

in the gray bar indicate a difference between untreated Ts65Dn mice and treated euploid mice. 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; Veh, Vehicle. 
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Effect of 7,8-DHF on synaptophysin levels in the hippocampal formation of 

Ts65Dn mice 

Circuit formation is critically shaped in the early postnatal period throughout the 

brain. The trisomic brain is characterized by altered synaptic connectivity that, in 

conjunction with hypocellularity and dendritic pathology, largely contributes to 

impairment of signal processing (Bartesaghi et al., 2011). Synaptophysin (SYN) 

is a protein of the synaptic vesicles and is, therefore, a marker of synaptic 

terminals. To establish whether treatment with 7,8-DHF had an effect on synapse 

development, we examined the expression levels of SYN in the hippocampus of 

P15 mice.  

A two-way ANOVA on the levels of SYN showed no interaction between 

genotype and treatment [F(1,27) = 0.82, p = 0.372], no main effect of genotype, 

but a main effect of treatment [F(1,27) = 6.62, p = 0.016]. Confirming previous 

evidence (Stagni et al., 2013), a post hoc Fisher LSD test showed that untreated 

Ts65Dn mice had reduced SYN levels in comparison with untreated euploid 

mice, although the difference was marginally significant, and that treatment with 

7,8-DHF increased SYN levels that became similar to those of untreated euploid 

mice (Fig. 5D). An increase in SYN levels also took place in treated euploid mice 

in comparison with their untreated counterparts (Fig. 5D). These findings suggest 

that treatment with 7,8-DHF restores development of hippocampal synapses in 

Ts65Dn mice and enhances synaptic development in euploid mice. 

 

Effect of 7,8-DHF on the BDNF-TrkB receptor system in the hippocampal 

formation of Ts65Dn mice 

BDNF signaling is elicited when it binds to TrkB, resulting in the receptor 

dimerization and autophosphorylation. TrkB, the high affinity receptor of BDNF, 

and BDNF are essential for normal brain function (Bibel et al., 1999). The TrkB 

full-length receptor (TrkB-FL) possesses an intracellular tyrosine kinase domain 
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and is considered to mediate the crucial effects of BDNF. By contrast, the 

truncated form 1 of the TrkB receptor (TrkB-T1) lacks tyrosine kinase activity. 

It mediates inositol-1,4,5-trisphosphate-dependent calcium release (Rose et al., 

2003). We examined the protein levels of BDNF and TrkB receptors in the 

hippocampus of P15 euploid and Ts65Dn mice in order to establish the effect of 

genotype and treatment on the BDNF/TrkB system. 

A two-way ANOVA on the BDNF levels showed no genotype x treatment 

interaction [F(1,48) = 0.86, p = 0.359], a main effect of treatment [F(1,48) = 8.76, 

p = 0.005], but no effect of genotype. A post hoc Fisher LSD test showed that 

Ts65Dn mice had similar BDNF protein levels as euploid mice (Fig. 6B). 

Treatment with 7,8-DHF caused a reduction in BDNF levels both in euploid and 

Ts65Dn mice although the difference was statistically significant for the latter 

only (Fig. 6B). A two-way ANOVA on the levels of TrkB-FL receptor showed 

no genotype x treatment interaction [F(1,45) = 2.17, p = 0.148] , a main effect of 

genotype [F(1,45) = 5.71, p = 0.021] and no effect of treatment. A post hoc Fisher 

LSD test showed no difference between untreated euploid and Ts65Dn mice in 

the levels of TrkB-FL (Fig, 6A,C). In Ts65Dn, but not in euploid mice, treatment 

with 7,8-DHF caused a reduction in the levels of TrkB-FL (Fig. 6A,C). A two-

way ANOVA on the levels of the phosphorylated form of TrkB receptor (p-TrkB-

FL) showed no genotype x treatment interaction [F(1,39) = 0.03, p = 0.865], a 

main effect of treatment [F(1,39) = 10.88, p = 0.002] but no main effect of 

genotype. A post hoc Fisher LSD test showed that in untreated Ts65Dn mice the 

levels of p-TrkB-FL were similar to those of euploid mice. In both genotypes, 

treatment with 7,8-DHF caused an increase in the levels of p-TrkB-FL (Fig. 

6A,D). A two-way ANOVA on the levels of the TrkB-T1 receptor showed a 

genotype x treatment interaction [F(1,47) = 6.04, p = 0.018], but no main effect 

of either treatment or genotype. A post hoc Fisher LSD test showed that untreated 

Ts65Dn mice has similar levels of TrkB-T1 as untreated euploid mice. Treated 
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Ts65Dn mice underwent a reduction in the levels of TrkB-T1 in comparison with 

their untreated counterparts and untreated euploid mice (Fig. 6A,E). 

The activation of the TrkB-FL receptor allows its interaction with molecules that 

further interact and modify downstream targets, including the RAS/ERK 

signaling pathway. Since RAS/ERK signaling is involved in cell proliferation 

and differentiation, we examined the effects of treatment on the activation of 

ERK1/2 in hippocampal homogenates of Ts65Dn and euploid mice. A two-way 

ANOVA on p-ERK1 levels showed no genotype x treatment interaction [F(1,29) 

= 0.78, p = 0.385], but a main effect of genotype [F(1,29) = 7.21, p = 0.012] and 

of treatment [F(1,29) = 4.64, p = 0.040]. Post-hoc LSD test showed that treated 

Ts65Dn mice underwent an increase in p-ERK1 levels in comparison with 

untreated Ts65Dn mice as well as untreated euploid mice (Fig. 6F). A two-way 

ANOVA on p-ERK2 levels showed no genotype x treatment interaction [F(1,29) 

= 1.73, p = 0.199], a main effect of genotype [F(1,29) = 8.92, p = 0.006] but no 

main effect of treatment. Post-hoc Fisher LSD test showed that treated Ts65Dn 

mice underwent an increase in p-ERK2 levels in comparison with untreated 

euploid mice (Fig. 6F). A two-way ANOVA on the levels of ERK1 showed no 

genotype x treatment interaction [F(1,28) = 0.815, p = 0.374] and no main effect 

of either treatment or genotype. Post-hoc Fisher LSD test showed that treated 

Ts65Dn mice underwent an increase in ERK1 levels in comparison with 

untreated Ts65Dn mice (Fig. 6G). A two-way ANOVA on the levels of ERK2 

showed no genotype x treatment interaction [F(1,30) = 0.065, p = 0.801], no main 

effect of genotype, but a main effect of treatment [F(1,30) = 13.76, p = 0.001]. 

Post-hoc Fisher LSD test showed that Ts65Dn mice treated with 7,8-DHF 

underwent an increase in ERK2 levels in comparison with their untreated 

counterparts and untreated euploid mice (Fig. 6G). An increase in ERK2 levels 

also took place in treated euploid mice in comparison with their untreated 

counterparts (Fig. 6G). There is evidence that ERK2 is approximately four time 
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more abundant than ERK1 in various brain regions and that alteration of the 

stoichiometry of the two isoform of ERK may have adverse effects (Lefloch et 

al., 2008). Therefore, we examined the relative abundance of ERK1/ERK2 and 

p-ERK1/ERK2 in treated and untreated mice. We found that in the hippocampal 

region of untreated euploid and Ts65Dn mice the ratio between ERK2 and ERK1 

was approximately 3:1 and the ratio between p-ERK2 and p-ERK1 was 

approximately 2:1 (Supplementary Table 8, not shown here). Although in 

absolute terms treatment increased the levels of ERK1/2 and p-ERK1/2 in 

Ts65Dn mice (Fig. 6F,G), it did not affect their stoichiometry (Supplementary 

Table 8, not shown here).  
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Fig. 6. Effects of neonatal treatment with 7,8-DHF on the BDNF/TrkB receptor system in 

the hippocampal formation of P15 Ts65Dn and euploid mice. 

Western blot analysis of the BDNF/TrkB receptor system in the hippocampal formation of P15 

Ts65Dn and euploid mice that received either vehicle or 7,8-DHF in the postnatal period P3-P15. 

A: representative western blots showing immunoreactivity for the phosphorylated TrkB receptor 

(p-TrkB-FL), the full length TrkB receptor (TrkB-FL), the truncated TrkB receptor (TrkB-T1), 
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and the housekeeping gene GAPDH. B: Levels of BDNF (untreated euploid mice: n=20; 

untreated Ts65Dn mice: n=21; treated euploid mice: n=5; treated Ts65Dn mice: n=6) and 

representative western blots showing immunoreactivity for BDNF and the housekeeping gene 

GAPDH. C: Levels of TrkB-FL (untreated euploid mice: n=19; untreated Ts65Dn mice: n=19; 

treated euploid mice: n=5; treated Ts65Dn mice: n=6). D: Levels of p-TrkB-FL (untreated 

euploid mice: n=15; untreated Ts65Dn mice: n=16; treated euploid mice: n=5; treated Ts65Dn 

mice: n=6). E: levels of TrkB-T1 (untreated euploid mice: n=19; untreated Ts65Dn mice: n=21; 

treated euploid mice: n=5; treated Ts65Dn mice: n=6). F-H: Western blot analysis of p-ERK1/p-

ERK2 (untreated euploid mice: n=10; untreated Ts65Dn mice: n=12; treated euploid mice: n=5; 

treated Ts65Dn mice: n=6) (F) and total ERK1/ERK2 levels (untreated euploid mice: n=11; 

untreated Ts65Dn mice: n=11; treated euploid mice: n=5; treated Ts65Dn mice: n=6) (G) and 

representative western blots (H) showing immunoreactivity for p-ERK1, p-ERK2, ERK1, ERK2 

and for the housekeeping protein α-Tubulin. Data in (B, C, E) were normalized to GAPDH; data 

in (G) were normalized to α-Tubulin; data in (D) were normalized to TrkB-FL, and data in (F) 

were normalized to total ERK1 and total ERK2, respectively. Protein levels (mean  SE) are 

expressed as fold difference in comparison with untreated euploid mice. * p ≤ 0.05; ** p ≤ 0.01; 

*** p ≤ 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar indicate 

a difference between untreated Ts65Dn mice and treated euploid mice. White asterisks in the 

black bar indicate a difference between treated Ts65Dn mice and treated euploid mice. 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; Veh, vehicle. 

 

Effect of 7,8-DHF on hippocampus-dependent learning and memory 

At the age of P45 (an age approximately corresponding to adolescence), mice can 

be behaviorally tested with tasks that explore hippocampus-dependent learning 

and memory (Stagni et al., 2016). In order to establish whether the 

neuroanatomical effects of 7,8-DHF are functionally effective, we treated euploid 

and Ts65Dn mice from P3 to P45-50 and examined their behavior with the Morris 

Water Maze (MWM) test, a test that is classically used in trisomic mice to assess 

the effects of genotype and/or treatment on memory.  

The learning phase of the test lasted 5 days and on day six mice were subjected 

to the probe test in order to evaluate spatial memory. For the learning phase, the 
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following variables were evaluated: escape latency, time in periphery, percentage 

of time in periphery, path length, proximity, and swimming speed. We carried 

out a three-way mixed ANOVA for all variables followed by post-hoc Fisher 

LSD test. Results of ANOVA are reported hereafter and results of the post-hoc 

test are summarized in Table 1. 

A three-way mixed ANOVA on escape latency, with genotype and treatment as 

grouping factors and day as a repeated measure revealed no effect of genotype x 

treatment x day [F(4,228) = 1.52, p = 0.196]. We found a genotype x day 

interaction [F(4,228) = 3.10, p = 0.016], a treatment x day interaction [F(4,228) 

= 2.77, p = 0.028], no genotype x treatment interaction [F(1,57) = 0.03, p = 

0.874], a main effect of genotype [F(1,57) = 42.58, p ≤ 0.001], a main effect of 

treatment [F(1,57) = 10.14, p = 0.002], and a main effect of day [F(4,228) = 

21.75, p ≤ 0.001]. While euploid mice exhibited a fast learning improvement with 

time, untreated Ts65Dn mice exhibited a very scarce learning improvement and 

the latency to reach the platform did not decrease throughout the test (Fig. 7A, 

Table 1). In contrast, Ts65Dn mice treated with 7,8-DHF showed a learning 

improvement and, save for day 3, their performance was not statistically different 

from that of untreated euploid mice (Fig. 7A, Table 1). In euploid mice treated 

with 7,8-DHF the latency was reduced in comparison with that of untreated 

euploid mice (Fig. 7A), although the difference was statistically significant on 

day 2 only (Table 1).  

A three-way mixed ANOVA on the time spent at the periphery zone 

(thigmotaxis), with genotype and treatment as grouping factors and day as a 

repeated measure revealed an effect of genotype x treatment x day [F(4,228) = 

2.88, p = 0.023]. We found no genotype x day interaction [F(4,228) = 0.99, p = 

0.412], a treatment x day interaction [F(4,228) = 3.31, p = 0.012], no genotype x 

treatment interaction [F(1,57) = 0.001, p = 0.992], a main effect of genotype 

[F(1,57) = 19.63, p ≤ 0.001], a main effect of treatment [F(1,57) = 8.07, p = 
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0.006], and a main effect of day [F(4,228) = 27.72, p ≤ 0.001]. A post-hoc Fisher 

LSD test showed that while untreated Ts65Dn mice spent more time at the 

periphery thigmotaxis than untreated euploid mice, Ts65Dn mice treated with 

7,8-DHF spent a similar time as euploid mice (Fig. 7B, Table 1), suggesting an 

improvement in searching strategy. A reduction in thigmotaxis was also shown 

by euploid mice treated with 7,8-DHF. 

A three-way mixed ANOVA on the percentage of time spent at the periphery, 

with genotype and treatment as grouping factors and day as a repeated measure 

revealed an effect of genotype x treatment x day [F(4,228) = 3.01, p = 0.019]. 

We found a genotype x day interaction [F(4,228) = 2.47, p = 0.045], a treatment 

x day interaction [F(4,228) = 7.76, p ≤ 0.001], no genotype x treatment 

interaction [F(1,57) = 1.48, p = 0.229], a main effect of genotype [F(1,57) = 

11.71, p = 0.001], a main effect of treatment [F(1,57) = 8.04, p = 0.006], and a 

main effect of day [F(4,228) = 23.88, p ≤ 0.001]. Post-hoc Fisher LSD test 

showed that the time spent at the periphery by untreated Ts65Dn mice, expressed 

as percentage of the total latency, was similar to that of untreated euploid mice 

(Fig. 7C, Table 1). This means that the proportion of time spent at the periphery 

and outside the periphery was similar in euploid and Ts65Dn mice. Since in 

Ts65Dn mice the total latency to reach the platform was longer than in euploid 

mice, this means that Ts65Dn mice spent more time at the periphery as well as 

swimming outside the periphery, which implies that their longer escape latency 

can be attributed to both higher thigmotaxis levels and poorer spatial learning. In 

treated Ts65Dn mice the percentage of time in thigmotaxis underwent a reduction 

in comparison with their untreated counterparts (Fig. 7C, Table 1), suggesting an 

improvement in spatial learning. 

A three-way mixed ANOVA on path length, with genotype and treatment as 

grouping factors and day as a repeated measure revealed no effect of genotype x 

treatment x day [F(4,228) = 2.09, p = 0.082]. We found a genotype x day 
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interaction [F(4,228) = 7.80, p ≤ 0.001], no treatment x day interaction [F(4,228) 

= 0.54 p = 0.707], no genotype x treatment interaction [F(1,57) = 0.05, p = 0.819], 

no main effect of genotype, no main effect of treatment but a main effect of day 

[F(4,228) = 43.74, p ≤ 0.001]. In all groups, the path length decreased from day 

1 to day 5 (Fig. 7D). In untreated Ts65Dn mice, the reduction was smaller than 

in untreated euploid mice and on day 5 their path length was significantly larger 

in comparison with untreated euploid mice (Fig. 7D, Table 1). In contrast, on day 

5 the path length of treated Ts65Dn mice was shorter in comparison with their 

untreated counterparts and equal to that of treated and untreated euploid mice, 

suggesting an improvement in searching strategy.  

A three-way mixed ANOVA on proximity to the former platform position 

(Gallagher’s test; proximity), with genotype and treatment as grouping factors 

and day as a repeated measure revealed an effect of genotype x treatment x day 

[F(4,228) = 2.59, p = 0.038]. We found a genotype x day interaction [F(4,228) = 

3.93, p = 0.004], a treatment x day interaction [F(4,228) = 4.79, p ≤ 0.001], no 

genotype x treatment interaction [F(1,57) = 1.12, p = 0.295], a main effect of 

genotype [F(1,57) = 9.66, p = 0.003], a main effect of treatment [F(1,57) = 12.91, 

p = 0.001], and a main effect of day [F(4,228) = 13.39, p ≤ 0.001]. Fig. 7E shows 

that while in untreated euploid mice the proximity to the platform position 

increased from day 1 to day 5, untreated Ts65Dn mice underwent no 

improvement. In contrast treated Ts65Dn mice underwent an improvement and 

on day 5 their proximity was significantly larger than their untreated counterparts 

and similar to that of untreated and treated euploid mice (Fig. 7E, Table 1).  

A three-way mixed ANOVA on swimming speed, with genotype and treatment 

as grouping factors and day as a repeated measure revealed an effect of genotype 

x treatment x day [F(4,228) = 3.20, p = 0.014]. We found no genotype x day 

interaction [F(4,228) = 0.71, p = 0.584] , no treatment x day interaction [F(4,228) 

= 1.98, p = 0.098], no genotype x treatment interaction [F(1,57) = 0.09, p = 
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0.760], a main effect of genotype [F(1,57) = 5.27, p = 0.025], no main effect of 

treatment, but a main effect of day [F(4,228) = 20.05, p ≤ 0.001]. A post-hoc 

Fisher LSD test showed that in untreated Ts65Dn mice the swimming speed was 

similar to that of untreated euploid mice and treated euploid and Ts65Dn mice 

throughout the learning phase (Fig. 7F, Table 1), suggesting that their longer 

escape latency was not due to speed reduction. Treated Ts65Dn mice had a 

reduced speed in comparison with untreated euploid mice on day 1, 2, and 3 but 

similar to that of euploid mice in days 4 and 5, suggesting that their reduced 

escape latency was not due to an improvement in swimming speed. Treated 

euploid mice had a reduced speed in comparison with untreated euploid mice on 

day 1, but a similar speed on days 2-5 (Fig. 7F, Table 1).   

In the probe test, we considered the following parameters as an index of spatial 

memory: i) latency to enter the former platform zone (latency), ii) frequency of 

entrances in the former quadrant (frequency), iii) proximity to the former 

platform position (Gallagher’s test; proximity), iv) percentage of time spent at 

the periphery (thigmotaxis); v) swimming speed; vi) percentage of time spent in 

each quadrant. A two-way ANOVA on the latency showed no genotype x 

treatment interaction [F(1,57) = 0.87, p = 0.356], but a main effect of genotype 

[F(1,57) = 10.24, p = 0.002] and a main effect of treatment [F(1,57) = 4.60, p = 

0.036]. Post-hoc Fisher LSD test showed that untreated Ts65Dn mice exhibited 

a larger latency than euploid mice and that treatment caused a notable reduction 

in their latency that became similar to that of untreated euploid mice (Fig. 8A). 

A two-way ANOVA on the frequency showed no genotype x treatment 

interaction [F(1,57) = 0.001, p = 0.992], but a main effect of genotype [F(1,57) = 

10.06, p = 0.002] and a main effect of treatment [F(1,57) = 7.46, p = 0.008]. Post-

hoc Fisher LSD test showed that untreated Ts65Dn mice exhibited a reduced 

frequency of entrances than euploid mice, although the difference was only 

marginally significant. In treated Ts65Dn mice there was a notable increase in 
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the frequency that became similar to that of untreated euploid mice (Fig. 8B), 

although this effects was only marginally significant (Supplementary Table 7). A 

large increase in the frequency of entrances took place in treated euploid mice 

(Fig. 8B). This effect is in line with the reduction in the percentage of time they 

spent at the periphery (Fig. 8F). A two-way ANOVA on the proximity showed 

no genotype x treatment interaction [F(1,57) = 1.60, p = 0.211], but a main effect 

of genotype [F(1,57) = 4.81, p = 0.032] and a main effect of treatment [F(1,57) = 

7.05, p = 0.010]. Post-hoc Fisher LSD test showed that untreated Ts65Dn mice 

swam at a larger distance from the former platform zone in comparison with 

untreated euploid mice (Fig. 8C). Treated Ts65Dn mice swam closer to the 

former platform zone and their performance became similar to that of untreated 

euploid mice (Fig. 8C).   

A two-way ANOVA on the percentage of time spent at the periphery showed no 

genotype x treatment interaction [F(1,57) = 0.62, p = 0.436], no main effect of 

genotype but a main effect of treatment [F(1,57) = 12.03, p = 0.001]. Post-hoc 

Fisher LSD test showed that in untreated Ts65Dn mice the percentage of time 

spent at the periphery was similar to that of untreated euploid mice (Fig. 8D). 

This indicates that Ts65Dn mice spent the same proportion of time in and outside 

the periphery as euploid mice and that their longer escape latency (Fig. 8A) can 

be attributed both to higher thigmotaxis levels and poorer spatial memory. In 

treated Ts65Dn mice the percentage of time spent in the periphery was reduced 

in comparison with their untreated counterparts mice (Fig. 8D), suggesting that 

improvement in thigmotaxis contributes to the shorter latency to reach the former 

platform zone. A reduction in the percentage of time in the periphery was also 

exhibited by treated vs. untreated euploid mice (Fig. 8D). 

A two-way ANOVA on the swimming speed showed no genotype x treatment 

interaction [F(1,57) = 0.44, p = 0.511], no main effect of genotype and no main 
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effect of treatment and post-hoc Fisher LSD test showed no differences between 

groups (Fig. 8E). 

A one-way ANOVA on the percentage of time spent in each quadrant for each 

experimental group showed a significant effect of quadrant in untreated euploid 

mice [F(3,60) = 4.99, p = 0.004], treated euploid mice [F(3,60) = 12.20, p ≤ 

0.001], and treated Ts65Dn mice [F(3,56) = 4.15, p = 0.010], but no effect of 

quadrant in untreated Ts65Dn mice. Post-hoc Fisher LSD test showed that 

untreated Ts65Dn mice exhibited no differences in the time spent in the former 

platform quadrant in comparison with the other quadrants (Fig. 8F). In contrast, 

treated Ts65Dn mice spent more time in the former platform quadrant, similarly 

to untreated and treated euploid mice (Fig.8F), suggesting a positive impact of 

treatment on spatial memory. 

Taken together, these results are in agreement with a number of studies showing 

that Ts65Dn mice are impaired in spatial learning and memory. In treated 

Ts65Dn mice, the parameters of the learning phase tended to ameliorate day by 

day, although not to a significant level, but at day 5 the performance of Ts65Dn 

mice underwent a significant improvement in comparison with their untreated 

counterparts and was similar to that of untreated euploid mice. Importantly, in 

the probe test the behavior of treated Ts65Dn mice was similar to that of untreated 

euploid mice suggesting memory restoration. 
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Table 2. Learning phase of the Morris Water Maze. p values of the Fisher LSD test for the 

indicated variables. 

 

The numbers in bold correspond to statistically significant differences. Abbreviations: 7,8-DHF, 

7,8-dihydroxyflavone; D, day; Eu, euploid; sec, seconds; Ts, Ts65Dn; Veh, vehicle 
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Fig. 7. Effect of treatment with 7,8-DHF on spatial learning in Ts65Dn and euploid mice. 

Mice received either vehicle or 7,8-DHF in the period P3-P45-50 and were behaviorally tested 

with the MWM starting from 6 days before reaching 45-50 days of age (untreated euploid mice: 

n=16; untreated Ts65Dn mice: n=14; treated euploid mice: n=16; treated Ts65Dn mice: n=15). 

The curves in (A-F) report data of euploid mice that received either vehicle (empty circle) or 7,8-

DHF (filled circle) and Ts65Dn mice that received either vehicle (empty square) or 7,8-DHF 

(filled square). A-E: Learning phase of the MWM evaluated as latency to reach the platform (A), 

time spent at the periphery (thigmotaxis) (B), percentage of time spent at the periphery (C), path 

length (D), and proximity to the platform zone (E). F: Swimming speed. B-D: Values represent 

mean  SE. Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; sec, seconds. 
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Fig. 8. Effect of treatment with 7,8-DHF on spatial memory in Ts65Dn and euploid mice. 

Spatial memory was assessed in the probe test after spatial learning (same mice as in Fig. 7). In 

the probe test, memory was assessed as latency to reach the former platform zone (A), number of 

crossings (frequency) over the former platform quadrant (B), proximity to the former platform 

zone (C), percentage of time spent at the periphery (D), percentage of time spent in quadrants (F). 

E: Swimming speed during the probe test. Values represent mean  SE. * p ≤ 0.05; ** p ≤ 0.01; 

*** p ≤ 0.001; (Fisher LSD test after ANOVA). Black asterisks in the gray bar indicate a 

difference between untreated Ts65Dn mice and treated euploid mice; white asterisks in the black 

bar indicate a difference between treated Ts65Dn mice and treated euploid mice. The symbol § 
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in (F) indicates a difference in comparison with the former platform quadrant. § p ≤ 0.05; §§ p ≤ 

0.01; §§§ p ≤ 0.001; (Fisher LSD test after One Way ANOVA). Abbreviations: 7,8-DHF, 7,8-

dihydroxyflavone; Eu, euploid; sec, seconds. 

 

DISCUSSION 

 

This study shows that treatment with a BDNF mimetic restores hippocampal 

neurogenesis, dendritic spine density and largely improves behavior. It must be 

observed that the Ts65Dn mouse is trisomic for at least 55% of HSA21 

orthologous protein-coding genes, but it lacks the remaining ~45%. Moreover, it 

bears 50 protein-coding genes that are not orthologs for HSA21 genes, a segment 

that is an artifact of the method used in its construction (Duchon et al., 2011; 

Reinholdt et al., 2011). Although the Ts65Dn mouse shows genetic limitations, 

it is still the most popular choice among DS models because it recapitulates many 

aspects of the human condition, including cytoarchitectural abnormalities in 

many brain regions and deficits in learning and memory (see (Bartesaghi et al., 

2011; Rueda et al., 2012; Gardiner, 2015)). Moreover, the Ts65Dn mouse is the 

only DS model that has been used in preclinical evaluation of drugs for learning 

and memory (see (Gardiner, 2015)). Unfortunately, a perfect mouse model of DS 

does not presently exist although intense efforts are currently underway 

(Antonarakis, 2017). We hope that current results in the Ts65Dn mouse model 

may prompt further studies in other models of DS.  

 

Treatment with the BDNF mimetic 7,8-DHF positively impacts the major 

defects of hippocampal development in Ts65Dn mice 

At variance with adult Ts65Dn mice (Bimonte-Nelson et al., 2003; Fukuda et al., 

2010; Begenisic et al., 2015), we found here no reduction in BDNF protein levels 

in the hippocampus of P15 Ts65Dn mice, suggesting that BDNF expression may 

be developmentally regulated. Although neonate Ts65Dn mice exhibited similar 
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BDNF levels as those of euploid mice, treatment with the BDNF mimetic 7,8-

DHF resulted in the recovery of the major trisomy-linked developmental defects, 

i.e. neurogenesis reduction and dendritic pathology, which is in line with the key 

role played by BDNF in brain development.  

In particular, we found that treatment with 7,8-DHF increased the number of 

dividing cells in the SGZ of Ts65Dn mice. While in untreated Ts65Dn mice the 

number of proliferating cells was -30% in comparison with untreated euploid 

mice, in treated Ts65Dn mice their number became -13% (see Fig. 3C), 

indicating that, although 7,8-DHF does not fully rescue NPC proliferation, it 

causes a large improvement. It is of interest to observe that in cultures of NPCs 

7,8-DHF failed to increase cell proliferation (Fig. 1B), although it induced a 

robust effect on differentiation and maturation. This suggests that 7,8-DHF does 

not directly induce pro-proliferative signals in NPCs but that its pro-proliferative 

effects require the presence of other elements of the neurogenic niche (non-cell 

autonomous effect). Importantly, although the number of dividing cells in the 

SGZ of Ts65Dn mice was not fully rescued, total granule cell number was fully 

restored. This result may be explained by an effect of treatment on the process of 

phenotype acquisition, with a shift in the relative number of cells destined to 

become neurons. This conclusion is in line with the observation that in cultures 

of trisomic NPCs treatment largely increased the number of trisomic cells that 

differentiated into neurons (Fig. 1C). 

We additionally found that 7,8-DHF favors the process of neurite elongation in 

trisomic neurons of both the SVZ and SGZ, indicating a positive impact of 

treatment on the process of neuron maturation. The granule neurons of Ts65Dn 

mice aged 15 days exhibited spine density reduction, indicating impairment in 

the process of spinogenesis from the earliest phases of hippocampal 

development. As each dendritic spine receives at least one excitatory input, a 

reduction in the number of spines of granule neurons implies a reduction in the 
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number of excitatory terminals and, consequently, reduced complexity of 

hippocampal circuitry. Evaluation of the levels of the presynaptic protein SYN 

in Ts65Dn mice showed that the counterpart of the spine density reduction was a 

reduction in SYN levels. Treatment with 7,8-DHF fully restored the reduced 

number of dendritic spines of Ts65Dn mice as well as SYN levels, suggesting a 

positive impact on the overall connectivity of the DG.  

Conflicting results are reported in the literature regarding the pro-proliferative 

effect of the BDNF/TrkB system in different species and cellular systems 

(Foltran and Diaz, 2016; Vilar & Mira, 2016). Many studies suggest that BDNF 

fosters neurogenesis and neuron maturation but not proliferation of NPCs. Our 

results suggest that in Ts65Dn mice activation of the TrkB receptor enhances 

NPCs proliferation, in addition to neurogenesis and neuron maturation. Although 

the effect on proliferation was less prominent than the effect on neurogenesis and 

neuron maturation, the outcome was restoration of the defective cellularity in the 

granule layer of the DG. It is of interest to observe that some of the neurogenesis-

enhancing therapies attempted so far in mouse models of DS may present caveats 

for human use due to the risk of uncontrolled proliferation in peripheral tissues 

and, thus, a cancerogenic effect (Bartesaghi et al., 2011; Gardiner, 2015). The 

finding that 7,8-DHF, in spite of its relatively moderate pro-proliferative activity, 

is able to restore the final number of granule neurons may render this molecule a 

good candidate for therapy in DS.  

 

Treatment with 7,8-DHF rescues hippocampus-dependent behavior in 

Ts65Dn mice 

Hippocampus-dependent learning and memory impairment is a consistent feature 

of DS and the Ts65Dn mouse model (Demas et al., 1996; Carlesimo et al., 1997; 

Vicari et al., 2000; Belichenko et al., 2007; Salehi et al., 2009). This defect is 

attributable to hippocampal hypocellularity, altered neuronal maturation and 
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altered connectivity. The granule cells of the DG are the first element of the 

hippocampal trisynaptic circuit, a circuit whose function is fundamental for long-

term memory. The dendrites of the granule cells receive their major input from 

the entorhinal cortex that represents an interface between the hippocampal 

formation and the rest of the brain. Signals from polymodal association cortices 

sent by the entorhinal cortex to the DG are processed by the trisynaptic circuit 

and then sent back to the entorhinal cortex. We found here that in Ts65Dn mice 

hippocampus-dependent learning and memory were rescued after treatment with 

7,8-DHF, indicating that the effects of treatment on the hippocampal defects that 

characterize the trisomic condition translate into a behavioral benefit. It remains 

to be established whether after treatment cessation these effects are retained at 

further life stages.  

 

Activation of the TrkB receptor by 7,8-DHF enhances the activity of TrkB 

receptor-dependent signaling 

In the hippocampus of P15 Ts65Dn mice we found normal levels of BDNF and 

of TrkB-FL, and TrkB-T1 receptors. Results showed reduced levels of BDNF 

and TrkB-FL receptor in Ts65Dn mice after thirteen days of treatment with 7,8-

DHF, suggesting a compensatory reduction of their transcription and/or an 

increase in their degradation. There is evidence that treatment with BDNF or the 

BDNF mimetic 7,8-DHF elicits TrkB receptor ubiquitination and degradation 

(Liu et al., 2016). This mechanism may account for the reduction in the protein 

levels of the TrkB receptor observed here in treated Ts65Dn mice. The absence 

of a similar reduction in treated euploid mice suggests that the mechanisms 

underlying degradation of the TrkB receptor may be more powerful in the 

trisomic brain. It must be noted that, although treatment induced an overall 

reduction in TrkB receptor levels, its phosphorylation increased, indicating that 

treatment enhances TrkB-dependent signaling.  
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The cellular effects of the BDNF/TrkB system are mediated by three major 

pathways, among which the RAS/MEK/ERK pathway appears to be involved in 

key developmental processes such as differentiation and survival (Arevalo & Wu, 

2006). We found that in treated Ts65Dn mice there was an increase in the levels 

of p-ERK1 and p-ERK2, which is consistent with the treatment-induced 

phosphorylation increase of the TrkB receptor. ERK activity is required for cell 

proliferation (Lefloch et al., 2008), and there is evidence that the BDNF/TrkB 

signaling-induced increase in spine density of hippocampal pyramidal neurons 

requires ERK1/2 activation (Alonso et al., 2004). This evidence strongly suggests 

that the increased activity of ERK1/2 following treatment with 7,8-DHF may 

represent a key contributor to the rescue of the key processes of hippocampal 

development in Ts65Dn mice.  

Although much is now known regarding the role of ERK1/2, the mechanisms 

underlying their expression still need to be elucidated (Busca et al., 2016). We 

found here that treatment with 7,8-DHF increased both ERK1 and ERK2 levels. 

A recent study shows that the ratio between total ERK1 and ERK2 protein levels 

in different mouse brain regions is about 1:4, that the same ratio holds for p-

ERK1/2 and that derangement of these ratios has adverse effects on the brain 

(Lefloch et al., 2008). Importantly, in Ts65Dn mice, treatment caused an increase 

in ERK1/2 and p-ERK1/2 but their ratios remained similar to those of their 

untreated counterparts. This indicates that treatment enhances the activity of 

ERK1/2 without disrupting the important balance between the two ERK 

isoforms. 

 

Treatment with 7,8-DHF has no adverse effects on viability and growth of 

Ts65Dn mice  

Previous evidence showed that chronic treatment with 7,8-DHF has no toxic 

effects (Liu et al., 2016). In agreement with this evidence, we found no effect of 
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treatment on mice viability. There is evidence that in rodents treatment with 

BDNF causes a reduction in food intake and that activation of muscular TrkB by 

7,8-DHF regulates energy metabolism in muscles (Gray et al., 2006; Chan et al., 

2015). Conversely, rodent models with a reduction in BDNF/TrkB signaling 

exhibit hyperphagia and obesity (Gray et al., 2006). We found that a relatively 

short treatment with 7,8-DHF (13 days: from P3 to P15) as well as a more 

prolonged treatment (42-47 days: from P3 to P45-50) did not cause a body weight 

reduction in Ts65Dn mice. In addition, we did not found an adverse effect of 

treatment on the brain weight of Ts65Dn mice, but rather, a positive effect on 

brain growth. From these findings it appears that a chronic treatment with 7,8-

DHF has a safe profile on the general health of Ts65Dn mice.  

 

Conclusions 

7,8-DHF is a molecule that binds to the TrkB receptor and causes its dimerization 

and autophosphorylation, thereby mimicking the actions of BDNF. This binding 

replicates many actions of BDNF such as those on neurogenesis, neuron survival, 

learning and memory, and synaptogenesis. In view of these effects the use of 7,8-

DHF in models of various brain disorders results in therapeutic efficacy (Liu et 

al., 2016). Our study provides novel evidence that treatment with 7,8-DHF during 

the neonatal period restores the major trisomy-linked neurodevelopmental 

defects in the hippocampus of a mouse model of DS.  

Neurogenesis in the hippocampal formation, one of the most important brain 

regions involved in pattern separation/completion and memory formation (Rolls, 

2016), is severely disrupted in fetuses with DS (Contestabile et al., 2007; Guidi 

et al., 2008). Neurogenesis impairment is likely to account for hippocampal 

hypotrophy and for impairment of hippocampus-dependent memory functions in 

children with DS (Vicari et al., 2000). Reduced BDNF levels have been reported 

in the brains of fetuses with DS (Guedj et al., 2009; Toiber et al., 2010). In view 
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of the crucial role played by this neurotrophin in key developmental processes 

(neurogenesis and neuron maturation), it is likely that impairment of BDNF/TrkB 

receptor signaling plays a significant role in the neurodevelopmental alterations 

that characterize DS.  

The current results suggest that therapy with the BDNF mimetic 7,8-DHF may 

represent a possible strategy for improving brain development and memory in 

children, and possibly in adults, with DS. In spite of the intrinsic limitations of 

mouse models, our work suggests that it is possible to restore trisomy-linked 

developmental deficits by pharmacologically targeting the TrkB receptor with a 

naturally occurring flavonoid. As pointed out in the Introduction, the problem of 

pharmacological interventions is that they are, in most cases, Janus-faced. The 

positive effects of many of the drugs used so far in DS models are the “good face” 

of Janus but the “bad face” deals with the far-from-irrelevant issue of safety. 

Flavonoids are compounds naturally present in vegetables and fruits (Rendeiro 

et al., 2015) and exert beneficial effects on the brain in health and disease 

(Spencer, 2008; Williams & Spencer, 2012). Considering that treatment with 7,8-

DHF has no toxic effects in wild type mice (Liu et al., 2013) and in Ts65Dn mice 

(current study), our results suggest that early treatment with 7,8-DHF may 

represent a therapeutic strategy alternative to other drugs and with a good 

translational potential for improving brain development in DS.  
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ABSTRACT 

Individuals with Down syndrome (DS), a genetic condition due to triplication of 

Chromosome 21, are characterized by intellectual disability that worsens with 

age. Since impairment of neurogenesis and dendritic maturation are very likely 

key determinants of intellectual disability in DS, interventions targeted to these 

defects may translate into a behavioral benefit. While most of the neurogenesis 

enhancers tested so far in DS mouse models may pose some caveats due to 

possible side effects, substances naturally present in the human diet may be 

regarded as therapeutic tools with a high translational impact. Linoleic acid and 

oleic acid are major constituents of corn oil that positively affect neurogenesis 

and neuron maturation. Based on these premises, the goal of the current study 

was to establish whether treatment with corn oil improves hippocampal 

neurogenesis and hippocampus-dependent memory in the Ts65Dn model of DS. 

Four-month-old Ts65Dn and euploid mice were treated with saline or corn oil for 

30 days. Evaluation of behavior at the end of treatment showed that Ts65Dn mice 

treated with corn oil underwent a large improvement in hippocampus-dependent 

learning and memory. Evaluation of neurogenesis and dendritogenesis showed 

that in treated Ts65Dn mice the number of new granule cells of the hippocampal 

dentate gyrus and their dendritic pattern became similar to those of euploid mice. 

In addition, treated Ts65Dn mice underwent an increase in body and brain 

weight. This study shows for the first time that fatty acids have a positive impact 

on the brain of the Ts65Dn mouse model of DS. These results suggest that a diet 

that is rich in fatty acids may exert beneficial effects on cognitive performance 

in individuals with DS without causing adverse effects. 

  

Key Words: Down syndrome; intellectual disability; Ts65Dn model; 
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hippocampus; neurogenesis; dendrites; memory 

 

INTRODUCTION 

 

Triplication of Chromosome 21 causes Down syndrome (DS), a pathology 

characterized by brain hypotrophy and disability in several cognitive domains, 

including explicit memory. Since individuals with DS above 40 years of age are 

at high risk for the onset of Alzheimer’s disease, intellectual disability may 

transform into dementia (Hartley et al., 2015). Widespread impairment of neural 

precursor proliferation starting from fetal life stages is a key hallmark of DS 

(Haydar and Reeves, 2012; Stagni et al., 2017a). Moreover, the DS brain is 

characterized by severe impairment in dendritic maturation (Bartesaghi et al., 

2011; Benavides-Piccione et al., 2004). Both these defects are thought to be key 

determinants of cognitive impairment in DS. No effective pharmacotherapies 

currently exist for intellectual disability in individuals with DS. Ideally, therapies 

to improve brain development should be performed at early life stages. Yet, since 

neurons of the hippocampal dentate gyrus are continuously generated throughout 

life, interventions that are able to improve hippocampal neurogenesis may also 

have a positive impact on hippocampus-dependent learning and memory at adult 

life stages and could possibly delay the onset of Alzheimer’s disease.  

Among the various pharmacotherapies attempted in DS mouse models some of 

them proved to be effective in improving hippocampus-dependent learning and 

memory (Bartesaghi et al., 2011; Costa & Scott-McKean, 2013; Gardiner, 2015; 

Stagni et al., 2015). It should be noted, however, that some of the drugs used may 

also cause side effects, which diminishes their translational impact. For instance, 

lithium may impair renal function and inhibitors of GABAA receptors may have 

pro-convulsant effects. Ideally, the treatment of choice should be effective, safe 

and well tolerated. In this context, substances that are naturally present in the 
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human diet should be regarded as therapeutic tools with a potentially strong 

translational impact.  

There is evidence that in addition to their role in metabolism, fatty acids can serve 

as signaling molecules by affecting intra- and extracellular receptor systems, 

either directly or after conversion to specific fatty acid derivatives (Georgiadi and 

Kersten, 2012). Poly- and/or mono-unsaturated fatty acids (PUFAs and MUFAs, 

respectively) have been implicated as critical nutritional factors for proper neural 

development and function (Gordon, 1997) and fatty acids appear to favor brain 

development and ameliorate cognitive functions in normal and diseased 

conditions (Hussain et al., 2013). Long chain poly-unsaturated fatty acids (LC-

PUFAs), which make up 20% of the dry weight of the brain, are critical for 

healthy brain development and contribute to membrane structure and cytokine 

regulation. According to the position of the first double bond from the methyl 

end of the fatty acid chain, the most important PUFAs for humans can be divided 

into two families: n-6 (omega-6) and n-3 (omega-3) PUFAs. Linoleic acid (LA, 

18:2n-6) is the parent fatty acid of omega-6 PUFAs, and produces principally 

arachidonic acid (AA, 20:4n-6), whereas α-linolenic acid (ALA, 18:3n-3) is the 

parent fatty acid of omega-3 PUFAs, and gives rise mainly to eicosapentaenoic 

acid (20:5n-3). LA and ALA must be supplied by food because they cannot be 

synthesized by the human body and for this reason they are called essential fatty 

acids. Essential fatty acids and their metabolites, especially n-6 PUFA-derived 

mediators, have been shown to have profound effects on the proliferation of 

different stem cell types (Kang et al., 2014), including neural stem cells (Beltz et 

al., 2007; Maekawa et al., 2009; Sakayori et al., 2011; Tokuda et al., 2014). The 

observation that their deficiency alters neurogenesis (Coti Bertrand et al., 2006; 

Tang et al., 2016) highlights a possibly relevant role of n-6 PUFAs in the 

regulation of neurogenesis. The MUFA oleic acid (OA, C18:1n-9), which is the 

primary fatty acid in the white matter of the mammalian brain (O'Brien & 
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Sampson, 1965), has been shown to promote axonogenesis in the striatum during 

brain development (Polo-Hernandez et al., 2010) and to favor dendritic 

differentiation (Rodriguez-Rodriguez et al., 2004), suggesting a role of OA in 

neuron maturation. 

Corn oil, which is extracted from the germ of corn, contains a high percentage of 

both LA and OA. In view of the positive effects exerted by these fatty acids on 

neurogenesis and neuron maturation, the goal of the current study was to establish 

whether treatment with corn oil improves neurogenesis and neuron maturation in 

the hippocampal dentate gyrus of the Ts65Dn mouse model of DS and whether 

these effects are associated with a behavioral improvement.  

 

MATERIALS AND METHODS 

 

Mouse colony 

In order to obtain Ts65Dn mice, B6EiC3Sn a/ATs(17<16>)65Dn females were 

mated with C57BL/6JEiJ x C3H/HeSnJ (B6EiC3Sn) F1 hybrid males provided 

by Jackson Laboratories (Bar Harbor, ME, USA). We used the first generation 

of this breeding. The genotyping of the animals was carried out as previously 

described (Reinholdt et al., 2011). The day of birth was designated postnatal day 

zero. The mice were kept in a room with a 12:12 h light/dark cycle and had free 

access to water and food. All efforts were made to minimize animal suffering and 

to keep the number of animals used to a minimum. 

 

Experimental protocol 

A total of 47 male mice aged 4 months were used. Mice were i.p. injected every 

other day for one month with i) saline (0.9% NaCl; n=17 euploid and n=8 Ts65Dn 

mice) or ii) corn oil (Sigma: C8267; 10 µl/g; n=12 euploid and n=10 Ts65Dn 

mice). At the end of treatment, mice were behaviorally tested with the Morris 



  

 199 

Water Maze and Contextual Fear Conditioning tests. Because C3H/HeSnJ mice 

carry a recessive mutation that leads to retinal degeneration (Rd), animals were 

genotyped by standard PCR to screen out mice carrying this gene. Mice that did 

not carry a recessive mutation that leads to retinal degeneration entered the 

behavioral study. At the end of behavioral testing mice were killed, the brain was 

removed, fixed by immersion in PFA 4% and frozen. Mice injected with saline 

will be called hereafter control mice and mice injected with corn oil will be called 

treated mice. 

 

Histological procedures 

The frozen hemispheres were cut with a freezing microtome into 30-m-thick 

coronal sections that were serially collected in anti-freezing solution (30% 

glycerol; 30% ethylen-glycol; 0.02% sodium azide; PBS1X to volume). 

 

Immunohistochemistry 

For doublecortin (DCX) immunohistochemistry, one out of six free-floating 

sections from the hippocampal formation (n=10 sections) were permealized with 

0.4% Triton X-100 in KPBS and blocked for 2 h in 10% donkey serum in 0.4% 

Triton X-100 and KPBS. Sections were then incubated overnight at 4°C with a 

goat polyclonal anti-DCX antibody (Santa Cruz Biotechnology Cat# sc-8066, 

RRID: AB_2088494) diluted 1:100. Detection was performed with FITC-

conjugated anti-goat secondary antibody (Abcam Cat# ab6881, RRID: 

AB_955236) diluted 1:200.  

 

Measurements 

Number of DCX-positive cells 

Quantification of DCX-positive cells in the dentate gyrus was conducted in every 

6th section using a fluorescence microscope (Nikon Eclipse TE 2000-S inverted 



  

 200 

microscope; Nikon Corp., Kawasaki, Japan; objective: x 20, 0.50 NA; final 

magnification: x 200), equipped with a Nikon digital camera DS 2MBWc. DCX-

positive cells were counted along the whole length of the granule cell layer and 

their number was expressed as number of cells for 100 µm of linear length. 

Neuron sampling 

Series of sections (n=10) across the dentate gyrus were used for reconstruction 

of the dendritic tree of DCX-positive neurons. DCX-positive neurons were 

sampled in the upper blade. Only neurons with branches extending beyond the 

outer one half of the molecular layer were selected. The total number of sampled 

neurons was 4-7 per animal.  

Measurement of the dendritic tree  

The dendritic tree of DCX-positive cells was traced as previously described 

(Guidi et al., 2013). The operator starts with branches emerging from the cell 

soma and after having drawn the first parent branch goes on with all daughter 

branches of the next order in a centrifugal direction. For each neuron, we 

evaluated total dendritic length, total number of branches, number of branches of 

each order and mean branch length.  

 

Behavioral testing 

Morris Water Maze (MWM) 

The MWM test was used in order to examine hippocampus-dependent learning 

and memory. Mice were maintained in a room with reverse light/dark cycle. 

Animals were tested starting at 08.30-09.00am and before being tested were put 

in the behavior room for 1 h of habituation. Mice were trained in the MWM task 

to locate a hidden escape platform in a circular pool. The apparatus consisted of 

a large circular water tank (1.00 m diameter, 50 cm height) with a transparent 

round escape platform (10 cm2). The pool was virtually divided into four equal 

quadrants identified as Northeast, Northwest, Southeast, and Southwest. The 
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pool was filled with tap water at a temperature of 20-22ºC up to 0.5 cm above the 

top of the platform and the water was made opaque with milk. The platform was 

placed in the pool in a fixed position (in the middle of the Southwest quadrant). 

The pool was placed in a large room with intra- (squares, triangles, circles and 

stars) and extra-maze visual cues. A video camera was placed above the center 

of the pool and connected to a videotracking system (ANY-maze Behavioral 

tracking software 5.0, Wheat Lane Wood Dale, IL, U.S.A.). The MWM test was 

organized as follows. Days 1-8: learning sessions; day 9: probe test. During the 

learning phase mice were subjected to 4 trials on day one and to two blocks of 4 

trials separated by an interval of 45 minutes on days 2-8. Mice were released 

facing the wall of the pool randomly from the North, East, South, or West starting 

point and allowed to search for up to 60 s for the platform. If they reached the 

platform within this time they were left on the platform for 15 s, then they were 

returned to the home cage and tested again after 10 s. If mice did not reach the 

platform they were gently put on the platform, left there for 15 s and then returned 

to the home cage and tested again after 10 s. For the learning phase, we evaluated 

the latency to find the hidden platform, time in the periphery of the water tank 

(thigmotactic behavior), percentage of time in the periphery, path length, 

proximity to the platform, and swimming speed. Retention was assessed with one 

trial (probe trial), on the ninth day, 24 h after the last acquisition trial, using the 

same starting point for all mice. During this trial, the platform was removed from 

the tank. Mice were allowed to search for up to 60 s for the platform. For the 

probe trial, the latency of the first entrance in the trained platform zone, the 

frequency of entrances in the trained quadrant, the proximity to the trained 

platform position (Gallagher’s test), the percentage of time spent at the periphery 

(thigmotaxis), the swimming speed and the percentage of time spent in each 

quadrant were evaluated. All experimental sessions were carried out between 
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8.30am and 5.00pm.  

Contextual Fear Conditioning (CFC)  

CFC was performed the day after the MWM. The test occurred in 30 x 24 x 21 

cm operant chambers (Ugo Basile, Comerio VA, Italy). Each chamber was 

equipped with a stainless-steel rod floor through which a footshock could be 

administered, two stimulus lights, one house light, and a solenoid, all controlled 

by ANY-maze computer software (Behavioral tracking software 5.0, Wheat Lane 

Wood Dale, IL, U.S.A.). The chambers were located in a sound-isolated 

enclosure in the presence of red light. Mice were trained and tested on 2 

consecutive days (Comery et al., 2005). The training procedure consisted of 

placing a subject in a chamber and allowing exploration for 2 min. An auditory 

cue [74 dB, 2000 Hz clicking via the solenoid; conditioned stimulus (CS)] was 

presented for 15 s. A 2 s footshock [0.6 mAmp; unconditioned stimulus (US)] 

was administered for the final 2 s of the CS. The entire procedure was repeated 

three times and mice were removed from the chamber 30 s later. Twenty hours 

after training, mice were returned to the same chamber in which training occurred 

(context), and freezing behavior was recorded by the experimenter using time 

sampling (10 s intervals). Freezing was defined as lack of movement except that 

required for respiration. At the end of the 5 min context test, mice were returned 

to their home cage. Approximately 1 h later, freezing was recorded in a novel 

environment and in response to the cue. The novel environment consisted of 

modifications including an opaque Plexiglas divider diagonally bisecting the 

chamber, a Plexiglas floor, and decreased illumination. Mice were placed in the 

novel environment, and time sampling was used to score freezing for 3 min. The 

auditory cue (CS) was then presented for 3 min, and freezing was again scored. 

All phases of the test were recorded and immobility was detected by using the 

video tracking and analysis software ANY-maze (Behavioral tracking software 

5.0, Wheat Lane Wood Dale, IL, U.S.A.). Freezing scores for each subject were 
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expressed as a percentage for each portion of the test. Memory for the context 

(contextual memory) for each subject was obtained by subtracting the freezing 

percentage in the novel environment from that in the context. 

 

Cultures of subventricular zone neural progenitor cells (NPCs) 

Cells were isolated from the subventricular zone (SVZ) of newborn (age: 1-2 

days) euploid and Ts65Dn mice. Briefly, brains were removed, SVZ regions were 

isolated and individually collected in ice-cold PIPES buffer pH 7.4. After 

centrifugation, tissue was digested for 10 min at 37°C using Trypsin/EDTA 

0.25% (Life Technologies) aided by gentle mechanical dissociation. Cell 

suspension from each individual mouse was plated onto 25 cm2 cell-culture flask 

(Thermo Fisher Scientific) and cultured as floating neurospheres in medium 

containing basic fibroblast growth factor (bFGF, 10 ng/ml; Peprotech) and 

epidermal growth factor (EGF, 20 ng/ml; Peprotech) using an established 

protocol (Meneghini et al., 2014). Primary (Passage 1, P1) neurospheres were 

dissociated using StemproAccutase (Life Technologies) after 7 days in vitro 

(DIV), thereafter neurospheres were passaged every 5 DIV. For proliferation 

studies, neurospheres (P3-P12) were dissociated in a single cell suspension and 

plated onto NunclonTM Delta Surface 96-well plate (Thermo Fisher Scientific) at 

a density of 4×103 cells per well in DMEM/F-12 medium supplemented with 

B27, GlutamaxTM, heparin sodium salt (4 μg/ml; ACROS Organics), bFGF (10 

ng/ml), and 100 U/100 μg/ml Penicillin/Streptomycin (Life Technologies). NPC 

cultures were treated for 96 h with LA-BSA complex (0.1-100 µM, Sigma-

Aldrich), OA-BSA complex (0.1-100 µM, Sigma-Aldrich) and corresponding 

vehicle (BSA 3.3 mg/ml, Sigma-Aldrich). For antagonistic experiments, cells 

were treated with LA-BSA complex (100 µM) in presence of either GSK0660, a 

PPAR/ antagonist (0.1-10 µM, MCE), GW9662, a PPAR antagonist (0.01-30 

µM, MCE) and corresponding vehicle (DMSO 0.05 %- BSA 3.3 mg/ml). Lithium 
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chloride (LiCl, 2mM, Sigma-Aldrich) was used as positive control (Trazzi et al., 

2014). Cell proliferation was quantified as relative luminescence units (RLU) 

values using CellTiter-Glo viability assay reagent (Promega) on a Victor3-V plate 

reader (PerkinElmer). 

 

Statistical analysis 

Results are presented as mean ± standard error of the mean (SE). Data were 

analyzed with IBM SPSS 22.0 software. Before running statistical analyses, we 

checked data distribution and homogeneity of variances for each variable using 

the Shapiro-Wilk test and Levene’s test respectively. Since the in vitro data were 

not normally distributed, statistical analysis was carried out using Kruskal-Wallis 

test followed by Mann–Whitney U test for comparisons between different doses 

of either LA or OA and vehicle, between LiCl and vehicle and different 

concentrations of the PPAR/ or the PPAR antagonist and vehicle. A 

comparison between LA, OA, and LiCl was also carried out. Statistical analysis 

of the in vivo data was carried out using a two-way ANOVA with genotype 

(euploid, Ts65Dn) and treatment (saline, corn oil) as factors. Post hoc multiple 

comparisons were carried out using the Fisher Least Significant Difference 

(LSD) test. For the learning phase of MWM, statistical testing was performed 

using a three-way mixed ANOVA, with genotype and treatment as grouping 

factors and days as a repeated measure. For the probe test, save for the percentage 

of time spent in quadrants, we used a two-way ANOVA with genotype and 

treatment as factors followed by the Fisher LSD post hoc test. For the time spent 

in quadrants, we compared the percentage of time spent in the Northwest, 

Southeast, and Northeast quadrants with the percentage of time spent in the 

trained platform quadrant (Southwest) using a paired-sample t-test. Based on the 

“Box plot” tool available in SPSS Descriptive Statistics we excluded from each 

analysis the extremes, i.e. values that were larger than 3 times the IQ range [x ≥ 
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Q3 + 3 * (IQ); x ≤ Q1 – 3 * (IQ)]. A probability level of p ≤ 0.05 was considered 

to be statistically significant.  

 

RESULTS 

 

Effect of corn oil on body and brain weight 

A two-way ANOVA on body weight before treatment showed no genotype x 

treatment interaction, a significant main effects of genotype [F(1,43) = 12.25, p 

= 0.001] but no main effect of treatment. Before treatment, there was no body 

weight difference between Ts65Dn mice destined to be treated with vehicle and 

those destined to be treated with corn oil (Fig. 1A). Both groups had a reduced 

body weight in comparison with euploid mice destined to be treated with vehicle 

(Fig. 1A). A two-way ANOVA on body weight after treatment showed a 

genotype x treatment interaction [F(1,43) = 4.21, p = 0.046], a main effects of 

genotype [F(1,43) = 12.59, p = 0.001] and a main effect of treatment [F(1,43) = 

4.27, p = 0.045]. At the end of treatment, treated Ts65Dn mice had a body weight 

larger than control Ts65Dn mice and similar to that of control euploid mice (Fig. 

1B). In euploid mice, treatment had no effect on body weight (Fig. 1B). 

A two-way ANOVA on brain weight showed no genotype x treatment interaction 

and no main effect of genotype or treatment. Treatment with corn oil had no 

effect on the brain weight of either Ts65Dn or euploid mice in comparison with 

their control counterparts (Fig. 1C). Treated Ts65Dn mice, however, exhibited a 

significant increase in brain weight in comparison with treated euploid mice 

(Fig.1C). 
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Fig. 1. Effect of treatment with corn oil on the body and brain weight. 

A-C: Body weight before treatment (A) and body (B) and brain (C) weight after treatment (mean 

 SE) in grams of control euploid mice (n=17), control Ts65Dn mice (n=8), treated euploid mice 

(n=12) and treated Ts65Dn mice (n=10). * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test 

after two-way ANOVA). Abbreviation: CO, corn oil; Eu, euploid; Sal, saline. 

 

3.2. Effect of corn oil on learning and memory in Ts65Dn and euploid mice 

MWM test is classically used in mouse models of DS to assess hippocampus-

dependent learning and memory. For the learning phase, the following variables 

were evaluated: escape latency, time in periphery, percentage of time in 

periphery, path length, proximity. We additionally evaluated the swimming 

speed. We carried out a three-way mixed ANOVA for all variables followed by 

the post hoc Fisher LSD test. Results of ANOVA are reported hereafter and 

results of the post hoc test are summarized in Table 1. 

A three-way mixed ANOVA on escape latency, with genotype and treatment as 

grouping factors and day as a repeated measure revealed no effect of genotype x 
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treatment x day. We found a genotype x day interaction [F(7,301) = 5.64, p < 

0.001], a genotype x treatment interaction [F(1,43) = 10.30, p = 0.003], no 

treatment x day interaction, a main effect of genotype [F(1,43) = 40.65, p < 

0.001], a main effect of treatment [F(1,43) = 5.49, p = 0.024], and a main effect 

of day [F(7,301) = 45.62, p < 0.001]. While control euploid mice exhibited a fast 

learning improvement with time, in control Ts65Dn mice the latency to reach the 

platform did not decrease as the test progressed, indicating poor learning capacity 

(Fig. 2A, Table 1). In contrast, Ts65Dn mice treated with corn oil showed a large 

learning improvement in comparison with their control counterparts, although 

their escape latency did not attain the values of control euploid mice (Fig. 2A, 

Table 1). In euploid mice treated with corn oil the latency was similar to that of 

control euploid mice (Fig. 2A; Table 1).  

A three-way mixed ANOVA on the absolute time spent in the periphery zone 

(thigmotaxis), with genotype and treatment as grouping factors and day as a 

repeated measure revealed no effect of genotype x treatment x day. We found a 

genotype x day interaction [F(7,301) = 4.27, p < 0.001], a genotype x treatment 

interaction [F(1,43) = 10.01, p = 0.003], but no treatment x day interaction; a 

main effect of genotype [F(1,43) = 21.35, p < 0.001] was also found, as was a 

main effect of day [F(7,301) = 60.27, p < 0.001], while there was no main effect 

of treatment. A post hoc Fisher LSD test showed that, while control Ts65Dn mice 

spent more time in the periphery zone than control euploid mice, Ts65Dn mice 

treated with corn oil spent a similar time there as control euploid mice, save for 

days 4 and 7 (Fig. 2B, Table 1), suggesting an improvement in searching strategy. 

Euploid mice treated with corn oil showed no changes in thigmotaxis. 

A three-way mixed ANOVA on the percentage of time spent in the periphery 

zone, with genotype and treatment as grouping factors and day as a repeated 

measure, revealed no effect of genotype x treatment x day. We found a genotype 

x day interaction [F(7,301) = 2.17, p = 0.037], while neither a treatment x day 
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interaction nor a genotype x treatment interaction were present. There was a main 

effect of genotype [F(1,43) = 19.93, p < 0.001], no main effect of treatment; but 

a main effect of day [F(7,301) = 17.84, p < 0.001]. A post hoc Fisher LSD test 

showed that the time that control Ts65Dn mice spent in the periphery zone, 

expressed as a percentage of the total latency, was larger than that of control 

euploid mice (Fig. 2C, Table 1). In treated Ts65Dn mice the percentage of time 

in thigmotaxis underwent a reduction and on days 5-8 it was significantly reduced 

in comparison with their control counterparts (Fig. 2C, Table 1), suggesting an 

improvement in spatial learning. 

A three-way mixed ANOVA on path length, with genotype and treatment as 

grouping factors and day as a repeated measure revealed no effect of genotype x 

treatment x day. We found a genotype x day interaction [F(7,301) = 8.90, p < 

0.001], while there was no treatment x day interaction, or genotype x treatment 

interaction. A main effect of genotype [F(1,43) = 14.59, p < 0.001] was observed, 

while no main effect of treatment emerged. A main effect of day [F(7,301) = 

47.16, p < 0.001] was present. In all groups, the path length decreased from day 

4 to day 8 (Fig. 2D). A post hoc Fisher LSD test showed no differences in the 

path length between control and treated Ts65Dn mice or between control and 

treated euploid mice (Table 1).  

A three-way mixed ANOVA on proximity to the trained platform position 

(Gallagher’s test; proximity), with genotype and treatment as grouping factors 

and day as a repeated measure revealed no effect of genotype x treatment x day. 

We found a genotype x day interaction [F(7,301) = 3.78, p = 0.001], a treatment 

x day interaction [F(7,301) = 4.27, p < 0.001], no genotype x treatment, a main 

effect of genotype [F(1,43) = 18.85, p < 0.001], no main effect of treatment, but 

a main effect of day [F(7,301) = 23.58, p < 0.001]. Fig. 2E shows that, while in 

control euploid mice the distance from the platform position decreased from day 

1 to day 8, control Ts65Dn mice underwent no improvement. In contrast, treated 
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Ts65Dn mice underwent an improvement and on days 7-8 their distance from the 

platform was significantly reduced in comparison with their control counterparts; 

on days 5-8 their distance was similar to that of control euploid mice (Fig. 2E, 

Table 1).  

A two-way ANOVA on the mean swimming speed during the 8 days of the 

learning phase, with genotype and treatment as grouping factors showed a 

genotype x treatment interaction [F(1,43) = 9.43, p = 0.004], a main effect of 

genotype [F(1,43) = 4.96, p = 0.031], and a main effect of treatment [F(1,43) = 

6.22, p = 0.017]. A post hoc Fisher LSD test showed that in control Ts65Dn mice 

the swimming speed was reduced in comparison with control euploid mice. This 

difference disappeared in treated Ts65Dn mice (Fig. 2F).  

In the probe test, we considered the following parameters as an index of spatial 

memory: i) latency to enter the trained platform zone (latency); ii) frequency of 

entrances into the trained quadrant (frequency); iii) proximity to the trained 

platform position (Gallagher’s test; proximity); iv) percentage of time spent in 

the periphery zone (thigmotaxis); v) percentage of time spent in each quadrant. 

We additionally evaluated the swimming speed. A two-way ANOVA on the 

latency showed no genotype x treatment interaction, no main effect of genotype, 

and no main effect of treatment. A post hoc Fisher LSD test showed no significant 

differences between groups, although treated Ts65Dn mice underwent a latency 

reduction in comparison with their control counterparts (Fig. 3A). A two-way 

ANOVA on the frequency showed no genotype x treatment interaction, a main 

effect of genotype [F(1,43) = 4.55, p = 0.039] but no main effect of treatment. A 

post hoc Fisher LSD test showed that control Ts65Dn mice exhibited a reduced 

frequency of entrances in comparison with control euploid mice. In treated 

Ts65Dn mice there was an increase in the frequency that became similar to that 

of control euploid mice (Fig. 3B). A two-way ANOVA on the proximity showed 

no genotype x treatment interaction, while there was a main effect of genotype 



  

 210 

[F(1,43) = 18.37, p < 0.001] and a main effect of treatment [F(1,43) = 11.45, p = 

0.002]. A post hoc Fisher LSD test showed that control Ts65Dn mice swam at a 

greater distance from the trained platform zone in comparison with control 

euploid mice (Fig. 3C). Treated Ts65Dn mice swam closer to the trained platform 

zone and their performance became similar to that of control euploid mice (Fig. 

3C).  

A two-way ANOVA on the percentage of time spent in the periphery zone 

showed no genotype x treatment interaction, no main effect of genotype, and no 

main effect of treatment. A post hoc Fisher LSD test showed that in control 

Ts65Dn mice the percentage of time spent in the periphery zone was greater than 

that of control euploid mice (Fig. 3D). In treated Ts65Dn mice the percentage of 

time spent in the periphery zone was reduced in comparison with their control 

counterparts (Fig. 3D), suggesting restoration of the searching strategy. 

A two-way ANOVA on the swimming speed showed no genotype x treatment 

interaction. A main effect of genotype [F(1,43) = 6.34, p = 0.016] was found, but 

there was no main effect of treatment. A post hoc Fisher LSD test showed that in 

control Ts65Dn mice swimming speed was reduced in comparison with control 

euploid mice. This difference disappeared in treated Ts65Dn mice (Fig. 3E). 

A paired samples t-test showed that control Ts65Dn mice exhibited no 

differences in the time spent in the trained platform quadrant (SW) in comparison 

with the other quadrants (Fig. 3F). Treated Ts65Dn mice spent more time in the 

trained platform quadrant and in the Northwest (NW) quadrant, although these 

differences were not statistically significant. Control euploid mice spent 

marginally more time in the trained platform quadrant in comparison with the 

Northeast (NE) quadrant [t(16) = 2.07, p = 0.054] and the Southeast (SE) 

quadrant [t(16) = 2.06, p = 0.056] (Fig. 3F). Treated euploid mice spent 

significantly more time in the trained platform quadrant in comparison with the 
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SE [t(11) = 2.33, p = 0.040] and NE [t(11) = 3.38, p = 0.006] quadrants (Fig. 3F).  

The CFC paradigm is a test that allows for estimation of both hippocampus-

independent (cued) and hippocampus-dependent (contextual) memory (McHugh 

et al., 2007). A two-way ANOVA with genotype and treatment as grouping 

factors on the performance in the old context showed an interaction between 

genotype and treatment [F(1,41) = 5.42, p = 0.025] and no main effect of either 

genotype or treatment. A post hoc Fisher LSD test showed that control Ts56Dn 

mice showed a lower freezing behavior in the trained environment (old context) 

compared to euploid control mice (Fig. 4A), although the difference was not 

significant (p = 0.075). In treated Ts65Dn mice the freezing behavior 

significantly increased in comparison with their control counterparts (Fig. 4A), 

indicating improvement of memory for the context. No effect of treatment was 

found in euploid mice (Fig. 4A). A two-way ANOVA with genotype and 

treatment as factors on the performance in the cued session showed no interaction 

between genotype and treatment, no main effect of treatment but a main effect of 

genotype [F(1,43) = 5.57, p = 0.023]. A post hoc Fisher LSD test showed no 

difference between groups save for treated Ts65Dn mice that had a reduced 

freezing in comparison with control euploid mice (Fig. 4B). Freezing in the cued 

session is expressed as difference between the percentage of freezing during the 

sound (cue) delivery and the spontaneous freezing in the new context. We 

considered of interest to establish possible differences between groups in the 

amount of freezing in the new context and during sound delivery, respectively. 

Fig. 4C shows that in the new context both treated euploid and Ts65Dn mice 

exhibited a higher freezing in comparison with their control counterparts, 

although the difference was not statistically significant. During sound delivery, 

while control 

Ts65Dn mice exhibited a lower freezing in comparison with euploid mice, this 
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difference disappeared in treated Ts65Dn mice (Fig. 4D).  

 

Table 1. P values of the Fisher LSD test for the indicated variables. 

 

Abbreviations: D, day; Eu, euploid; CO, corn oil; Sal, saline; sec, seconds; Ts, Ts65Dn.  
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Fig. 2. Effect of treatment with corn oil on spatial learning in Ts65Dn and euploid mice. 

Control euploid mice (n=17), control Ts65Dn mice (n=8), treated euploid mice (n=12) and treated 

Ts65Dn mice (n=10) were subjected to the MWM starting from the first day after treatment 

cessation (i.e. at 5 months of age). A-E: Learning phase of the MWM evaluated as latency to 

reach the platform (A), time spent at the periphery (thigmotaxis) (B), percentage of time spent at 

the periphery (C), path length (D), and proximity to the platform zone (E). F: Mean swimming 

speed of the four experimental groups obtained by averaging the speed of individual trials during 

the whole 8 day-period of the learning phase. Results of the post hoc Fisher LSD test are reported 

in Table 1. B-D: Values represent mean  SE. Abbreviations: cm, centimeters; CO, Corn oil; Eu, 

euploid; m, meters; Sal, saline; sec, seconds.  
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Fig. 3. Effect of treatment with corn oil on spatial memory in Ts65Dn and euploid mice. 

Spatial memory was assessed in the probe test after spatial learning in control euploid mice 

(n=17), control Ts65Dn mice (n=8), treated euploid mice (n=12) and treated Ts65Dn mice 

(n=10). Mice are the same as in Fig. 2. In the probe test, memory was assessed as latency to reach 

the trained platform zone (A), number of crossings (frequency) over the trained platform quadrant 

(B), proximity to the trained platform zone (C), percentage of time spent at the periphery (D), 

percentage of time spent in quadrants (F). E: Swimming speed during the probe test. Values 
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represent mean  SE. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way 

ANOVA). The symbol § in (F) indicates a difference between each individual quadrant and the 

trained platform quadrant (see key on the left) for each experimental group. (§) p < 0.06; § p < 

0.05; §§ p < 0.01 (two-sample paired t-test). Abbreviations: cm, centimeters; CO, Corn oil; Eu, 

euploid; NE, north-east; NW, north-west; Sal, saline; sec, seconds; SE, south-east, SW, south-

west. 

 

 

Fig. 4. Effect of treatment with corn oil on contextual fear conditioning in Ts65Dn and 

euploid mice. 

Control euploid mice (n=17), control Ts65Dn mice (n=8), treated euploid mice (n=12) and treated 

Ts65Dn mice (n=10) were subjected to the CFC test. Based on exclusion criteria (see Methods) 

we excluded from the analysis of the old context session 1 control euploid mouse (yielding 16 

mice) and 1 control Ts65Dn mouse (yielding 7 mice). A-D: Percentage of freezing in the old 

context (A), in the cued session (B), in the new environment of the cued session (C) and in the 

cued session during sound delivery (D). * p < 0.05; ** p < 0.01 (Fisher LSD test after two-way 

ANOVA). Abbreviations: CO, Corn oil; Eu, euploid; Sal, saline. 
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Effect of corn oil on hippocampal neurogenesis in Ts65Dn and euploid mice 

Doublecortin (DCX) is a microtubule-associated phosphoprotein selectively 

located in the periphery of the soma with a pattern that overlaps microtubule 

distribution (Couillard-Despres et al., 2005). DCX is expressed in the cytoplasm 

of immature granule neurons during the period of neurite elongation (from one 

to four weeks after neuron birth), which allows evaluation of total number of new 

granule cells. In order to establish whether treatment with corn oil enhances 

neurogenesis in the hippocampal dentate gyrus, brain sections were subjected to 

immunohistochemistry for DCX. In agreement with the morphogenesis of the 

granule cell layer, DCX-positive cells were located in the innermost portion of 

the layer, close to the hilus (Fig. 5A). A two-way ANOVA on the number of 

DCX-positive cells showed no genotype x treatment interaction but a main effect 

of genotype [F(1,14) = 29.39, p < 0.001] and treatment [F(1,14) = 10.30, p = 

0.006]. In agreement with previous evidence, control Ts65Dn mice had a reduced 

number of new granule cells in comparison with their euploid counterparts (Fig. 

5A,B). In Ts65Dn mice treated with corn oil there was an increase in the number 

of new neurons in comparison with control Ts65Dn mice (Fig. 5A,B) that became 

similar to that of control euploid mice (Fig. 5A,B). In euploid mice treatment 

with corn oil did not affect the number of new granule cells (Fig. 5A,B). These 

results suggest that treatment with corn oil exerts a beneficial effect on 

hippocampal neurogenesis specifically in Ts65Dn mice. 
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Fig. 5. Effect of treatment with corn oil on the number of new granule cells in the dentate 

gyrus.  

The number of new granule cells was evaluated with DCX immunohistochemistry. A: Examples 

of sections processed for fluorescent immunostaining for DCX from the dentate gyrus of control 

euploid and Ts65Dn mice and euploid and Ts65Dn mice treated with corn oil. Calibration bar = 

20 µm. B: Number of DCX-positive cells in the dentate gyrus of control euploid (n=5) and 

Ts65Dn (n=5) mice, corn oil treated euploid (n=4) and Ts65Dn (n=4) mice. Values represent 

mean  SE. ** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way ANOVA).. Abbreviations: 
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CO, Corn oil; Eu, euploid; Sal, saline. 

 

Effect of corn oil on dendritic development in Ts65Dn and euploid mice 

Dendritic morphology of newborn granule cells was analyzed in sections 

subjected to immunohistochemistry for DCX. Fig 6A shows examples of the 

dendritic pattern in each experimental group. It can be readily appreciated that 

the granule cells of control Ts65Dn mice had a poorly-branched dendritic tree 

and that treatment with corn oil increased its complexity.  

A two-way ANOVA on the total length of the dendritic tree showed no genotype 

x treatment interaction, no main effect of genotype, but a main effect of treatment 

[F(1,14) = 12.54, p = 0.003]. A post hoc Fisher LSD test showed that in control 

Ts65Dn mice the dendritic length was reduced in comparison with control 

euploid mice and that treatment with corn oil fully restored total dendritic length 

(Fig. 6B). A two-way ANOVA on the total number of dendritic branches showed 

no genotype x treatment interaction and no main effect of genotype and 

treatment. A post hoc Fisher LSD test showed no differences between groups, 

although in treated Ts65Dn mice the total number of branches was marginally 

larger (p = 0.06) in comparison with their control counterparts (Fig. 6C). The 

analysis of the number of branches of each order showed no interaction between 

genotype x treatment and no main effect of genotype and treatment for all orders, 

save for order 5 that showed a main effect of treatment [F(1,14) = 4.89, p = 

0.044]. A post hoc Fisher LSD test showed no differences between groups for 

orders 1-3 and 6-7 (Fig. 6E). However, control Ts65Dn mice had a reduced 

number of branches of order 5 in comparison with control euploid mice and 

treated Ts65Dn mice had a larger number of branches of order 4 and 5 in 

comparison with control Ts65Dn mice (Fig. 6E). Importantly, while control 

Ts65Dn mice lacked branches of orders 6 and 7, in treated Ts65Dn mice branches 

of orders 6 and 7 were also present (Fig. 6E). A two-way ANOVA on the mean 
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branch length showed no genotype x treatment interaction no main effect of 

genotype and no main effect of treatment. A post hoc Fisher LSD test showed no 

differences between groups (Fig. 6D). 

 

 

Fig. 6. Effect of corn oil on the dendritic size of newborn granule cells.  

 A: Two examples (a, b) of the reconstructed dendritic tree of DCX-positive granule cells from 

animals of each of the following experimental groups: control euploid (n=5) and Ts65Dn (n=5) 

mice and treated euploid (n=4) and Ts65Dn (n=4) mice. Numbers indicate the different dendritic 

orders. Calibration bar = 50 m. B-E: Total dendritic length (B), mean number of dendritic 

segments (C), mean segment length (D) and mean number of branches of the different orders (E) 

in control euploid and Ts65Dn mice, and euploid and Ts65Dn mice treated with corn oil. The 

arrows in (E) indicate the absence of branches of order 6 and 7 in control Ts65Dn mice. Values 

in (B-E) represent mean  ES. (*) p < 0.06; * p < 0.05; ** p < 0.01 (Fisher LSD test after two-
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way ANOVA). Abbreviations: CO, Corn oil; Eu, euploid; Sal, saline. 

 

Effect of linoleic acid and oleic acid on the proliferation rate of neural 

progenitor cells from Ts65Dn and euploid mice 

Corn oil contains a high percentage (~54%) of PUFAs, mainly represented by 

LA (omega-6), and a high percentage (~28%) of the MUFA OA (omega-9). In 

order to investigate whether the most abundant PUFA and MUFA in corn oil 

could directly affect neurogenesis, we used cultures of neural progenitor cells 

(NPCs) from the subventricular zone of Ts65Dn mice. Cultures were exposed to 

different concentrations of LA or OA (from 0.1 to 100.0 µM). The Kruskal-

Wallis test showed a significant effect of LA on proliferation rate [χ2 (8) = 44.43, 

p < 0.001]. The Mann-Whitney test showed that in cultures exposed to LA there 

was a proliferation increase in comparison with cultures exposed to vehicle at 

concentrations of 60.0 µM (U = 0.001, p = 0.007), 80 µM (U = 0.001, p = 0.007), 

and 100 µM (U = 0.001, p < 0.001) (Fig. 7A). The Kruskal-Wallis test showed a 

significant effect of OA on proliferation rate [χ2 (8) = 48.84, p < 0.001]. The 

Mann-Whitney test showed that in cultures exposed to OA there was a 

proliferation increase in comparison with cultures exposed to vehicle at 

concentrations of 80 µM (U = 0.001, p = 0.006), and 100 µM (U = 0.001, p < 

0.001) (Fig. 7B).  

A comparison of the pro-proliferative effect of different concentrations of LA 

showed that the effect of the concentration of 60 µM was lower in comparison 

with the concentration of 80 µM (U = 0.000, p = 0.050) and 100 µM (U = 6.000, 

p = 0.044), and that there were no differences between the concentrations of 80 

µM and 100 µM (Fig. 7A). A comparison of the pro-proliferative effect of 

different concentrations of OA showed that the concentration of 80 µM had an 

effect that was lower in comparison with the concentration of 100 µM (U = 2.000, 

p = 0.011) (Fig. 7B). A comparison of the effects of LA and OA showed that the 
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proliferation increase caused by LA was larger than that caused OA (U = 68.000; 

p = 0.003) (Fig. 7C). While LA at a concentration of 100 µM caused a 45% 

increase in proliferation rate in comparison with cultures exposed to vehicle, OA 

at a concentration of 100 µM caused a 26 % increase only. This evidence 

indicates that LA is a more powerful neurogenesis enhancer in comparison with 

OA. 

Since lithium has been shown to restore proliferation of NPCs of Ts65Dn mice 

in vivo (Bianchi et al., 2010; Contestabile et al., 2013) and in vitro (Trazzi et al., 

2014), it seemed of interest to compare the pro-proliferative effect of lithium and 

those of LA/OA. We used a 2.0 mM concentration of LiCl based on previous 

evidence showing that this concentration restores neurogenesis in trisomic NPCs 

(Trazzi et al., 2014). As expected, LiCl increased the proliferation of trisomic 

cells (+ 34 %) compared to vehicle (Fig. 7C). Since LA and OA were effective 

at 100 µM, they appear to be more potent enhancers of NPCs proliferation than 

LiCl.  

We exposed euploid cultures of NPCs from the subventricular zone of euploid 

mice to LA and OA in order to establish their effects on euploid cells. The 

Kruskal-Wallis test showed a significant effect of LA on proliferation rate [χ2 (8) 

= 43.07, p < 0.001]. The Mann-Whitney test showed that in cultures exposed to 

LA there was a proliferation increase in comparison with cultures exposed to 

vehicle at the concentration of 100 µM (U = 0.000, p < 0.001) (Fig. 7D). The 

Kruskal-Wallis test showed a significant effect of OA on proliferation rate [χ2 (8) 

= 40.71, p < 0.001]. The Mann-Whitney test showed that in cultures exposed to 

OA there was a proliferation increase in comparison with cultures exposed to 

vehicle at concentrations of 80 µM (U = 0.000, p = 0.001), and 100 µM (U = 

8.000, p < 0.001) (Fig. 7E). In euploid cultures exposed to LiCl there was an 
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increase in proliferation (+ 41 %) compared to vehicle (Fig. 7F). 

 

 

Fig. 7. Effect of treatment with oleic acid and linoleic acid on cultures of neural progenitor 

cells.  

Neural progenitor cells from the subventricular zone of neonate (age: 1-2 days) Ts65Dn and 

euploid mice were maintained for 96 h in a vehicle composed of 10 ng/ml bFGF and BSA 3.3 

mg/ml or in vehicle supplemented with either LA or OA, at the indicated concentrations (0.1-100 

µM). Parallel cultures were maintained in a vehicle composed of 10 ng/ml bFGF and 0.05% 

DMSO or supplemented with LiCl 2.0 mM. A-C: A proliferation assay in Ts65Dn cultures 

showed a pro-proliferative effect of LA (A) and OA (B) in comparison with cultures exposed to 

vehicle and that the pro-proliferative effects of LA and OA were comparable to those exerted by 

LiCl (C). D-F: A proliferation assay in euploid cultures showed a pro-proliferative effect of LA 
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(D) and OA (E) in comparison with cultures exposed to vehicle and that the pro-proliferative 

effects of LA and OA were comparable to those exerted by LiCl (F). Data in A-C were obtained 

in pooled cultures from Ts65Dn mice (n=2). Data in D-F were obtained in pooled cultures from 

euploid mice (n=2). Values (mean  SE) are expressed as fold change over the vehicle condition. 

** p < 0.01; *** p < 0.001 (Mann-Whitney test after Kruskal-Wallis test). Abbreviations: LA, 

linoleic acid; LiCl, Lithium chloride; OA, oleic acid, Veh, vehicle.  

 

The pro-proliferative effect of linoleic acid are blocked by PPARß/ and 

PPARγ antagonists 

The mechanisms of action of PUFAs on neurogenesis remain elusive (Dyall, 

2015), although there are suggestions of a possible role of peroxisome-

proliferator activated receptors (PPARs) (Bernal et al., 2015). PPARs are a group 

of transcription factors that represent the best recognized nuclear sensor system 

for fatty acids (Fidaleo et al., 2014; Georgiadi and Kersten, 2012). There are three 

isotypes of PPARs, named PPARα, PPARβ/δ and PPAR (Fidaleo et al., 2014). 

Mouse NPCs express isotypes PPARβ/δ and PPAR only (Bernal et al., 2015). 

In order to investigate whether the pro-proliferative effect exerted by the most 

abundant corn oil PUFA, LA, could be mediated by PPARs, trisomic cells were 

exposed to LA 100 µM in presence of either a PPAR ß/ antagonist (GSK0660, 

0.1-30 µM) or a PPARγ antagonist (GW9662, 0.01-10 µM). The Kruskal-Wallis 

test showed a significant effect of the PPAR ß/ antagonist [χ2 (5) = 19.86, p = 

0.001] and the PPAR  antagonist [χ2 (4) = 33.57, p < 0.001] on proliferation. We 

found that both antagonists counteracted the LA-induced proliferative effects on 

trisomic NPCs (Fig. 8A,B). Exposure to the PPARβ/δ receptor antagonist 

GSK0660 caused a moderate reduction in the pro-proliferative effect of LA at all 

tested concentrations (0.1-30 µM), but did not completely abrogate its effect, 

even at the highest concentration (Fig. 8A). Exposure to the PPAR receptor 

antagonist GW9662 at low concentrations (0.01 µM) did not reduce the pro-



  

 224 

proliferative effect of LA (Fig. 8B). However, exposure to higher concentrations 

(1, 3, and 10 µM) reduced and even abrogated the effect of LA (Fig. 8B). Taken 

together, these results suggested that, at least in vitro, PPARβ/ δ and PPAR  

contribute to the proliferative effects of LA on trisomic NPC.  

 

Fig. 8. Effect of PPAR β/ δ and PPAR  antagonists on linoleic acid-mediated effects.  

Neural progenitor cells from the subventricular zone of neonate (age: 1-2 days) Ts65Dn mice 

were maintained for 96 h either in a vehicle composed of 10 ng/ml bFGF and 0.05% DMSO or 

in vehicle supplemented with LA 100 µM alone or LA 100 µM plus either the PPARβ/ δ 

antagonist GSK0660 (A) or the PPAR antagonist GW9662 (B) at the indicated concentrations 

(µM). Data were obtained in pooled cultures from Ts65Dn mice (n=3). Values (mean  SE) are 

expressed as fold change over the vehicle condition. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. 

LA; ## p < 0.01; ### p < 0.001 vs. vehicle (Mann-Whitney test after Kruskal-Wallis test). 

Abbreviation: LA, linoleic acid; Veh, vehicle. 

 

DISCUSSION 

 

Corn oil positively impacts on hippocampal neurogenesis in Ts65Dn mice 

While neurogenesis is a process that is largely accomplished before birth, in the 

hippocampal dentate gyrus neurogenesis persists throughout life in all examined 

mammals, including humans (Bayer, 1980; Eriksson et al., 1998; Guidi et al., 

2011; Guidi et al., 2004; Kempermann & Gage, 2002; Ninkovic et al., 2007; 
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Spalding et al., 2013). Hippocampal neurogenesis has been shown to be severely 

impaired in fetuses with DS and in mouse models of DS at early life stages 

(Stagni et al., 2017a) and in adulthood (Belichenko & Kleschevnikov, 2011; 

Clark et al., 2006; Lorenzi and Reeves, 2006; Rueda et al., 2005). A number of 

studies has explored the effects of different drugs on hippocampal neurogenesis 

and hippocampus-dependent learning and memory in mouse models of DS 

(Gardiner, 2015; Stagni et al., 2015). In the current study, we found that treatment 

with a natural substance, corn oil, leads to restoration of neurogenesis in the 

hippocampus of adult Ts65Dn mice, which demonstrates for the first time that 

corn oil can enhance neurogenesis in DS.  

While it is known that LA and OA increase cognitive performance (Jenkins et 

al., 2016; Moazedi et al., 2007), little evidence is available regarding the pro-

neurogenic role of these fatty acids. By exploiting cultures of NPCs, we found 

that both LA and OA are able to increase the proliferation rate of NPCs, which 

suggests that both fatty acids of corn oil may potentially contribute to the 

neurogenesis increase observed in Ts65Dn mice treated with corn oil. The effects 

of LA, however, were larger than those of OA and had a magnitude that was 

comparable to that exerted by lithium, indicating that LA may act as a potent 

neurogenesis enhancer in the trisomic brain. Our in vitro results indicate that 

PPAR β/ δ and PPAR  are involved in the direct effects of LA on NPCs 

suggesting that these receptors may contribute to the beneficial effects elicited 

by corn oil in trisomic mice. There is evidence that the triplicated gene Down 

syndrome critical region 2 (DSCR2) physically interacts with PPARβ in 

mammalian HEK293 cells and inhibits its ligand-induced transcriptional activity 

(Song et al., 2008). This suggests that this inhibition may contribute to impair 

neurogenesis in the DS brain and strengthens the conclusion that the positive 

effect of corn oil in Ts65Dn mice may be mediated by PPARs. Of course, other 
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mechanisms and contributors cannot be ruled out.  

 

Corn oil positively impacts on dendritic development in Ts65Dn mice 

In Ts65Dn mice, newborn granule cells had a reduced total dendritic length. This 

confirms previous evidence that dendritic hypotrophy starts at the initial stages 

of granule cells development (Guidi et al., 2013) and is in agreement with 

evidence of severe dendritic pathology in the Ts65Dn model of DS as well as in 

individuals with DS (Benavides-Piccione et al., 2004; Dang et al., 2014; Guidi et 

al., 2013). The reduction in total dendritic length was due to a reduction in the 

number of branches of intermediate order and a lack of high order branches, and 

not to a reduction in the mean branch length. In Ts65Dn mice treated with corn 

oil there was an increase in the number of branches of intermediate order and the 

de novo appearance of high order branches, with consequent restoration of total 

dendritic length. Neuron generation and dendritic maturation are severely 

compromised in DS. Thus, therapies to improve brain development should be 

aimed at restoring both of these processes. Current results show that corn oil 

restores the dendritic length of trisomic granule cells, indicating that the same 

treatment is able to restore not only the number of new granule neurons but also 

their "quality", in terms of correct maturation.  

 

Corn oil positively impacts on hippocampus-dependent learning and 

memory in Ts65Dn mice 

The deficits in hippocampus-dependent learning and memory in DS are 

attributable to reduced neurogenesis and synaptic alterations in the hippocampal 

formation, a region that is fundamental for declarative memory. We found that 

the restoration of neurogenesis and dendritic pattern of new granule neurons 

induced by treatment with corn oil in Ts65Dn mice was accompanied by a large 

improvement in hippocampus-dependent learning and memory as assessed with 
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the MWM test. During the learning phase, the reduction in the latency to reach 

the platform and in the time spent in the periphery showed that a large 

improvement had taken place; the proximity to the trained platform quadrant was 

similar to that of control euploid mice, indicating restoration of this parameter. 

In the probe test, the frequency of entrances in the trained platform quadrant, the 

proximity and the time spent in the periphery, became similar to that of control 

euploid mice, indicating restoration of these aspects of memory. It must be noted 

that control Ts65Dn mice had a slightly lower swimming speed in comparison 

with control euploid mice (-13%). It may be argued that the longer latency to 

reach the platform exhibited by control Ts65Dn mice in comparison with euploid 

mice during the learning phase of the MWM was due to their reduced speed, and 

that the latency reduction in treated Ts65Dn mice was due to the treatment-

induced improvement in swimming speed and not to a learning improvement. 

However, on day 5 of the learning phase control Ts65Dn mice had a latency that 

was 3 times that of euploid mice, while their speed was only reduced by 13%, 

suggesting that the longer latency of Ts65Dn mice mainly reflects impairment of 

learning rather than a motor deficit. On day 5, the latency of treated Ts65Dn mice 

decreased by 40% in comparison with their control counterparts while swimming 

speed only increased by 15%, suggesting that the latency reduction was mainly 

due to an improvement in spatial learning and not in swimming speed. Moreover, 

the finding that treated Ts65Dn mice spent less time in the periphery and swam 

closer to the platform quadrant during the learning phase, and crossed the trained 

platform quadrant with increased frequency in the probe test, indicates an 

improvement in the searching strategy and, thus, in spatial learning.  

Conflicting results are available regarding the swimming speed of Ts65Dn mice. 

While some reports show no swimming speed differences in comparison with 

euploid mice (Catuara-Solarz et al., 2015; Costa et al., 2010; Escorihuela et al., 

1995; Faizi et al., 2011; Netzer et al., 2010; Stagni et al., 2017b), other studies 
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show that Ts65Dn mice have a reduced speed (Catuara-Solarz et al., 2016; Costa 

et al., 1999; Heinen et al., 2012). These discrepancies may be accounted for by 

differences in the sex and/or age of mice and/or by the notably higher degree of 

variability in swimming speed that characterizes Ts65Dn mice (Costa et al., 

1999).  

The CFC test showed that in treated Ts65Dn mice freezing in the old context 

increased in comparison with their control counterparts, suggesting improvement 

of context memory. During the cued session, however, treated Ts65Dn mice 

showed reduced freezing in comparison with control mice, which may suggest a 

poor association between the sound (cue) and the adverse stimulus (foot shock). 

Observation of Fig. 4D, however, shows that treated Ts65Dn mice demonstrated 

similar freezing to control euploid mice during sound delivery, suggesting no 

impairment in the retention of the association between sound and shock. On the 

other hand, treated Ts65Dn mice exhibited a higher (although not significant) 

level of freezing in the new context in comparison with control mice (Fig. 4C). 

Since freezing in the cued session is expressed as the difference between freezing 

during sound delivery and freezing in the new context, the reduced freezing of 

treated Ts65Dn in comparison with control mice during the cued session (Fig. 

4B) may be due to a higher level of freezing in the new context rather than to an 

impairment in cue association learning.  

Taken together, the current results are in agreement with a number of studies 

showing that Ts65Dn mice are impaired in learning and memory. In treated 

Ts65Dn mice, the parameters of the learning phase and probe test ameliorated in 

comparison with their control counterparts and some of the examined parameters 

became similar to those of control euploid mice. Moreover, the CFC test showed 

that treated Ts65Dn mice remembered the context to a similar extent as did 

control euploid mice. The finding that treatment with corn oil largely improved 

or even restored hippocampus-dependent learning and memory is consistent with 
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our finding that treatment restored hippocampal neurogenesis and 

dendritogenesis. The fact that treatment did not fully restore behavior may be 

related to the relatively low rate of neurogenesis at the examined age and, thus, 

to the relatively low number of new granule neurons added to the hippocampal 

circuits in comparison with pre-existing neurons.  

 

Corn oil restores body weight in Ts65Dn mice 

We found that after treatment with corn oil the body weight of Ts65Dn mice 

became similar to that of euploid mice. This effect is in agreement with evidence 

that in pre-term infants treated with PUFAs there is an improvement in growth 

and developmental scores (Fleith & Clandinin, 2005). To our knowledge, this is 

the first demonstration that it is possible to restore the reduced body weight of 

Ts65Dn mice through administration of corn oil. The effect of corn oil may be 

related to an improvement in metabolic processes exerted by fatty acids as well 

as to an increase in caloric intake. The finding that treatment increased the 

swimming speed of Ts65Dn mice suggests that corn oil may exert beneficial 

effects on the trophism of muscle cells.  

We found no differences in the brain weight of five-month-old Ts65Dn mice 

compared to euploid mice, in contrast with our findings in younger mice (Stagni 

et al., 2017b). While treatment with corn oil had no effect in euploid mice, 

Ts65Dn mice underwent a small but significant brain weight increase. Since most 

of the brain neurons are born prenatally, the increase in brain weight may be 

related to an improvement in the composition of the neuronal membranes and/or 

growth of the neuronal processes.  

 

Treatment with corn oil does not affect neurogenesis and cognitive 

performance in euploid mice 

Unlike in Ts65Dn mice, treatment with corn oil did not increase proliferation and 
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dendritic maturation of granule cells in the hippocampal dentate gyrus of euploid 

mice and did not enhance hippocampus-dependent learning and memory. Yet, 

exposure to LA or OA was able to increase the proliferation rate of euploid NPCs 

in vitro, indicating that euploid NPCs are responsive to LA and OA similarly to 

trisomic NPCs. Taken together these results suggest that the lack of effects of 

corn oil in vivo in euploid mice may be due to a ceiling effect that prevents further 

enhancement of hippocampal development. This is consistent with previous 

observations that treatments that are effective in Ts65Dn mice may not have a 

similar efficacy in euploid mice (Corrales et al., 2014; Dang et al., 2014; Stagni 

et al., 2017b). 

 

Conclusions 

Nourishment with PUFAs and MUFAs has been shown to have a positive effect 

in various types of neurological disorders (Hussain et al., 2013). LA is the major 

PUFA, and OA is the major MUFA, of corn oil. Unlike OA, LA cannot be 

synthesized by the human body, so it must be exogenously supplied (Hussain et 

al., 2013). Arachidonic acid, which is a derivative of LA, has been shown to 

increase neurogenesis at postnatal stages when administered prenatally 

(Maekawa et al., 2009). Decreased levels of OA have been observed in the brain 

of Alzheimer’s disease patients (Martin et al., 2010) and OA supplementation has 

been shown to inhibit the production of Aβ peptide and amyloid plaques (Amtul 

et al., 2011).  

We found here that corn oil restores neurogenesis and improves hippocampus-

dependent memory in adult Ts65Dn mice. Treatments that ameliorate 

hippocampal neurogenesis in adulthood may increase the "cognitive reserve" and 

postpone the onset of Alzheimer’s-due dementia (Whalley et al., 2004). Although 

we administered corn oil intraperitoneally, our data may suggest that a diet based 

on an appropriate fatty acid intake may exert a benefit on cognitive performance 
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in individuals with DS. It is conceivable that treatment with fatty acids during the 

critical windows of neurogenesis (prenatal and early postnatal period) may have 

larger effects than those observed here and may possibly lead to a full behavioral 

rescue.  

Various studies have explored the effects of a variety of pharmacological agents 

on hippocampus-dependent learning and memory in adult Ts65Dn mice (see 

(Gardiner, 2015)). Treatments i) targeted to transmitter/receptor systems, ii) 

employing neuroprotective agents, antioxidants, and free radical scavengers, iii) 

targeted to perturbed signaling pathways, iv) aimed at normalizing the expression 

of proteins coded by triplicated genes and v) that have used proneurogenic 

molecules demonstrated that it is possible to pharmacologically rescue or 

partially rescue behavioral deficits. While most of these studies show that it is 

possible to improve cognitive performance in a model of DS, some of the used 

therapies pose some caveats for human application in view of the nature of the 

used molecules that may potentially cause side effects. Corn oil, which is 

extracted from the germ of corn, contains a high percentage of fatty acids which 

are substances that are naturally present in the human diet. The current study 

shows that adult treatment with corn oil restores neurogenesis, dendritic 

development, and learning and memory in the Ts65Dn model of DS. Thus, 

supplementation of fatty acids may represent a promising and safe therapy for 

DS with a good translational potential in adulthood as well as at early life stages. 
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INTRODUCTION 

 

Down syndrome (DS) is a neurodevelopmental disorder caused by triplication of 

human chromosome 21. At present intellectual disability is the most disabling 

aspect of the pathology (Bartesaghi et al., 2011). In neonatal DS brain a decreased 

proliferation of neural progenitor cells (NPC) and a defective differentiation in 

their progeny are associated with a widespread neurogenesis impairment 

(Bianchi et al., 2010; Stagni et al., 2017; Vacca et al., 2019). These aspects are 

thought to be the main causes of DS intellectual disability (Stagni et al., 2018). 

DS phenotypic abnormalities are, at least in part, recapitulated in Ts65Dn mice, 

the most validated preclinical DS model (Bartesaghi et al., 2011; Herault et al., 

2017). Exciting findings in animal models suggested that trisomy-linked brain 

abnormalities, including cognitive impairment, can be pharmacologically 

corrected by targeting, in early life stages, NPC (Guidi et al., 2014; Stagni et al., 

2015, 2018, 2019a). Unfortunately, at present none of the drugs effective in 

animal models appear suitable for clinical application (Kazemi et al., 2016).  

Recently in our laboratory, Cvijetic et al. identified novel signaling pathways that 

can affect NPC and their communication with astrocytes both in a cell-

autonomous and non-cell autonomous manner (Cvijetic et al., 2017). To this 

regard, a piece of evidence hypothesized that cell-autonomous NPC dysfunctions 

can affect their communication with other cell types, including astrocytes, both 

in human DS cell models and in Ts65Dn mice (Chen et al., 2014; Mizuno et al., 

2018). Indeed, DS astrocytes are not only more abundant, but exhibit functional 

alterations that can affect NPC and their progeny in a non-cell autonomous 

manner (Cresto et al., 2019; Mizuno et al., 2018). In particular, several studies 

showed that trisomic astrocytes secrete defective levels of thrombospondin-1 

(Garcia et al., 2010; Torres et al., 2018) (TSP-1), a key astrocyte-derived signal 

involved in neurogenesis (Lu & Kipnis, 2010), synaptogenesis (Eroglu et al., 
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2009) and spine formation (Risher et al., 2018). Despite these data, the role of 

TSP-1 in DS non-neuronal cells is largely unexplored. 

All together these findings highlighted the need to investigate potential 

alterations of astrocyte-NPC communication in DS pathophysiology.  

 

MATERIALS AND METHODS 

 

Mouse colony 

Ts65Dn mice were provided by Jackson Laboratories (Bar Harbor, ME, USA) 

and generated by mating B6EiC3Sn a/A-Ts(17^16)65Dn females with 

C57BL/6JEiJ x C3H/HeSnJ (B6EiC3Sn) F1 hybrid males (Reeves et al., 1995). 

Only first generation litters were used. Pups’ genotyping was performed as 

previously described (Rheinold et al., 2011). Animals had ad libitum access to 

water and food in a room with a 12:12 h light/dark cycle. Experiments were 

performed in accordance with the European Community Council Directive of 24 

November 1986 (86/609/EEC) for the use of experimental animals and were 

approved by Italian Ministry of Public Health (1033/2015-PR and 47/2019).  

 

Isolation and culture of neonatal neural progenitor cells 

Cells were isolated from the subventricular zone (SVZ) and hippocampi (HP) of 

newborn (P1-2) euploid (EU) and Ts65Dn (trisomic, TS) mice, as previously 

described in Stagni et al. (Stagni et al., 2017; Stagni et al., 2019a). Briefly, SVZ 

and HP were removed and collected in ice-cold PIPES buffer. After that, tissues 

were digested with trypsin/EDTA 0.25 % (Life Technologies) and cell 

suspensions were seeded onto 25 cm2 cell-culture flask (Thermo Fisher 

Scientific). Cells were cultured as free floating neurospheres in DMEM/F12 

medium supplemented with B27 (Life Technologies), containing basic fibroblast 

growth factor (bFGF, 10 ng/ml; Peprotech) and human epidermal growth factor 

(hEGF, 20 ng/ml; Peprotech) using established protocols (Cvijetic et al., 2017; 
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Meneghini et al., 2014). Primary (Passage 1, P1) neurospheres were dissociated 

using Stempro Accutase (Life Technologies) after 7 days in vitro (DIV), 

thereafter single animals of the same genotype were pooled (pool of 3-6 pups) 

and neurospheres were then passaged every 5 DIV. For further in vitro studies 

cells from P3 to P12 were used, as described in Stagni et al. (Stagni et al., 2019a).  

 

Neural progenitor cell proliferation  

Proliferation was tested as previously described and data derived from 3-6 

Ts65Dn (trisomic) and euploid pups pooled together (Giacomini et al., 2018; 

Stagni et al., 2017; Stagni et al., 2019b). Briefly, in order to evaluate cell 

proliferation trisomic (TS) and euploid (EU) SVZ NPC (P3-P12) were 

dissociated in a single cell suspension and plated onto NunclonTM Delta Surface 

96-well plate (Thermo Fisher Scientific) at a density of 4×103 cells per well in 

DMEM/F-12 medium supplemented with B27, GlutamaxTM (2 mM, Life 

Technologies), heparin sodium salt (4 μg/ml; ACROS Organics), bFGF (10 

ng/ml, Peprotech) and 100 U/100 μg/ml Penicillin/Streptomycin (Life 

Technologies) for 30 min, at 37°C. Vehicle (veh), thrombospondin-1 (TSP-1, 

2000 ng/ml, Meridian Life Science) and pregabalin (PGB, 1 nM, Qventas) were 

then added to each well in triplicate. In parallel, hEGF (20 ng/ml, Peprotech) and 

LiCl (2 mM, Sigma-Aldrich) were used as positive controls as previously 

described (Bianchi et al., 2010; Stagni et al., 2017; Stagni et al., 2019b). Cell 

proliferation was quantified after 96 h incubation in a humidity chamber (to 

minimize evaporation) and quantified as relative luminescence units (RLU) 

values using a CellTiter-Glo kit (Promega) on a Victor3-V plate reader 

(PerkinElmer) (Stagni et al., 2019b). 

 

Neural progenitor cell differentiation 

A phenotypic characterization was performed in order to evaluate NPC 
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differentiation ability in presence of differentiation medium (DMEM/F-12 

medium, B27, GlutamaxTM and Penicillin/Streptomycin) or specific compounds 

following already validated protocols (Bortolotto et al., 2019; Cvijetic et al., 

2017; Stagni et al., 2017). Briefly, neurospheres were dissociate into a single cell 

suspension and plated onto NuncTM LabTeKTM chamber slides (Thermo Fisher 

Scientific) coated with laminin mouse protein (Thermo Fisher Scientific) at a 

density of 35x103 cells per well in differentiation medium for 30 minutes. Cells 

were then exposed to vehicle (veh), LiCl (2 mM, Sigma-Aldrich), 

thrombospondin-1 (TSP-1, 2000 ng/ml, Meridian Life science), lipocalin-2 

(LCN-2, 300 ng/ml, Cell Signaling), pregabalin (PGB, 1 nM, Qventas). For 

differentiation experiments in presence of selective inhibitors we used gabapentin 

(32 µM, Sigma-Aldrich); NSC23766, a selective Rac1 inhibitor (3 µM, Sigma-

Aldrich); CK666, an Arp2/3 complex inhibitor (50 µM, MERCK) and the 

relative inactive control CK689 (50 µM, MERCK). In each experiment inhibitors 

were added 30 minutes before TSP-1 or PGB, as previously described (Valente 

et al. 2012). After 96 h cells were fixed for 20 min at room temperature using 

4°C paraformaldehyde as previously described (Valente et al., 2012). Phenotypic 

characterization of NPC-derived cells was carried out by immunolocalization for 

MAP2 (rabbit polyclonal, 1:50,000; Abcam) and nestin (chicken monoclonal, 

1:2,500; Neuromics). Secondary antibodies were used as follows: 

AlexaFluor555-conjugated goat anti rabbit (1:2,000; Molecular Probes), and 

AlexaFluor488-conjugated goat anti chicken (1:2,000; Molecular Probes). 

Nuclei were counterstained with 0.8 ng/ml Hoechst (Thermo Fisher Scientific) 

diluted in PBS. In each experiment, five fields/well (corresponding to about 150–

200 cells/well) were counted with a 60X objective by a Leica DMIRB inverted 

fluorescence microscope. Immunoreactive cells were counted and their 

percentage over total viable cells was calculated. Apoptotic nuclei were 

calculated over total cells. All experiments were run in triplicate. 
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Protein isolation and western blot analysis  

For protein isolation neural progenitor cells were disrupted in RIPA buffer (H2O, 

50 mM Tris-HCl pH 7.6, 150mM NaCl, 0.5 mM EDTA pH8, 1% (v/v) Triton X-

100, 0.1% SDS, 10mM NaF, 1mM NaVO4, 1mM DTT and protease inhibitors, 

Sigma-Aldrich) as previously described (Cvijetic et al., 2017; Valente et al., 

2012). Briefly, neurosphere homogenates were incubated on ice for 25 min. Then 

three serial incubations at -80°C (3 minutes) and 37°C (2 minutes) were 

performed. Lysates were centrifuged at 15,700 g for 10 min at 4°C and 

supernatants were collected. For protein isolation from day post-natal 1 (P 1) 

tissues, homogenates were disrupted in RIPA buffer by using a wheel at 4 °C as 

previously described (Denis-Donini et al., 2008). Briefly, tissue homogenates 

were incubated on ice for 60 min, then centrifuged at 15,700 g for 30 min at 4°C, 

then the supernatants were collected. Protein concentration was determined by 

Bradford assay (Sigma-Aldrich) and 25-30 g of proteins were loaded for each 

sample. Protein separation was performed onto a 12% SDS-PAGE gel. Proteins 

were then transferred onto a nitrocellulose membrane. The membranes were 

blocked at RT in a 5% (wt/vol) milk in TBS-Tween20 0.01% solution for 1 hour. 

Immunoblots were carried out overnight at 4°C or 2h at RT in an antibody 

solution containing 5% (wt/vol) milk in TBS-T with the following antibodies: 

anti-Rac1 1:750 (mouse monoclonal, AB33186, Abcam), anti-Moesin 1:1,000 

(rabbit monoclonal, AB52490, Abcam), anti-Dihydropyridine Receptor 2 

subunit 1:500 (mouse monoclonal, D219, Sigma-Aldrich) and anti-actin 

1:1,000 (mouse monoclocal, Sigma-Aldrich). After washing, blots were 

incubated with a peroxidase-conjugated goat antimouse antibody (1:10,000, 

R&D systems) and a peroxidase-conjugated goat antirabbit antibody (1:10,000, 

R&D systems) for 60 minutes at RT and immunocomplexes were visualized by 

the Supersignal West Pico Chemiluminescent substrate (Thermo Scientific). 
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Densitometric analysis was performed using the Image Lab software system 

(Bio-Rad Laboratories) and each band was normalized to -actin signal. 

 

Primary astrocyte cultures and the astrocyte conditioned media 

Primary mixed glial cultures were prepared from hippocampi of P1–2 Ts65Dn 

(trisomic, TS) and euploid (EU) pups. Cells were grown in DMEM high glucose, 

10% FBS, 15 mM HEPES, 2 mM glutamine and 100 U/ml 

penicillin/streptomycin (Life Technologies) on 6 well plates coated with Poly-L-

Lysine 0.04 mg/ml (Sigma Aldrich). When cells reached confluence (around 7 

DIV), cells were detached using Trypsin/EDTA 0.25% (Life Technologies) and 

microglia was isolated from astrocytes as previously described (Rocchio et al., 

2019; Tapella et al., 2019). Briefly, cells were labeled with antiCd11+ beads 

(Miltenyi Biotec) and passed through MS separation columns (Myltenyi Biotec) 

using the MACS separator (Myltenyi Biotec). The unlabeled cell fraction 

(astrocytes) was collected and plated onto Poly-L-Lysine coated wells (Sigma-

Aldrich). When cell confluence was reached, cells were exposed to Neurobasal-

A medium supplemented with B27, 2 mM L-glutamine and 

penicillin/streptomycin 100 U/ml (Life Technologies). After 48 h the astrocyte 

conditioned media (ACM) was collected as previously described (Cvijetic et al., 

2017); astrocytes were detached, collected in ice-cold PBS and proteins were 

isolated and quantified, as described in the previous section.  

Phenotypic characterization of astroglial cultures was performed by 

immunocytochemistry with antibodies against GFAP (mouse monoclonal, 1:600, 

Millipore) and CD11b (rat monoclonal; 1:150, Millipore) as described by 

Cvijetic et al. (Cvijetic et al., 2017).  

 

TSP-1 measurements (ELISA)  

Trombospondin-1 (TPS-1) levels were quantified in euploid (EU) and trisomic 
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(TS) astrocyte conditioned media (ACM) by ELISA following the vendor 

instructions (Mouse TSP-1 ELISA Kit, IK5156, Immunologial sciences). Briefly, 

standard, samples and control media were added to each well of a 96 well plate 

and incubated 90 minutes at 37°C. After that a biotin-detection antibody was 

added for 60 minutes at 37 °C. Wells were then washed and incubated with an 

HRP-Streptavidin (SABC) solution for 30 minutes at 37°C. A 3,3’,5,5’-

tetrametilbenzidina (TMB) substrate was then added for 7-15 minutes at 37°C, 

protected by light. The reaction was stopped and the absorbance was measured 

at 450 nm on a Victor3-V plate reader (PerkinElmer). ELISA quantifications were 

normalized using the astrocytic protein content (µg), as previously described by 

Garcia et al. (Garcia et al., 2010) 

 

Statistical analysis  

Data were analyzed with GraphPad Prism 7.0. The statistical analysis were 

performed using either a one-way ANOVA or a two-way ANOVA. Post hoc 

multiple comparisons were carried out using Tukey’s test. In order to compare 

different proliferation and differentiation experiments a two way ANOVA 

followed by a Fisher’s least significant difference (LSD) test was performed. For 

western blot and ELISA analyses a paired or unpaired student’s t-test was 

performed. Results were considered statistically relevant with p<0.05. 
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RESULTS 

 

Cell autonomous defects in trisomic neural progenitor cells 

TS NPC in vitro are not only less proliferative (Stagni et al., 2019), but they show 

impaired neuronal phenotype acquisition when compared with EU NPC (Stagni 

et al., 2018). We seeded both EU/TS neonatal NPC under differentiative 

conditions in presence of vehicle or LiCl (2 mM). After 96 h, we evaluated the 

percentage of cells that were immunopositive for MAP2 (Microtubule Associated 

Protein 2, a marker of cells with a neuronal phenotype) and immunonegative for 

nestin (a marker of undifferentiated NPC; Bortolotto et al., 2019; Meneghini et 

al., 2010). When TS NPC were exposed to vehicle, we observed a statistically 

significant reduction in the percentage of MAP2+/nestin- cells if compared to EU 

NPC (mean percentage decrease over vehicle-treated EU NPC: 32 % ; p<0.05 TS 

veh vs EU veh) (Fig. 1B). In the same experimental setting, LiCl increased the 

number MAP2+/nestin- cells both in EU (mean percentage increase over vehicle-

treated EU NPC: 59 % p<0.001 vs EU veh) and TS NPC (mean percentage 

increase over vehicle-treated TS NPC: 98 % ; p<0.001 vs TS veh), with no 

differences between genotypes (p=0.1). Altogether these results suggest that 2 

mM LiCl corrects also the differentiative defects of TS and EU NPC.  
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Figure 1. Neuronal differentiation in cultures of euploid (EU) and trisomic (TS) SVZ neural 

progenitor cells (NPC) 

A. Cells are seeded in differentiation medium and experiments are performed on EU/TS NPC 

seeded in differentiating conditions in presence of vehicle (veh) or LiCl (2 mM). Data are 

expressed as percentage of MAP2+/nestin- cells vs. total number of viable cells. Error bars 

represent the standard deviation of n=5 replicates, run in five different experiments and each dot 

represents the mean of three replicates. Results were considered statistically relevant with p<0.05 

(## p<0.01; ### p<0.001 vs. vehicle-treated EU NPC; *p<0.05; *** p<0.001 vs. vehicle-treated 

TS NPC; Two way Anova, followed by Fisher LSD). § indicates a difference in neuronal 

differentiation rate between EU and TS genotypes (§ p<0.05 vs. vehicle-treated EU NPC; Two 

way Anova, followed by Fisher LSD test). 

Non-cell autonomous defects of trisomic neural progenitor cells 

In vivo NPC can communicate with several cell types, including astrocytes (Song 

et al., 2002). Astrocytes are secretory cells able to secrete a wide array of 

molecules that can affect progenitors in a non-cell autonomous way (Cvijetic et 

al., 2017). We isolated and cultured hippocampal (HP) astrocytes from P1-2 EU 

and TS pups, and we collected 48h-conditioned supernatant (astrocyte 

conditioned media, ACM). Thereafter, with the purpose of evaluating whether 

EU/TS ACM could affect neuronal differentiation (Fig. 2A) and apoptosis (Fig. 

2B), we exposed both EU/TS NPC with EU/TS ACM. In all experiments ACM 

were compared to standard (STD) medium. After 24 h, we detected a decreased 
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percentage of MAP2+/nestin- cells in STD-treated TS NPC, if compared to the 

corresponding EU NPC, confirming previous data that TS NPC produced less 

neurons than EU NPC (mean percentage of MAP2+/nestin- cells ± S.D.: 6.1 ± 1 

EU NPC and 2.9 ± 0.9 TS NPC with a mean percentage decrease: 52 % ; p<0.001 

TS STD vs EU STD). EU ACM affected neuronal differentiation neither in EU 

nor in TS NPC. Conversely, TS ACM significantly reduced the percentage of 

MAP2+/nestin- generated from EU NPC if compared to EU STD-treated cells 

(mean percentage of MAP2+/nestin- cells ± S.D.: 6.1 ± 1 in STD-treated EU NPC 

and 3.7 ± 0.9 in TS ACM-treated EU NPC with a mean percentage decrease: 39 

% ; p<0.01 vs EU STD), while did not affect TS NPC (p>0.5 TS ACM-treated 

TS NPC vs TS veh). Interestingly, we did not detect any difference between the 

two genotypes in presence of TS ACM (p>0.05), suggesting that TS ACM may 

potentially release signals (cytotoxic or antineurogenic) that negatively affect 

only EU NPC.  

Under the same experimental setting, we evaluated apoptosis (Fig. 2B). We 

showed that, in STD-treated cells, no difference was reported between EU (mean 

percentage of apoptotic cells  S.D: 21  3.6) and TS NPC and progeny (mean 

percentage of apoptotic cells  S.D: 17  2.3), while both EU ACM and TS ACM 

significantly reduced the percentage of apoptotic cells both on EU and TS NPC 

and progeny. Based on these data, reduced neuronal differentiation in TS ACM-

treated EU NPC cultures cannot be attributed to changes in cell survival.  

In order to rule out a different time-dependent effect of EU/TS ACM on EU or 

TS NPC, we also exposed EU/TS SVZ-derived NPC to EU/TS ACM for 96 h. 

After 96 h, we obtained a result comparable to the one obtained at 24 h, with an 

exacerbated reduction of MAP2+/nestin- cells only in SVZ-derived EU NPC in 

presence of TS ACM and, in parallel, a reduced apoptotic rate in TS ACM-treated 

SVZ-derived EU NPC. No effect of EU ACM was observed both in EU and TS 

SVZ-derived NPC (data not shown).  
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It is well known that astrocytes modulate NPC in a region-specific manner (Ma 

et al., 2009). Thus, EU/TS HP-derived NPC were exposed for 96 h to EU/TS HP-

ACM or to STD medium and we evaluated the number of MAP2+/nestin- cells 

over viable cells (Fig. 2C). Once again, as expected, we observed a reduced 

percentage of MAP2+/nestin- cells in STD-treated TS HP-derived NPC if 

compared with STD-treated EU HP NPC (mean percentage decrease over STD-

treated EU NPC: 32 % ; p<0.05 TS STD vs. EU STD). EU ACM significantly 

increased the percentage of MAP2+/nestin- cells both in EU cells (mean 

percentage increase over vehicle-treated EU NPC: 60 %; p<0.001 EU ACM-

treated EU NPC vs EU STD ) and TS NPC (mean percentage increase over STD-

treated TS NPC: + 107 %; p<0.001 EU ACM-treated TS NPC vs TS STD).  

Conversely, TS ACM significantly reduced the number of MAP2+/nestin- cells 

in EU NPC (mean percentage of MAP2+/nestin- cells  S. D.: 10.4 %  2.2 STD-

treated EU NPC and 7  1 % TS ACM-treated EU NPC, with a mean percentage 

decrease: 33 %; p<0.05 TS ACM-treated EU NPC vs EU veh), while did not 

affect the percentage of MAP2+/nestin- TS cells. Surprisingly, TS ACM-treated 

EU NPC resulted significantly reduced if compared with TS ACM-treated TS 

NPC (p<0.05) meaning that TS ACM may contain molecules that affect neuronal 

differentiation of EU NPC in such a negative way that they differentiate less than 

TS ACM-treated TS NPC (Fig. 2C). 

Regarding apoptosis (Fig. 2D), we observed no difference between EU and TS 

vehicle-treated cells, while both EU and TS ACM significantly reduced the 

number of apoptotic cells on EU (p<0.001) and TS NPC and progeny (p<0.001).  

Taken together, TS ACM, as EU ACM, reduces apoptosis in both EU and TS 

NPC and progeny, conversely, while EU ACM increases neuronal differentiation 

of both genotypes, TS ACM reduces neuronal differentiation selectively in EU 

NPC. 
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Recent evidence showed that astrocytes can affect NPC fate specification through 

the release of proneurogenic molecules such as thrombospondin-1 (TSP-1) 

(Clarke & Barres, 2013; Cvijetic et al., 2017). TSP-1 secretion is defective in 

human-derived and in murine trisomic astrocytes (Chen et al., 2014b; Garcia et 

al., 2010; Lu & Kipnis, 2010). We then evaluated, by ELISA, the levels of TSP-

1 in EU and TS ACM. In line with literature data we detected reduced TSP-1 in 

TS ACM compared with EU ACM (mean percentage decrease: 59 % , p<0.05 vs 

EU ACM) (Fig. 2E).   

Altogether these results demonstrated that: i) EU ACM positively affects 

neuronal differentiation of both EU and TS HP-derived NPC; ii) TS ACM, 

significantly reduces neuronal differentiation of EU NPC compared to STD 

medium; iii) TS ACM contains less TSP-1 compared to EU ACM; iiii) both EU 

and TS ACM reduced apoptotic rate of NPC and their progeny, regardless of their 

genotype. 
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Figure 2. Effect of the astrocyte conditioned media (ACM) on euploid (EU) or trisomic (TS) 

neonatal neural progenitor cells (NPC) 

Differentiation experiments were performed on euploid (EU, grey bar) and trisomic (TS, white 

bar) SVZ- (A-B) and HP- (C-D) derived NPC. A. EU/TS SVZ NPC are seeded in differentiating 

conditions in presence of vehicle (veh) or EU/TS ACM for 24 h. Data are expressed as percentage 

of MAP2+/nestin- cells over viable cells. Error bars represent the standard deviation of n=9 

replicates, run in three different experiments and each dot represents a single replicate. B. EU/TS 

SVZ NPC are seeded in differentiating conditions in presence of vehicle (veh) or EU/TS ACM 

for 24 h. Data are expressed as percentage of apoptotic cells over total cells. Error bars represent 

the standard deviation of n=9 replicates, run in three different experiments and each dot represents 

a single replicate. C. EU and TS hippocampal (HP) NPC are seeded in differentiating conditions 
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in presence of vehicle (veh) or EU/TS ACM for 96 h. Data are expressed as percentage of 

MAP2+/nestin- cells vs the total number of viable cells. Error bars represent the standard deviation 

of n=6 replicates, run in two different experiments and each dot represents a single replicate. D. 

EU/TS HP are seeded in differentiating conditions in presence of vehicle (veh) or EU/TS ACM 

for 96 h. Data are expressed as percentage of apoptotic cells over total cells. Error bars represent 

the standard deviation of n=6 replicates, run in two different experiments and each dot represents 

a single replicate. Results are considered statistically relevant with p<0.05 (# p<0.05, ## p<0.01, 

### p<0.001 vs. vehicle-treated EU NPC; ** p<0.01, *** p<0.001 vs. vehicle-treated TS NPC; 

Two way Anova, followed by Tukey’s post hoc). The § indicate a difference in neuronal 

differentiation rate between EU and TS NPC (§ p<0.05, §§ p<0.01, §§§ p<0.001; Two way 

Anova, followed by Tukey’s post hoc vs. vehicle or EU/TS ACM E. ELISA quantification of 

TSP-1 detected in EU and TS ACM. Error bars represent the standard deviation of n=4 replicates, 

run in four different experiments and each dot represents the mean of a duplicate. The experiments 

were done using four different astrocyte preparations. Data are expressed as ng/ml over the total 

µg of astrocytic proteins and each dot is the mean of one ELISA experiment done in duplicate (* 

p<0.05 vs. EU ACM; student’s t-test). 

 

Thrombospondin-1 promotes in vitro neurogenesis in euploid, but not in 

trisomic NPC  

In order to investigate whether TSP-1 differentially affected EU and TS NPC 

neuronal differentiation, we treated them in presence of a concentration range of 

TSP-1 (100-2000 ng/ml) or vehicle for 96 h (Fig. 3A-D). Compared to vehicle, 

TSP-1 100 ng/ml was ineffective in EU (p=0.33) and in TS NPC (p=0.39). 

Conversely, higher concentrations of the protein (250-500-2000 ng/ml) resulted 

in a concentration-dependent increase in the percentage of MAP2+/nestin- cells, 

compared with vehicle, in EU NPC (mean percentage increase  S.D over 

vehicle-treated EU NPC: 59  22 , 60  31, 57  19 ; p<0.001 vs EU veh) (Fig. 

3A). In the same experimental setting, LiCl (2 mM) increased the percentage of 

MAP2+/nestin- EU cells (mean percentage increase  S.D. over vehicle-treated 

EU NPC: 61  20 SD ; p<0.001 vs EU veh). 



  

 251 

When TS NPC were exposed to TSP-1, we detected no increase in the percentage 

of MAP2+/nestin- cells at any of the tested concentrations (p>0.5 TSP1-treated 

vs vehicle-treated TS cells) (Fig. 3B). As expected, TS NPC were responsive to 

LiCl (mean percentage increase  S.D. over vehicle-treated TS NPC: 67  50 ; 

p<0.001 vs TS veh) (Fig. 3A, B). Representative confocal microscopy images of 

EU MAP2+ cells in presence of vehicle or 2000 ng/ml TSP-1 are shown in figure 

3C, D. 

Previous findings in our laboratory proposed that lipocalin-2 (LCN-2), another 

astrocyte-secreted factor, enhances neuronal differentiation in adult hippocampal 

NPC (ahNPC) (Cvijetic et al., 2017). We treated both EU/TS SVZ-derived NPC 

with LCN-2 (300 ng/ml. After 96 h LCN-2 significantly increased the number of 

MAP2+/nestin- cells both in EU cells (mean percentage increase  S.D. over 

vehicle-treated EU NPC: 69  17; p<0.001 vs EU veh) and TS cells (mean 

percentage increase  S.D. over vehicle-treated TS NPC: 53  13 ; p<0.001 vs 

TS veh). In the same experimental condition, LiCl enhanced the number of 

MAP2+/nestin- cells both in EU and TS NPC (mean percentage increase  S.D. 

over vehicle: 66  10 and 62  29 in EU and TS NPC, respectively; p<0.001vs 

corresponding veh) (Fig. 3E, F).  

Altogether these data demonstrate that TS NPC are selectively unresponsive to 

the proneurogenic effect of TSP-1, but not of another astrocyte-secreted molecule 

like LCN-2.  
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Figure 3. Effect of thrombospondin-1 (TSP-1) and lipocalin-2 (LCN-2) in neonatal euploid 

and trisomic SVZ neural progenitor cells 

Differentiation experiments are performed on euploid (EU, grey bar) and trisomic (TS, white bar) 

SVZ-derived NPC. A, B. EU/TS NPC are seeded in differentiating conditions in presence of 

vehicle (veh), thrombospondin-1 (TSP-1, 100-2000 ng/ml) or lithium chloride (LiCl, 2 mM) for 

96 h. Data are expressed as percentage of MAP2+/nestin- cells normalized over vehicle–treated 

condition. For EU NPC, error bars represent the standard deviation of n=12 replicates, run in four 

different experiments and each dot represents a single replicate. For TS NPC, error bars represent 

the standard deviation of n=9 or n=3 replicates, run in three or one experiments. Each dot 

represents a single replicate. C, D. Representative confocal microscope images of MAP2+ cells 

(red) in cultures of EU SVZ-derived NPC (C) and TS SVZ-derived NPC (D) in presence of 

vehicle (veh) or TSP-1 (2000 ng/ml). Nuclei are stained with DAPI (blue, DNA). White arrows 
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indicate positive cells. Scale bar=20 µm. E, F. EU/TS NPC are seeded in differentiating 

conditions in presence of vehicle (veh), lipocalin-2 (LCN-2, 300 ng/ml) or LiCl (2 mM) for 96 h. 

Data are expressed as percentage of MAP2+/nestin- cells normalized over vehicle-treated 

condition. Error bars represent the standard deviation of n=6 replicates, run in two different 

experiments and each dot represents a single replicate for EU NPC. Results are considered 

statistically relevant with p<0.05 (### p<0.001 vs. vehicle-treated EU NPC; *** p<0.001 vs. 

vehicle-treated TS cells; One way Anova, followed by Tukey’s post hoc).  

The alpha2delta1 (21) subunit is responsible for TSP-1 mediated 

proneurogenic effects 

TSP-1 binds several interactors (Resovi et al., 2014), including the 21 subunit 

(Dolphin, 2013). Previous work in our laboratory showed that the anticonvulsant, 

anxiolytic and antihyperalgesic drug pregabalin (PGB), a known ligand of the 

21 subunit of voltage dependent calcium channels (Taylor et al., 2007), is able 

to increase adult hippocampal neurogenesis in vitro and in vivo and that these 

effects are mediated by 21, expressed on the surface of ahNPC (Valente et al., 

2012). Thus, in order to investigate whether PGB affected neuronal 

differentiation differentially in EU and TS NPC cultures, we treated cells with 1 

nM concentration of the drug for 96 h (Valente et al., 2012). We observed that 

PGB increased the number of NPC-derived neurons in EU cultures (mean 

percentage increase  S.D. over vehicle: 51  18 ; p<0.001 vs EU veh) (Fig. 4A). 

Conversely, when TS NPC were exposed to the drug no effect was observed on 

the percentage of MAP2+/nestin- cells (Fig. 4A). These data demonstrated TS 

NPC cultures were insensitive not only to TSP-1, but also to PGB proneurogenic 

effects. These findings suggested that the lack of TSP-1 and PGB effects in TS 

NPC may be linked to a defective 21 signalling. In order to further investigate 

the molecular mechanisms underlying TSP-1 proneurogenic effect, we focused 

our efforts on EU NPC. 
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Gabapentin (GBP), another 21 ligand, also binds the 21 subunit (Valente et 

al., 2012). Past evidence showed that at high concentrations (32 M) GBP 

antagonizes formation of excitatory synapses mediated by TSP1-21 

interaction (Eroglu et al., 2009). Although TSP-1 synaptogenic and 

proneurogenic effects could be mediated by different mechanisms, we exposed 

EU NPC to the maximally effective concentration of TSP-1 (2000 ng/ml), in 

presence of vehicle or GBP (32 M). As expected, we observed a statistically 

significant increase in the percentage of MAP2+/nestin- cells in presence of TSP-

1 (mean percentage increase  S.D. over vehicle-treated EU NPC: 61  39; 

p<0.001 vs EU veh) and this effect was completely counteracted in presence of 

GBP (p<0.05 PGB vs PGB+GBP). GBP alone had no effect on neuronal 

differentiation (p>0.05 if compared with vehicle-treated EU NPC). GBP 

counteracted also 1 nM PGB-induced increase of MAP2+/nestin- (mean 

percentage increase over vehicle: 85  19; p<0.001 PGB vs veh and 11  22; 

p<0.05 PGB vs PGB+GBP). As expected, LiCl promoted an increase in the 

percentage of MAP2+/nestin- cells (mean percentage increase  S.D. over 

vehicle: 61  47 ; p<0.001 vs veh) (Fig. 4C).  

Taken together these data strongly suggested an involvement of the 21 subunit 

in the proneurogenic effects mediated by PGB and TSP-1 in EU NPC. 

Data in literature demonstrated that TSP-1 can affect not only neuronal 

differentiation, but also proliferation of adult NPC (Lu & Kipnis, 2010). In order 

to evaluate whether TSP-1 and PGB affected proliferation, we treated both EU 

and TS NPC with TSP-1 (2000 ng/ml) and PGB (1 nM). In our experimental 

conditions both drugs were ineffective in EU (Fig. 4D) and TS NPC (Fig. 4E).   
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Figure 4. Effect of alpha2delta1 ligands in euploid neonatal SVZ neural progenitor cells  

A-C. Differentiation experiments are performed on euploid (EU, grey bar) and trisomic (TS, 

white bar) SVZ-derived NPC. A, B. EU/TS NPC are seeded in differentiating conditions in 

presence of vehicle (veh), pregabalin (PGB, 1 nM) or lithium chloride (LiCl, 2 mM) for 96 h. 

Data are expressed as percentage of MAP2+/nestin- cells normalized over vehicle. Error bars 

represent the standard deviation of n=9 replicates, run in three different experiments and each dot 

represents a single replicate. C. EU NPC are seeded in differentiating conditions in presence of 

vehicle (veh), gabapentin (GBP, 32 M), TSP-1 (2000 ng/ml), PGB (1 nM), LiCl (2 mM) or the 

cotreatments (TSP-1+GBP or PGB+GBP) for 96 h. Data are expressed as percentage of 
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MAP2+/nestin- cells normalized over vehicle. Error bars represent the standard deviation of n=3, 

9, 12 replicates, run in one, three, four different experiments and each dot represents a single 

replicate. D, E. EU/TS NPC are seeded in medium containing 10 ng/ml FGF and exposed to 

vehicle (veh), TSP-1(2000 ng/ml), PGB (1 nM) or LiCl (2 mM). Data are expressed as difference 

over vehicle-treated cells. Error bars represent the standard deviation of n=9 replicates, run in 

three different experiments and each dot represents a single replicate for EU NPC. Results are 

considered statistically relevant with p<0.05 (### p<0.001 vs. vehicle-treated EU NPC; *** 

p<0.001 vs. vehicle-treated TS cells; One way Anova, followed by Tukey’s post hoc). The § 

indicate a difference between the different conditions (§ p<0.05 PGB-treated vs. PGB+GBP, §§§ 

p<0.001, TSP1-treated cells vs. TSP1+GBP; One way Anova, followed by Tukey’s post hoc). 

 

21 expression levels are reduced in trisomic neural progenitor cells 

We investigated whether 21 expression levels was differently expressed in EU 

and TS SVZ-derived and HP-derived NPC. By western blotting we showed that 

21 was downregulated both in TS SVZ- and HP-derived NPC if compared 

with the corresponding EU NPC (mean percentage of reduction: 41 % and 32 %, 

respectively; p<0.05 TS vs EU) (Fig. 5A, B, E). Conversely, we observed no 

significative difference in 21 expression levels in neonatal brain tissue at least 

at postnatal day 1, both in HP (Fig. 5C) and CX (Fig. 5D). These data suggested 

that the expression of 21 may be selectively reduced in TS neural progenitor 

cells.  
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Figure 5. Western blot analyses to evaluate 21 expression in neonatal SVZ and HP neural 

progenitor cells and in neonatal brain tissues 

Western blot (WB) analyses are performed in neonatal EU (grey bar) and TS (white bar) NPC 

from the subventricular zone (SVZ) and hippocampi (HP). A. 21 expression levels are 

examined in six different EU/TS SVZ-derived NPC preparations collected at different passages 

(4-10). 21 protein levels are normalized over ß-actin and expressed as fold difference in 

comparison with EU NPC. Error bars represent the standard deviation of n=6 replicates, run in 

six different experiments and each dot represents a single NPC preparation. B. Expression levels 

of 21 are examined in four different EU/TS HP NPC preparations collected at different 

passages (4-10). 21 expression levels are normalized over ß-actin and expressed as fold 

difference in comparison with EU NPC. Error bars represent the standard deviation of n=4 
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replicates, run in four different experiments and each dot represents a single NPC preparation. C. 

Levels of 21 were examined in hippocampi (HP) isolated from postnatal day 1 TS (n=3) and 

EU (n=5) pups. Error bars represent the standard deviation of n=5 (EU pups) and n=3 (TS pups), 

run in one experiment and each dot represents a single animal. D. Expression Levels of 21 

were examined in cortex (CX) isolated from postnatal day 1 TS (n=3) and EU (n=5) pups. Error 

bars represent the standard deviation of n=5 (EU pups) and n=3 (TS pups), run in one experiment 

and each dot represents a single animal. E, F. Representative immunoblot analysis of 21 

subunit (143 kDa) and ß-actin (42 kDa) in NPC (E) and neonatal tissues (F). Results were 

considered statistically relevant with p<0.05 and asterisks indicate a difference in comparison 

with EU NPC or EU tissue (* p<0.05, student’s t-test).  

 

Rac1 activation is required for the proneurogenic effect of TSP-1 in EU NPC 

TSP-1 controls the rearrangement of the actin cytoskeleton that plays a pivotal 

role in synapse formation and dendritic morphology, in particular by activating 

Rho GTPases (Risher & Eroglu, 2012). Recent evidence suggested that the small 

Rho GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) is a key 

component of the signaling pathway initiated by TSP1-21 association at least 

in the formation of new synapses (Risher et al., 2018). No information is currently 

available on the possibility that Rac1 activation may also be involved in the 

proneurogenic effects of TSP-1. Thus, in order to investigate the role of Rac1 in 

the proneurogenic effect mediated by TSP1-21 interaction, we exposed EU 

NPC to TSP-1 (2000 ng/ml) or PGB (1 nM), in presence of NSC23766 (3 µM), 

a selective Rac1 inhibitor or vehicle. NSC23766 alone had no effect on neuronal 

differentiation of EU NPC (p>0.05 N vs veh). As expected, TSP-1 significantly 

increased the percentage of MAP2+/nestin- cells (mean percentage increase over 

vehicle-treated EU NPC: 96 ± 40 ; p<0.001 vs veh), and this effect was 

completely prevented by co-treatment with Rac1 inhibitor (mean percentage 

increase  S.D. over vehicle-treated EU NPC: 24  28 ; p<0.001 TSP-1 vs TSP-

1+N) (Fig. 6A). In parallel, we observed that the Rac1 inhibitor completely 
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counteracted PGB-induced increase of MAP2+/nestin- cells (p<0.01 PGB vs 

PGB+N) (Fig. 6B). 

These data suggested that Rac1 activation may be potentially involved in the 

proneurogenic effect elicited by TSP-1 and PGB in EU NPC. In order to evaluate 

Rac1 expression levels in EU and TS SVZ- and HP-derived NPC we performed 

a western blot analysis. No difference in Rac1 expression levels were observed 

in SVZ (n=6; p=0.7) (Fig. 6C) and HP NPC of both genotypes (n=4; p=0.2) (Fig. 

6D). Similar results were obtained in neonatal EU/TS HP and CX tissues (data 

not shown). These data exclude the possibility that TSP-1 and PGB are 

ineffective in TS NPC due to reduced expression levels of Rac1.  

 

Figure 6. Effect of Rac1 inhibition on the proneurogenic effects of TSP-1 and PGB in EU 

NPC.   

A, B. Differentiation experiments are performed in euploid (EU, grey bar) SVZ NPC. A. EU NPC 
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are seeded in differentiating conditions in presence of vehicle (veh, 0.05% DMSO), Rac1 

selective inhibitor NSC23766 (N, 3 µM), TSP-1 (2000 ng/ml) or NSC23766 (N) + TSP-1 for 96 

h. Data are expressed as percentage of MAP2+/nestin- cells over vehicle. Error bars represent the 

standard deviation of n=12 replicates, run in four different experiments and each dot represents a 

single replicate. B. EU NPC are seeded in differentiation condition in presence of vehicle (veh, 

0.05% DMSO), NSC23766 (N, 3 µM), PGB (1 nM) or NSC23766 (N) + PGB for 96 h. Data are 

expressed as percentage of MAP2+/nestin- cells over vehicle. Error bars represent the standard 

deviation of n=9 replicates, run in three different experiments and each dot represents a single 

replicate. C. Expression Levels of Rac1 were examined in six different EU/TS SVZ-derived NPC 

and D. in four different EU/TS HP-derived NPC preparations collected at different passages. 

Expression levels are normalized over ß-actin. Error bars represent the standard deviation of n=6 

(EU/TS SVZ-derived NPC) or n=4 (EU/TS HP-derived NPC) replicates, run in one different 

experiment and each dot represents a single NPC preparation. E. Representative immunoblot 

showing immunoreactivity for Rac1 (21 kDa) and ß-actin (42 kDa) in SVZ NPC (up) and HP 

NPC (down). Results are considered statistically relevant with p<0.05 (# p<0.05; ### p<0.001 

vs. vehicle-treated EU NPC; One way Anova, followed by Tukey’s post hoc). The § indicate a 

difference between conditions (§§ p<0.01 vs. PGB-treated EU NPC, §§§ p<0.001, vs. TSP1-

treated EU NPC; One way Anova, followed by Tukey’s post hoc). 

 

ARP2/3 complex activation is required for TSP-1 and PGB proneurogenic 

effects 

Previous evidence demonstrated a downregulation in DS fetal brain of the actin-

related protein complex 2/3 (ARP 2/3) (Weitzdoerfer et al., 2002). This complex 

is involved in the formation of neuronal cytoskeleton and importantly ARP2/3 

could be activated downstream to Rac1 (Chen et al., 2017). Thereby, with the 

purpose to investigate whether ARP 2/3 complex was involved in the signaling 

activated by TSP1-21 interaction, we treated EU NPC with TSP-1 (2000 

ng/ml), in presence of CK666, a selective inhibitor of the ARP2-3 complex (50 

µM), CK689, its inactive control (50 µM) (Ilatovskaya et al., 2013) or the 

corresponding vehicle under differentiative conditions. When EU NPC were 

exposed to CK666 alone no signifcant effect was observed, compared to vehicle. 
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As expected, TSP-1 significantly promoted EU NPC neuronal differentiation 

(mean percentage increase  S.D. over vehicle-treated EU NPC: 71  32 ; 

p<0.001 vs veh) and such effect was counteracted by CK666 co-treatment 

(p<0.05 TSP-1+CK666 vs TSP-1) (Fig.7A). Under the same experimental 

setting, the inactive control CK689 had no effect alone and did not affect TSP1 

proneurogenic effect on EU NPC (mean percentage increase  S.D. over vehicle-

treated NPC: 64  28 ; p<0.001 TSP-1+CK689 vs veh or CK689) (Fig 7B). 

Under the same conditions, CK666 also prevented the PGB-induced increase in 

the number of NPC-derived neurons (p<0.001 PGB+CK666 vs PGB). CK689 

was devoid of effects (mean percentage increase  over vehicle-treated NPC: 72 

 23; p<0.001 PGB+CK689 vs PGB or CK689) (Fig. 7 C, D). Altogether these 

results suggested that ARP2-3 complex inhibition prevents the proneurogenic 

effect of TSP-1 and PGB and that AR2-3 complex activation lies downstream of 

21 engagement by these ligands. 
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Figure 7. Effect of ARP2-3 complex inhibition on TSP-1 and PGB proneurogenic effects  

 on EU NPC.   

A. Differentiation experiments are performed on EU SVZ-derived NPC. A. EU NPC are seeded 

in differentiating conditions in presence of vehicle (veh, 0.05% DMSO), ARP2/3 complex 

inhibitor CK666 (50 µM), TSP-1 (2000 ng/ml) or CK666 + TSP-1 for 96 h. Data are expressed 

as percentage of MAP2+/nestin- cells normalized over vehicle. Error bars represent the standard 

deviation of n=9 replicates, run in three different experiments and each dot represents a single 

replicate. B. EU NPC are seeded in differentiating conditions in presence of vehicle (veh, 0.05% 

DMSO), the inactive control CK689 (50 µM), TSP-1 (2000 ng/ml) or CK689  +TSP-1 for 96 h. 

Data are expressed as percentage of MAP2+/nestin- cells normalized over vehicle. Error bars 

represent the standard deviation of n=9 replicates, run in three different experiments and each dot 

represents a single replicate. C. EU NPC are seeded in differentiating conditions in presence of 

vehicle (veh, 0.05% DMSO), CK666 (50 µM), PGB (1 nM) or CK666 + PGB for 96 h. Data are 

expressed as percentage of MAP2+/nestin- normalized over vehicle. Error bars represent the 

standard deviation of n=9 replicates, run in three different experiments and each dot represents a 

single replicate. D. EU NPC are seeded in differentiating conditions in presence of vehicle (veh, 
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0.05% DMSO), CK689 (50 µM), PGB (1 nM) and CK689 + PGB for 96 h. Data are expressed 

as percentage of MAP2+/nestin- normalized over vehicle. Error bars represent the standard 

deviation of n=9 replicates, run in three different experiments and each dot represents a single 

replicate. Results are considered statistically relevant with p<0.05 (### p<0.001 vs. vehicle-

treated EU NPC; §§§ p<0.001 vs. CK689-treated EU NPC; One way Anova, followed by Tukey’s 

post hoc). Asterisks indicate a difference between conditions (* p<0.05, ***p<0.001 vs. TSP-1 

or PGB; One way Anova, followed by Tukey’s post hoc).  

 

DISCUSSION 

In this chapter I have presented some unpublished and still preliminary results. 

Based on the data obtained, we confirmed, once again, that neonatal trisomic 

NPC showed in vitro phenotypic defects, including reduced NPC proliferation 

(data not shown) and a decreased neuronal differentiation, if compared with 

euploid cells. We also confirmed that these cell-autonomous defects could be 

corrected by lithium chloride, a well-established neurogenesis enhancer both in 

vivo (Bianchi et al., 2010; Contestabile et al., 2013) and in vitro (Stagni et al., 

2019b).  

Since recent evidence of astrocytic alterations in DS (Chen et al., 2013), we 

decided to focus our attention on the possibility that dysfunctional 

communication between NPC and astrocytes could also contribute to DS 

pathophysiology. Using astrocyte conditioned media (ACM) collected from 

euploid and trisomic hippocampal astrocytes, we observed that trisomic ACM 

negatively affected neuronal differentiation in euploid NPC. These results were 

confirmed both in SVZ-derived NPC and in HP-derived NPC. Despite Chen et 

al. showed that human trisomic astrocytes negatively affect neuronal 

differentiation of human derived trisomic NPC (Chen et al., 2013; Cresto et al., 

2019), in our study we did not observe negative effects of trisomic ACM on 

trisomic NPC.  
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Under the same experimental conditions, we observed a proneurogenic effect of 

euploid ACM on euploid hippocampal NPC, as previously shown (Cvijetic et al., 

2017; Song et al., 2002) and on trisomic hippocampal NPC in agreement with 

previous studies (Chen et al., 2014; Garcia et al., 2010). Not surprisingly, EU 

ACM had no proneurogenic effect in SVZ-derived NPC, regardless of their 

genotype, likely for the hippocampal source of the astrocyte used for ACM 

collection (Decimo et al., 2012; Ma et al., 2009). On the other hand, since 

trisomic ACM reduced neuronal differentiation both in SVZ and HP derived EU 

NPC, this may suggest that antineurogenic molecules released by trisomic 

hippocampal astrocytes exert their negative effects regardless of NPC origin in 

terms of neurogenic niche.  

 

In parallel, a reduction in the apoptotic rate was observed in EU and TS ACM-

treated EU and TS NPC cultures, compared to STD medium. Altogether these 

data suggested that: i) as previously shown (Cvijetic et al., 2017), ACM elicit 

prosurvival effects on NPC and their progeny, regardless of their genotype; ii) 

that the negative effect of  trisomic ACM on neuronal differentiation of euploid 

cells could be due to the presence of antineurogenic molecules. At present we 

have no evidence on the nature of such astrocyte-derived molecule(s). In the 

future studies should be undertaken to unravel secretome composition of trisomic 

astrocytes. 

 

During this project we rather concentrated our attention on a matricellular 

protein, thrombospondin-1 (TSP-1), a molecule whose secretion has been 

demonstrated to be defective in murine and human trisomic astrocytes (Garcia et 

al., 2010; Torres et al., 2018). We confirmed that also in our hands, TS ACM 

contained less TSP-1 compared to EU ACM.  
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TSP-1 is a key astrocytic signal involved in neurogenesis (Cvijetic et al., 2017; 

Lu & Kipnis, 2010), widely expressed during brain development (Meiniel et al., 

2003). For the first time we showed that trisomic NPC do not respond to the 

proneurogenic effect of TSP-1 and also of pregabalin, a clinically relevant drug 

known to bind the 21 subunit (Dolphin, 2013; Valente et al., 2012). Since TSP-

1 binds 21 as well and our group demonstrated that the subunit is expressed 

by NPC and mediates both TSP-1 and PGB proneurogenic effects (Valente et al., 

2012; Cvijetic et al., 2017), we hypothesize that defective 21 signalling in TS 

NPC. 21 is a regulatory subunit of neuronal voltage-dependent calcium 

channels (VGCC, Dolphin, 2013), but several lines of research have proposed 

that some of its ligand-mediated effects can be elicited in a VGCC-independent 

manner (Eroglu et al., 2009). Also in our in vitro model, preliminary experiments 

done in the lab showed that TSP-1 and PGB did not activate a calcium response 

in EU and TS NPC (data not shown), supporting the hypothesis that in this cell 

type 21 can be engaged by its ligands in a VGCC independent way.  

Investigating the molecular mechanisms underlying the proneurogenic effect of 

TSP-1, we showed that: i) another 21 ligand, gabapentin (GBP, 32 µM) was 

able to block the proneurogenic effect of both TSP-1 and PGB in EU NPC 

(Eroglu et al., 2009; Risher et al., 2018); ii) 21 expression was downregulated 

in trisomic compared to EU NPC. Taken together these data support the idea that 

in euploid NPC the proneurogenic effect of TSP-1 is mediated by the interaction 

with 21 and that reduced expression of 21 in trisomic cells may, at least in 

part, contribute to their lack of proneurogenic response to TSP-1 and PGB. Since 

TS NPC are insensitive to such ligands we hypothesized that additional defects 

in 21 signalling may occur in these cells. 

In principle, defects in 21 signalling in TS NPC may lie in disrupted 

association of 21 with its interactors (Risher & Eroglu, 2012) and/or impaired 
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activation of downstream signaling. We showed that pharmacological inhibition 

of Rac1, a Rho GTPase protein downstream 21 subunit, counteracted the 

proneurogenic effect of TSP-1 and PGB in euploid NPC. Our data are consistent 

with other studies that showed that prosinaptogenic effects of TSP-1 are mediated 

by the activation of Rac1 (Risher et al., 2018). Rac1 is a small GTPase existing 

in two forms: an inactive form (GDP-bound) and an active form (GTP-bound) 

(Tejada-Simon, 2015). The relationship between Rac1 inactivated and activated 

states is important for proper interaction of Rac1 with other targets downstream 

the signaling pathway. Moreover, Rac1 activated moves from the cytosol to the 

membrane where it could interact with several proteins (Tejada-Simon, 2015), 

including 21 (Risher et al., 2018).  

There is evidence showing that Rac1 is upstream of the actin-related protein 

complex 2/3 (ARP 2-3) complex activation (Chen et al., 2017). ARP-2/3 complex 

is also important for brain development and studies showed that it is 

downregulated in DS fetal brain (Weitzdoerfer et al., 2002). Here we showed that 

pharmacological inhibition of ARP 2/3 counteracted the proneurogenic effect 

mediated by TSP-1 and PGB.  

 

Based on reported evidence, altogether we demonstrated that in EU NPC TSP-1 

and PGB proneurogenic effects are mediated by interaction with 21, and that 

this effect requires activation of Rac1 and of ARP2/3, once activated ARP2/3 

binds pre-existing actin filaments in order to allow the new filaments to grow on 

the old ones and form a functional actin cytoskeleton (Ilatovskaya et al., 2013). 

Impaired actin filament assembling leads to neuronal abnormalities (Griesi-

Oliveira et al., 2018).  

At present we have no direct and solid evidence of dysfunctional rac1 signaling 

in trisomic NPC and their progeny. Two distinct hypothesis could be raised: i) 

differential expression levels of Rac1 protein in TS compared to EU NPC; ii) 
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impaired Rac1 activation in TS NPC. Here we demonstrated no difference in 

Rac1 expression levels in NPC of both genotypes. In very preliminary 

experiments (data not shown), we observed activation of Rac1 in presence of 

TSP-1 in EU but not in TS NPC. Although further experiments are needed to 

dissect Rac1 activity in basal conditions and in presence of both TSP-1 and PGB, 

both in EU and TS NPC, at the current stage of knowledge we hypothesize 

impaired activition of Rac1 in response to 21 ligands in TS NPC.  

Rac1 is involved in several brain functions including learning and memory and 

dendritic spine development, features of several neurodevelopmental disorders 

including Down syndrome (Désiré et al., 2005; Kikuchi et al., 2019; Risher et al., 

2018; Torres et al., 2018). Furthermore, several mutations in Rac1 have been 

reported in individuals with intellectual disability (Zamboni et al., 2018). These 

mutations can contribute to hypoactivity of the pathway downstream Rac1 

(Zamboni et al., 2018). In preliminary experiments we also demonstrated that 

moesin, another protein involved in rac1 signaling (Ivetic & Ridley, 2004), is 

downregulated in trisomic NPC. Althogh these data are in line with the 

observation that moesin is downregulated in DS fetal brain (Lubec et al., 2001), 

this is the first demonstration of such alteration in TS NPC.  

 

Here we showed that not only trisomic astrocytes secrete less TSP-1 than euploid 

one, but that trisomic NPC are not responsive to TSP-1 and other 21 ligands 

like PGB, suggesting an impaired machinery downstream 21 in TS NPC. 

Taken together these data raise future questions whether upregulation of the 21 

subunit and/or pharmacological correction in the TSP1-1/21/rac1/arp2-3 

signaling could correct phenotypic alterations in trisomic NPC and their progeny. 
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Final discussion  

Down syndrome (DS) is the most common genetic cause of intellectual disability 

caused by the triplication of chromosome 21, with a frequency of one in 700 

births worldwide. Although individuals with DS have various medical problems, 

intellectual disability (ID) is the most disabling aspect of the pathology. Indeed, 

DS brain develops differently from an euploid child and is characterized by 

hypocellularity, reduced neurogenesis and increased astrogliogenesis (Bartesaghi 

et al., 2011; Stagni et al., 2018). In the past years studies hypothesized that DS 

brain abnormalities might be caused by a widespread reduction in neural 

progenitor cell proliferation, registered both in DS fetuses (Guidi et al., 2008; 

Contestabile et al., 2007) and in Ts65Dn pups (Bianchi et al., 2010; Guidi et al., 

2014; Stagni et al., 2016), the most validated preclinical model to study DS 

(Guidi et al., 2008; Stagni et al., 2018)  

A revolutionary study in the field showed for the first time that a pharmacological 

treatment in the perinatal period (prenatal and neonatal) could correct NPC 

defective proliferation and differentiation and, importantly, rescue cognitive 

impairment in adulthood (Stagni et al., 2015). 

Thus, the perinatal period seems to be the therapeutic window in which correct 

DS brain neurodevelopmental alterations. Indeed, at present part of the drug 

discovery in DS is mainly focused in early pharmaceutical interventions (Hart 

et al., 2017). However, several drugs efficacious in the animal model such as 

lithium chloride (LiCl) appears not suitable for clinical application mainly due 

to unfavorable tolerability and/or safety issues (Kazemi et al., 2016).  

 

Based on these premises, during my PhD we targeted neural progenitor cell 

alterations in neonatal NPC (in vitro) and in Ts65Dn pups (in vivo) using 

different pharmacological approaches in order to identify drugs able to correct 

phenotypic alterations of NPC (defective proliferation and neuronal 
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differentiation) and identify new molecular mechanisms altered in NPC, which 

may contribute to the dysfunctional crosstalk with other cell types, including 

astrocytes.  

 

During the first part of my PhD we mainly focused on phenotypic alterations of 

neural progenitor cells, aimed at the identification of novel potential drugs to 

treat DS brain abnormalities, profiting from a drug repurposing approach. This 

methodology allows to save time and money in the preclinical part and 

dramatically shorten the gap between drug discovery and availability to the 

patient (Clout et al., 2019; Reaume, 2011).  

In particular, the first activity in which I was involved consisted in the set up of 

a miniaturize, simple, reproducible and ready to use in vitro phenotypic assay, 

based on the reduced proliferation of trisomic NPC. We used the well established 

neurogenesis enhancer LiCl (2 mM) (Bianchi et al., 2010, Contestabile et al., 

2013) as positive control in all the experiments and as threshold value during the 

screening activities. We screened 1890 already clinical approved drugs for their 

ability to promote trisomic NPC proliferation and this effort resulted in the 

identification of 30 potential hits more potent than LiCl, belonged mainly to three 

pharmacological classes: the glucocorticoids, the 2 adrenergic 

agonists/antiasthmatic drugs and the immunosuppressant drugs.  

Between the potential hits one of the most surprising ones were the 

glucocorticoids (GC). Despite the majority of the studies showed a negative 

effect of glucocorticoids on neurogenesis both in vitro (i.e. dexamethasone 1 µM) 

(Sundberg et al., 2006) and in vivo (i.e. dexamethasone 0.5 mg/kg/day from P4 

to P7) (Kanagawa et al., 2006), in our in vitro cell cultures we observed a pro-

proliferative effect of glucocorticoids (GC) both in trisomic and euploid NPC. At 

least one other group showed that several GC (0.005 – 50 µM) increased 
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proliferation of NPC derived from human iPSCs in a dose dependent manner 

(Ninomiya et al., 2014), consistent with our data. 

The mechanism of action of GC is not still well elucidated. There is evidence that 

GC can regulate cell proliferation (both positively or negatively) binding the 

glucocorticoid receptors (GR), with transcriptional (Nürnberg et al., 2018) or 

non-transcriptional effects (Hapgood, Avenant & Moliki, 2016), or as agonists 

of the Smoothened (Smo) receptor in the Sonic Hedgehog pathway (Shh) 

(Vicario et al., 2019; Wang et al., 2010). In all these cases their binding may 

activate signaling pathways know to be altered in DS (i.e. Akt/PI3K; Shh) (Pelleri 

et al., 2016; Perluigi et al., 2014; Trazzi et al., 2013). However, we observed 

positive effect of GC both in trisomic and euploid NPC, leaving us clueless about 

the mechanisms behind these results. In the future we will better elucidate GC 

mechanism of action and evaluate whether GC affect neuronal differentiation of 

trisomic NPC.  

During the screening activities, we identified also several 2 adrenergic agonists, 

antiasthmatic drugs widely used in clinic (Molimard et al., 1998). These data are 

consistent with previous findings that suggested 2 adrenergic receptors as 

targets to improve cognitive performances and synaptic plasticity in 4-6-month-

old Ts65Dn mice (formoterol 2 mg/kg, 4 h before cognitive tests) (Dang et al., 

2014). Here, we suggest that NPC, that express 2 receptors (Bortolotto et al., 

2019), are specific target of 2 agonist drugs.  

Importantly, we observed also an effect on neuronal differentiation of TS NPC 

after treatment with 2 agonists (data not shown). These results are in agreement 

with previous studies in the laboratory that demonstrated that salmeterol and 

formoterol promoted neurogenesis in vitro (0.1-10 nM), in adult hippocampal 

NPC, and in vivo, in wild type mice (10 µg/kg) (Bortolotto et al., 2019). Based 

on these results and our in vitro screening data, a currently ongoing study at the 

University of Bologna (in the Laboratory of Prof. Bartesaghi) is evaluating the 
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effects of subchronic administration of 2AR agonists that pass the blood brain 

barrier in neonatal TS and EU pups with very promising preliminary results (data 

not shown).   

 

Another interesting and surprising hit identified during our screening campaign 

was the immunosuppressant cyclosporine A (CSA). In the above findings, we 

described the phenotypic characterization of NPC in vitro, the part in which I 

personally contributed, and in vivo in Ts65Dn and euploid pups. In vitro we 

demonstrate that CSA: i) restored the reduced proliferation rate of TS NPC, 

without affecting cell death, ii) increased TS NPC neurogenesis and 

concomitantly reduced astrogliogenesis and iii) enhanced the development of 

neuritic processes. These data are consistent with previous studies in vitro (1 µM, 

the same concentration we used) (Chow & Morshead, 2016; Hunt & Morshead, 

2010) and in vivo in wild type mice (Steiner et al., 1997; Sachewsky et al., 2014).  

Importantly, in vivo we demonstrated that a neonatal treatment with CSA (15 

mg/kg/day; P3-P15) significantly i) increased the number of proliferating NPC 

in the SGZ and SVZ of Ts65Dn pups, ii) increased neuronal density of the dentate 

gyrus and iii) largely increased the spine density in granule cells of Ts65Dn-

treated mice.  

Worthy of attention is the possibility that a single drug, CSA, administered in an 

early critical time window, is able to correct the main defects of DS brain. In the 

future, it may be important to evaluate the long-term effects of CSA treatment on 

cognitive performances of treated-Ts65Dn mice. At present, since the extensive 

effects of CSA in the murine model, CSA may be a potentially effective drug in 

DS. Taken together these data are important since showed that we were able to 

set up a reproducible and sensitive trisomic NPC-based phenotypic assay and 

proved once again the concept that NPC may represent pharmacological targets 

not only in vitro, but in vivo, in DS.  
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Unfortunately, CSA toxicity is likely to prevent its use in the DS clinical setting, 

but since the remarkable effects of the drug in the murine model, we believe it 

will be very important in the near future to unravel its underlying mechanism(s) 

of action.  

In such case, the phenotypic approach we used may contribute to unravel the 

mechanism(s) of action of the identified hits, which may be different from the 

one(s) involved in the primary action of approved drugs. Indeed, we showed that 

CSA decreased the expression levels of p21 in trisomic hippocampi. P21 is a 

cyclin-dependent kinase inhibitor that regulates the transition between G1 and S 

phase during the cell cycle (Stagni et al., 2018). P21 is overexpressed in DS brain 

and this overexpression may negatively affect TS NPC proliferation (Chen et al., 

2013; Stagni et al., 2018). Based on these data and previous literature evidence 

(Steiner et al., 1997; Sachewsky et al., 2014), in the present study we hypothesize 

that CSA may mediate its proneurogenic effect in vitro and in vivo not as 

calcineurin inhibitor, but through other mechanisms, such as blocking the activity 

of p38. P38 is a mitogen-activated protein kinase, MAPK (Matsuda & Koyasu, 

2000), overexpressed in DS brain, able to increase p53 and p21 levels (Tramutola 

et al., 2016), thus the inhibition of p38 by CSA may result in reduced p21 levels. 

In line with this hypothesis, in vivo, studies showed that the inhibition of p38 can 

improve spine growth and density (Fernandez et al., 2012), data consistent with 

the large increased in spine density observed in CSA treated-Ts65Dn mice.  

Based on our results and on previous evidence, in the future we will further 

investigate the mechanism of action of CSA in vitro, how it affects neurogenesis 

and astrogliogenesis (showed reduced in TS NPC for the first time in our cell 

model). The CSA dependent decrease in astrogliogenesis may be potentially 

linked to an inhibition of the Janus kinase-signal transducer and activator (JAK-

STAT), a pathway known to be upregulated in DS that contributes to the 

dysregulated phenotype acquisition of trisomic NPC (Lee et al., 2016; Stagni et 
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al., 2018).  

 

The above findings showed a drug repurposing strategy associated with a 

phenotypic-based approach, without an a priori known target. To our knowledge, 

these studies represent the first attempt to identify therapies in DS based on 

murine neonatal trisomic NPC using such a strategy.  

However, in the past, preclinical research in Down syndrome was mainly 

focused on a target-based approach based on the investigation of DS brain 

defects as starting point to find the rational basis to devise therapies that could 

correct DS brain developmental defects. Based on this evidence, in parallel to 

the first project, we took advantage of our in vitro cell model in order to dissect 

the effect of specific treatments on NPC, already under testing by our 

colleagues in vivo (Prof. Bartesaghi, UNIBO) in Ts65Dn and euploid mice 

(Croston, 2017).  

We tested a flavone derivative, 7,8-dihydroxyflavone (7,8-DHF), agonist of the 

tropomyosin-related kinase B (TrkB) receptor of the brain-derived neurotrophic 

factor (BDNF). This compound was chosen based on the evidence that BDNF 

levels are reduced in hippocampus (Guedj et al., 2009) and cerebral cortex of DS 

fetuses (Toiber et al., 2010) and that perinatal treatment with fluoxetine restores 

BDNF levels in Ts65Dn mice (Stagni et al., 2013).  

We showed that in vivo neonatal treatment with 7,8-DHF (5 mg/kg/day, P3-P15) 

i) increased the number of NPC in the dentate gyrus, ii) restored the number of 

granule cells and iii) increased dendritic spine density in Ts65Dn pups. 

Importantly, an administration of 7,8-DHF from P3 to adolescence P45 improved 

memory and learning tasks in treated Ts65Dn mice. The timing of 7,8-DHF 

administration is really critical since a recent study proved that 4-month-old mice 

treated with 7,8-DHF (5 mg/kg/day) does not show any improvement in learning 

and memory (Giacomini et al., 2019). 
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In vitro, we showed that 7,8-DHF strongly increased neuronal differentiation and 

neuronal maturation of trisomic NPC and progeny but did not affect NPC 

proliferation.  

This work contributes in the field confirming again that NPC are a 

pharmacological target and the time of drug administration is really critical.  

Here, we observed the first discrepancy between in vitro and in vivo data. Indeed, 

in vitro 7,8-DHF did not increase TS NPC proliferation (compared with in vivo), 

while strongly impacted on trisomic neuronal differentiation both in NPC derived 

from SVZ and hippocampi. We hypothesize that 7,8-DHF pro-proliferative effect 

observed in vivo may be mediated by non-cell autonomous effects regulated by 

other elements present in the neurogenic niche, that may be target of 7,8-DHF, 

including astrocytes (Cvijetic et al., 2017). Indeed, a recent study showed that 

BDNF receptors, the tyrosine kinase receptor B (TrkB), are present on astrocytes, 

especially the truncated form TrkB.T1 (Holt et al., 2019). However, other studies 

showed that stimulation of astrocytes with BDNF can increase the production of 

nitric oxide species and favor the activation of detrimental pathways (Colombo 

& Farina, 2016). Since the increased neuronal-astroglial ratio in DS brain 

(Contestabile et al., 2013) and the role of BDNF-TrkB system in the NPC 

phenotype acquisition in DS brain (Stagni et al., 2013; Li et al., 2008), in the 

future we may study whether 7,8-DHF impact on the secretome of trisomic 

astrocytes in vitro and the effect of this astrocyte conditioned media on neonatal 

NPC. These data may help to further dissect the effects of 7,8-DHF in a more 

complex system composed by different cell types (NPC and astrocytes). 

 

Again in the overview of a target-based approach, taking advantage of our in 

vitro cell model, we collaborated on another study aimed to investigate two 

mono-unsaturated fatty acids, linoleic (LA) and oleic acid (OA), main 

components of corn oil. OA is a major constituent of membrane phospholipids 
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and is highly concentrated in myelin (Song et al., 2019), while LA is an essential 

fatty acid that cannot be synthetize in the human body (Kaur et al., 2014) and that 

can positively impact on NPC (Kang et al., 2014). Based on this evidence and on 

the cytoprotective and neurotrophic effect of mono-unsaturated fatty acids (Song 

et al., 2019) we tested OA and LA in vitro in both TS and EU NPC. 

We observed a strongly increase in TS and EU NPC proliferation, in agreement 

with previous observations obtained in vitro using oleic acid (100 µM, as the 

concentration we used) (Belal et al., 2018). Then, we focused our attention on 

LA and for the first time in this cell model we showed that the pro-proliferative 

effect of LA was promoted through the binding of ß/ and γ peroxisome-

proliferator activated receptors (PPARs), the two main isoforms expressed in 

brain and involved in NPC proliferation and differentiation (Cimini et al., 2007).  

These data are important because the use of natural diet components is regarded 

as a therapeutic tool with a potential translational impact, especially to prevent 

cognitive decline linked to age, that manifests early in young DS adults (Vacca 

et al., 2019; Wang et al., 2013). Thus, in collaboration with Prof. Bartesaghi, we 

tested corn oil in vivo in 4-month old Ts65Dn mice. We showed that corn oil (10 

µl/g, 1 month treatment) 1) increased neurogenesis, 2) dendritic development and 

in parallel 3) increased learning and memory, exclusively in Ts65Dn mice.  

As for 7,8-DHF we observed a discrepancy between in vitro and in vivo data: OA 

and LA both promoted proliferation in EU and TS NPC, whereas corn oil effect 

in vivo was selectively observed in Ts65Dn mice. These data may suggest or a 

different sensitivity of neonatal NPC versus adult NPC or, in vivo, other cell types 

may contribute to the effect mediated by corn oil in Ts65Dn mice.  

Recent literature data demonstrated that astrocytes expressed fatty acid 

transporters and that these cells are also able to release polyunsaturated fatty 

acids (Barber & Raben, 2019; Bernoud et al., 1998).  
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Based on these data, in the future we may better elucidate the effect of mono-

unsaturated fatty acids on the secretome of trisomic astrocytes and then the effect 

of this media on TS NPC. Furthermore, we need to deeper investigate LA and 

OA mechanism of action on TS NPC proliferation and differentiation.  

Taken together, we showed that fatty acids positively impact on Ts65Dn brain. 

At least another group showed that administration of LA to pregnant rat mothers 

(1% LA with the diet from pregnancy to lactation) positively impacted in 

offspring cognitive performances (Queiroz et al., 2019), suggesting that 

treatment of pregnant Ts65Dn dams and offspring may be evaluated in the future.  

 

The above studies showed that: i) clinically approved drugs are able to correct 

phenotypic alterations of NPC, ii) in parallel NPC phenotype may be affected 

also by other cell types present in vivo, such as astrocytes, in a non-cell 

autonomous manner.  

In the work I was involved during the last months of my PhD we tested the effect 

of TS/EU astrocyte-conditioned media (ACM) on TS /EU NPC and we suggested 

that: i) as previously shown (Cvijetic et al., 2017), ACM elicit prosurvival effects 

on NPC and their progeny, regardless of their genotype; ii) that the negative effect 

of trisomic ACM on neuronal differentiation of euploid cells could be due to the 

presence of antineurogenic molecules. At present we have no evidence on the 

nature of such astrocyte-derived molecule(s). In the future studies should be 

undertaken to unravel secretome composition of trisomic astrocytes. 

Together these data highlighted the importance to investigate the crosstalk 

between NPC and astrocytes in DS. This study can disclose new potential 

pharmacological targets. 

 

In such a perspective during the last years of my PhD we rather concentrated our 

attention on a matricellular protein, thrombospondin-1 (TSP-1), a molecule 
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whose secretion has been demonstrated to be defective in murine and human 

trisomic astrocytes (Garcia et al., 2010; Torres et al., 2018). We confirmed that 

also in our hands, TS ACM contained less TSP-1 compared to EU ACM. For the 

first time, we showed that neither TSP-1 nor the clinically approved drug 

pregabalin (PGB) (Valente et al., 2012) were able to affect TS NPC neuronal 

differentiation. Consistently with previous observations, we showed that TSP-1 

and PGB exerted their proneurogenic effect via the 21 subunit (Eroglu et al., 

2009; Risher et al., 2018). We detected reduced expression of 21 in TS NPC, 

data consistent with previous findings in our lab in adult hippocampal NPC 

lacking of the transcription factor subunit NF-κB p50 (ahNPC p50 KO) (Cvijetic 

et al., 2017). Importantly, the cited study showed that ahNPC p50 KO are also 

defective in their response to proneurogenic signals (Cvijetic et al., 2017).  

We proved that the pharmacological inhibition of Rac1, a protein downstream 

21 blocked the proneurogenic effect of TSP-1 and PGB in EU NPC. These 

data are consistent with findings obtained by Rishler et al. demonstrating that the 

prosinaptogenic effect of TSP-1 is mediated by activation of the Rho GTPase 

Rac1 (Risher et al., 2018). Data showed that Rac1 is upstream ARP-2/3 (Chen et 

al., 2017), a complex involved in the actin cytoskeleton, important for brain 

development and downregulated in DS fetal brain (Weitzdoerfer, Fountoulakis 

& Lubec, 2002). We showed that a pharmacological inhibtion of the ARP2/3 

complex blocks the proneurogenic effect of TSP-1 and PGB.  

No difference in expression levels of Rac1 was observed between genotypes. A 

preliminary experiment in the lab showed that Rac1 is activated by TSP-1 in EU 

NPC with a very rapid kinetic. Based on these results we hypothesize that TSP-

1 activates Rac1 in EU cells, while TS NPC may be defective in Rac1 activity. 

These data will be further investigated in the future. 

In general, based on the data presented, we suggest an important role played by 

the activation of the Rho GTPase signaling via TSP-1/21 association in 
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euploid cells that mediate TSP-1 proneurogenic effect. This consideration 

prompts us to hypothesize an impaired TSP-1/21 association and a defective 

Rho GTPase signaling in TS NPC. 

In the future, several points need to be better dissected. First, we need to evaluate 

if the silencing of 21 in EU NPC may result in defective properties, similar to 

TS NPC. Moreover, if after silencing we will observe that TSP-1 and PGB effects 

are abolished, this should increase our confidence on the involvement of the 21 

subunit in the defective neuronal differentiation of TS NPC. Subsequently, it is 

important to further dissect the RhoGTPase pathway in TS NPC that we 

hypothesize to be impaired. Thus, all together these data raised up the question 

whether an upregulation of the 21 subunit or a pharmacological correction in 

the RhoGTPase signaling could restore a normal phenotype in trisomic cells, 

highlighting new potential pharmacological targets in trisomic NPC.  

 

In conclusion, with this PhD thesis we confirmed that is possible to 

pharmacologically restore the altered phenotype (proliferation and 

differentiation) of trisomic NPC in early life stages, not only in vitro, but also in 

Ts65Dn pups. We showed two different strategies of correction: using a 

phenotypic-based assay associated to a drug repurposing strategy or a target-

based approach.  

In parallel, we increased our knowledge on the molecular mechanisms underlying 

the key astrocytic signal TSP-1. We highlighted two main problems: on one hand 

trisomic astrocytes secrete less TSP-1 (non-cell autonomous defects), on the 

other hand TS NPC fail in the reception of the signal, maybe due to defects in the 

TSP-1 receptor and, in general, of the downstream signaling pathway. 

Furthermore, we showed that in vitro NPC may be affected by astrocytes: 

trisomic astrocytes may release antineurogenic molecules for euploid NPC, but 

trisomic astrocytes may also be target of drugs and may contribute to the positive 
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effects observed in vivo. Thus with this thesis, as for already previous evidence 

(Chen et al., 2013), we hypothesize a role of the crosstalk between astrocytes and 

NPC in DS that needs to be better elucidated.  

Taken together this thesis demonstrates that NPC are important novel 

pharmacological target and the investigation of the molecular mechanisms 

underlying trisomic neural progenitor cell defects may help to disclose new 

pharmacological targets in early life stages of DS. 
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